Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Liming Sun | 2646 | 54.52% | 4 | 36.36% |
David Thompson | 1889 | 38.92% | 2 | 18.18% |
Asmaa Mnebhi | 244 | 5.03% | 2 | 18.18% |
Khalil Blaiech | 71 | 1.46% | 1 | 9.09% |
Uwe Kleine-König | 2 | 0.04% | 1 | 9.09% |
Bhaskar Chowdhury | 1 | 0.02% | 1 | 9.09% |
Total | 4853 | 11 |
// SPDX-License-Identifier: GPL-2.0+ /* * Mellanox boot control driver * * This driver provides a sysfs interface for systems management * software to manage reset-time actions. * * Copyright (C) 2019 Mellanox Technologies */ #include <linux/acpi.h> #include <linux/arm-smccc.h> #include <linux/delay.h> #include <linux/if_ether.h> #include <linux/iopoll.h> #include <linux/module.h> #include <linux/platform_device.h> #include "mlxbf-bootctl.h" #define MLXBF_BOOTCTL_SB_SECURE_MASK 0x03 #define MLXBF_BOOTCTL_SB_TEST_MASK 0x0c #define MLXBF_BOOTCTL_SB_DEV_MASK BIT(4) #define MLXBF_SB_KEY_NUM 4 /* UUID used to probe ATF service. */ static const char *mlxbf_bootctl_svc_uuid_str = "89c036b4-e7d7-11e6-8797-001aca00bfc4"; struct mlxbf_bootctl_name { u32 value; const char *name; }; static struct mlxbf_bootctl_name boot_names[] = { { MLXBF_BOOTCTL_EXTERNAL, "external" }, { MLXBF_BOOTCTL_EMMC, "emmc" }, { MLNX_BOOTCTL_SWAP_EMMC, "swap_emmc" }, { MLXBF_BOOTCTL_EMMC_LEGACY, "emmc_legacy" }, { MLXBF_BOOTCTL_NONE, "none" }, }; enum { MLXBF_BOOTCTL_SB_LIFECYCLE_PRODUCTION = 0, MLXBF_BOOTCTL_SB_LIFECYCLE_GA_SECURE = 1, MLXBF_BOOTCTL_SB_LIFECYCLE_GA_NON_SECURE = 2, MLXBF_BOOTCTL_SB_LIFECYCLE_RMA = 3 }; static const char * const mlxbf_bootctl_lifecycle_states[] = { [MLXBF_BOOTCTL_SB_LIFECYCLE_PRODUCTION] = "Production", [MLXBF_BOOTCTL_SB_LIFECYCLE_GA_SECURE] = "GA Secured", [MLXBF_BOOTCTL_SB_LIFECYCLE_GA_NON_SECURE] = "GA Non-Secured", [MLXBF_BOOTCTL_SB_LIFECYCLE_RMA] = "RMA", }; /* Log header format. */ #define MLXBF_RSH_LOG_TYPE_MASK GENMASK_ULL(59, 56) #define MLXBF_RSH_LOG_LEN_MASK GENMASK_ULL(54, 48) #define MLXBF_RSH_LOG_LEVEL_MASK GENMASK_ULL(7, 0) /* Log module ID and type (only MSG type in Linux driver for now). */ #define MLXBF_RSH_LOG_TYPE_MSG 0x04ULL /* Log ctl/data register offset. */ #define MLXBF_RSH_SCRATCH_BUF_CTL_OFF 0 #define MLXBF_RSH_SCRATCH_BUF_DATA_OFF 0x10 /* Log message levels. */ enum { MLXBF_RSH_LOG_INFO, MLXBF_RSH_LOG_WARN, MLXBF_RSH_LOG_ERR, MLXBF_RSH_LOG_ASSERT }; /* Mapped pointer for RSH_BOOT_FIFO_DATA and RSH_BOOT_FIFO_COUNT register. */ static void __iomem *mlxbf_rsh_boot_data; static void __iomem *mlxbf_rsh_boot_cnt; /* Mapped pointer for rsh log semaphore/ctrl/data register. */ static void __iomem *mlxbf_rsh_semaphore; static void __iomem *mlxbf_rsh_scratch_buf_ctl; static void __iomem *mlxbf_rsh_scratch_buf_data; /* Rsh log levels. */ static const char * const mlxbf_rsh_log_level[] = { "INFO", "WARN", "ERR", "ASSERT"}; static DEFINE_MUTEX(icm_ops_lock); static DEFINE_MUTEX(os_up_lock); static DEFINE_MUTEX(mfg_ops_lock); /* * Objects are stored within the MFG partition per type. * Type 0 is not supported. */ enum { MLNX_MFG_TYPE_OOB_MAC = 1, MLNX_MFG_TYPE_OPN_0, MLNX_MFG_TYPE_OPN_1, MLNX_MFG_TYPE_OPN_2, MLNX_MFG_TYPE_SKU_0, MLNX_MFG_TYPE_SKU_1, MLNX_MFG_TYPE_SKU_2, MLNX_MFG_TYPE_MODL_0, MLNX_MFG_TYPE_MODL_1, MLNX_MFG_TYPE_MODL_2, MLNX_MFG_TYPE_SN_0, MLNX_MFG_TYPE_SN_1, MLNX_MFG_TYPE_SN_2, MLNX_MFG_TYPE_UUID_0, MLNX_MFG_TYPE_UUID_1, MLNX_MFG_TYPE_UUID_2, MLNX_MFG_TYPE_UUID_3, MLNX_MFG_TYPE_UUID_4, MLNX_MFG_TYPE_REV, }; #define MLNX_MFG_OPN_VAL_LEN 24 #define MLNX_MFG_SKU_VAL_LEN 24 #define MLNX_MFG_MODL_VAL_LEN 24 #define MLNX_MFG_SN_VAL_LEN 24 #define MLNX_MFG_UUID_VAL_LEN 40 #define MLNX_MFG_REV_VAL_LEN 8 #define MLNX_MFG_VAL_QWORD_CNT(type) \ (MLNX_MFG_##type##_VAL_LEN / sizeof(u64)) /* * The MAC address consists of 6 bytes (2 digits each) separated by ':'. * The expected format is: "XX:XX:XX:XX:XX:XX" */ #define MLNX_MFG_OOB_MAC_FORMAT_LEN \ ((ETH_ALEN * 2) + (ETH_ALEN - 1)) /* ARM SMC call which is atomic and no need for lock. */ static int mlxbf_bootctl_smc(unsigned int smc_op, int smc_arg) { struct arm_smccc_res res; arm_smccc_smc(smc_op, smc_arg, 0, 0, 0, 0, 0, 0, &res); return res.a0; } /* Return the action in integer or an error code. */ static int mlxbf_bootctl_reset_action_to_val(const char *action) { int i; for (i = 0; i < ARRAY_SIZE(boot_names); i++) if (sysfs_streq(boot_names[i].name, action)) return boot_names[i].value; return -EINVAL; } /* Return the action in string. */ static const char *mlxbf_bootctl_action_to_string(int action) { int i; for (i = 0; i < ARRAY_SIZE(boot_names); i++) if (boot_names[i].value == action) return boot_names[i].name; return "invalid action"; } static ssize_t post_reset_wdog_show(struct device *dev, struct device_attribute *attr, char *buf) { int ret; ret = mlxbf_bootctl_smc(MLXBF_BOOTCTL_GET_POST_RESET_WDOG, 0); if (ret < 0) return ret; return sprintf(buf, "%d\n", ret); } static ssize_t post_reset_wdog_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { unsigned long value; int ret; ret = kstrtoul(buf, 10, &value); if (ret) return ret; ret = mlxbf_bootctl_smc(MLXBF_BOOTCTL_SET_POST_RESET_WDOG, value); if (ret < 0) return ret; return count; } static ssize_t mlxbf_bootctl_show(int smc_op, char *buf) { int action; action = mlxbf_bootctl_smc(smc_op, 0); if (action < 0) return action; return sprintf(buf, "%s\n", mlxbf_bootctl_action_to_string(action)); } static int mlxbf_bootctl_store(int smc_op, const char *buf, size_t count) { int ret, action; action = mlxbf_bootctl_reset_action_to_val(buf); if (action < 0) return action; ret = mlxbf_bootctl_smc(smc_op, action); if (ret < 0) return ret; return count; } static ssize_t reset_action_show(struct device *dev, struct device_attribute *attr, char *buf) { return mlxbf_bootctl_show(MLXBF_BOOTCTL_GET_RESET_ACTION, buf); } static ssize_t reset_action_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { return mlxbf_bootctl_store(MLXBF_BOOTCTL_SET_RESET_ACTION, buf, count); } static ssize_t second_reset_action_show(struct device *dev, struct device_attribute *attr, char *buf) { return mlxbf_bootctl_show(MLXBF_BOOTCTL_GET_SECOND_RESET_ACTION, buf); } static ssize_t second_reset_action_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { return mlxbf_bootctl_store(MLXBF_BOOTCTL_SET_SECOND_RESET_ACTION, buf, count); } static ssize_t lifecycle_state_show(struct device *dev, struct device_attribute *attr, char *buf) { int status_bits; int use_dev_key; int test_state; int lc_state; status_bits = mlxbf_bootctl_smc(MLXBF_BOOTCTL_GET_TBB_FUSE_STATUS, MLXBF_BOOTCTL_FUSE_STATUS_LIFECYCLE); if (status_bits < 0) return status_bits; use_dev_key = status_bits & MLXBF_BOOTCTL_SB_DEV_MASK; test_state = status_bits & MLXBF_BOOTCTL_SB_TEST_MASK; lc_state = status_bits & MLXBF_BOOTCTL_SB_SECURE_MASK; /* * If the test bits are set, we specify that the current state may be * due to using the test bits. */ if (test_state) { return sprintf(buf, "%s(test)\n", mlxbf_bootctl_lifecycle_states[lc_state]); } else if (use_dev_key && (lc_state == MLXBF_BOOTCTL_SB_LIFECYCLE_GA_SECURE)) { return sprintf(buf, "Secured (development)\n"); } return sprintf(buf, "%s\n", mlxbf_bootctl_lifecycle_states[lc_state]); } static ssize_t secure_boot_fuse_state_show(struct device *dev, struct device_attribute *attr, char *buf) { int burnt, valid, key, key_state, buf_len = 0, upper_key_used = 0; const char *status; key_state = mlxbf_bootctl_smc(MLXBF_BOOTCTL_GET_TBB_FUSE_STATUS, MLXBF_BOOTCTL_FUSE_STATUS_KEYS); if (key_state < 0) return key_state; /* * key_state contains the bits for 4 Key versions, loaded from eFuses * after a hard reset. Lower 4 bits are a thermometer code indicating * key programming has started for key n (0000 = none, 0001 = version 0, * 0011 = version 1, 0111 = version 2, 1111 = version 3). Upper 4 bits * are a thermometer code indicating key programming has completed for * key n (same encodings as the start bits). This allows for detection * of an interruption in the programming process which has left the key * partially programmed (and thus invalid). The process is to burn the * eFuse for the new key start bit, burn the key eFuses, then burn the * eFuse for the new key complete bit. * * For example 0000_0000: no key valid, 0001_0001: key version 0 valid, * 0011_0011: key 1 version valid, 0011_0111: key version 2 started * programming but did not complete, etc. The most recent key for which * both start and complete bit is set is loaded. On soft reset, this * register is not modified. */ for (key = MLXBF_SB_KEY_NUM - 1; key >= 0; key--) { burnt = key_state & BIT(key); valid = key_state & BIT(key + MLXBF_SB_KEY_NUM); if (burnt && valid) upper_key_used = 1; if (upper_key_used) { if (burnt) status = valid ? "Used" : "Wasted"; else status = valid ? "Invalid" : "Skipped"; } else { if (burnt) status = valid ? "InUse" : "Incomplete"; else status = valid ? "Invalid" : "Free"; } buf_len += sprintf(buf + buf_len, "%d:%s ", key, status); } buf_len += sprintf(buf + buf_len, "\n"); return buf_len; } static ssize_t fw_reset_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { unsigned long key; int err; err = kstrtoul(buf, 16, &key); if (err) return err; if (mlxbf_bootctl_smc(MLXBF_BOOTCTL_FW_RESET, key) < 0) return -EINVAL; return count; } /* Size(8-byte words) of the log buffer. */ #define RSH_SCRATCH_BUF_CTL_IDX_MASK 0x7f /* 100ms timeout */ #define RSH_SCRATCH_BUF_POLL_TIMEOUT 100000 static int mlxbf_rsh_log_sem_lock(void) { unsigned long reg; return readq_poll_timeout(mlxbf_rsh_semaphore, reg, !reg, 0, RSH_SCRATCH_BUF_POLL_TIMEOUT); } static void mlxbf_rsh_log_sem_unlock(void) { writeq(0, mlxbf_rsh_semaphore); } static ssize_t rsh_log_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int rc, idx, num, len, level = MLXBF_RSH_LOG_INFO; size_t size = count; u64 data; if (!size) return -EINVAL; if (!mlxbf_rsh_semaphore || !mlxbf_rsh_scratch_buf_ctl) return -EOPNOTSUPP; /* Ignore line break at the end. */ if (buf[size - 1] == '\n') size--; /* Check the message prefix. */ for (idx = 0; idx < ARRAY_SIZE(mlxbf_rsh_log_level); idx++) { len = strlen(mlxbf_rsh_log_level[idx]); if (len + 1 < size && !strncmp(buf, mlxbf_rsh_log_level[idx], len)) { buf += len; size -= len; level = idx; break; } } /* Ignore leading spaces. */ while (size > 0 && buf[0] == ' ') { size--; buf++; } /* Take the semaphore. */ rc = mlxbf_rsh_log_sem_lock(); if (rc) return rc; /* Calculate how many words are available. */ idx = readq(mlxbf_rsh_scratch_buf_ctl); num = min((int)DIV_ROUND_UP(size, sizeof(u64)), RSH_SCRATCH_BUF_CTL_IDX_MASK - idx - 1); if (num <= 0) goto done; /* Write Header. */ data = FIELD_PREP(MLXBF_RSH_LOG_TYPE_MASK, MLXBF_RSH_LOG_TYPE_MSG); data |= FIELD_PREP(MLXBF_RSH_LOG_LEN_MASK, num); data |= FIELD_PREP(MLXBF_RSH_LOG_LEVEL_MASK, level); writeq(data, mlxbf_rsh_scratch_buf_data); /* Write message. */ for (idx = 0; idx < num && size > 0; idx++) { if (size < sizeof(u64)) { data = 0; memcpy(&data, buf, size); size = 0; } else { memcpy(&data, buf, sizeof(u64)); size -= sizeof(u64); buf += sizeof(u64); } writeq(data, mlxbf_rsh_scratch_buf_data); } done: /* Release the semaphore. */ mlxbf_rsh_log_sem_unlock(); /* Ignore the rest if no more space. */ return count; } static ssize_t large_icm_show(struct device *dev, struct device_attribute *attr, char *buf) { struct arm_smccc_res res; mutex_lock(&icm_ops_lock); arm_smccc_smc(MLNX_HANDLE_GET_ICM_INFO, 0, 0, 0, 0, 0, 0, 0, &res); mutex_unlock(&icm_ops_lock); if (res.a0) return -EPERM; return snprintf(buf, PAGE_SIZE, "0x%lx", res.a1); } static ssize_t large_icm_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct arm_smccc_res res; unsigned long icm_data; int err; err = kstrtoul(buf, MLXBF_LARGE_ICMC_MAX_STRING_SIZE, &icm_data); if (err) return err; if ((icm_data != 0 && icm_data < MLXBF_LARGE_ICMC_SIZE_MIN) || icm_data > MLXBF_LARGE_ICMC_SIZE_MAX || icm_data % MLXBF_LARGE_ICMC_GRANULARITY) return -EPERM; mutex_lock(&icm_ops_lock); arm_smccc_smc(MLNX_HANDLE_SET_ICM_INFO, icm_data, 0, 0, 0, 0, 0, 0, &res); mutex_unlock(&icm_ops_lock); return res.a0 ? -EPERM : count; } static ssize_t os_up_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct arm_smccc_res res; unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; if (val != 1) return -EINVAL; mutex_lock(&os_up_lock); arm_smccc_smc(MLNX_HANDLE_OS_UP, 0, 0, 0, 0, 0, 0, 0, &res); mutex_unlock(&os_up_lock); return count; } static ssize_t oob_mac_show(struct device *dev, struct device_attribute *attr, char *buf) { struct arm_smccc_res res; u8 *mac_byte_ptr; mutex_lock(&mfg_ops_lock); arm_smccc_smc(MLXBF_BOOTCTL_GET_MFG_INFO, MLNX_MFG_TYPE_OOB_MAC, 0, 0, 0, 0, 0, 0, &res); mutex_unlock(&mfg_ops_lock); if (res.a0) return -EPERM; mac_byte_ptr = (u8 *)&res.a1; return sysfs_format_mac(buf, mac_byte_ptr, ETH_ALEN); } static ssize_t oob_mac_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { unsigned int byte[MLNX_MFG_OOB_MAC_FORMAT_LEN] = { 0 }; struct arm_smccc_res res; int byte_idx, len; u64 mac_addr = 0; u8 *mac_byte_ptr; if ((count - 1) != MLNX_MFG_OOB_MAC_FORMAT_LEN) return -EINVAL; len = sscanf(buf, "%02x:%02x:%02x:%02x:%02x:%02x", &byte[0], &byte[1], &byte[2], &byte[3], &byte[4], &byte[5]); if (len != ETH_ALEN) return -EINVAL; mac_byte_ptr = (u8 *)&mac_addr; for (byte_idx = 0; byte_idx < ETH_ALEN; byte_idx++) mac_byte_ptr[byte_idx] = (u8)byte[byte_idx]; mutex_lock(&mfg_ops_lock); arm_smccc_smc(MLXBF_BOOTCTL_SET_MFG_INFO, MLNX_MFG_TYPE_OOB_MAC, ETH_ALEN, mac_addr, 0, 0, 0, 0, &res); mutex_unlock(&mfg_ops_lock); return res.a0 ? -EPERM : count; } static ssize_t opn_show(struct device *dev, struct device_attribute *attr, char *buf) { u64 opn_data[MLNX_MFG_VAL_QWORD_CNT(OPN) + 1] = { 0 }; struct arm_smccc_res res; int word; mutex_lock(&mfg_ops_lock); for (word = 0; word < MLNX_MFG_VAL_QWORD_CNT(OPN); word++) { arm_smccc_smc(MLXBF_BOOTCTL_GET_MFG_INFO, MLNX_MFG_TYPE_OPN_0 + word, 0, 0, 0, 0, 0, 0, &res); if (res.a0) { mutex_unlock(&mfg_ops_lock); return -EPERM; } opn_data[word] = res.a1; } mutex_unlock(&mfg_ops_lock); return snprintf(buf, PAGE_SIZE, "%s", (char *)opn_data); } static ssize_t opn_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { u64 opn[MLNX_MFG_VAL_QWORD_CNT(OPN)] = { 0 }; struct arm_smccc_res res; int word; if (count > MLNX_MFG_OPN_VAL_LEN) return -EINVAL; memcpy(opn, buf, count); mutex_lock(&mfg_ops_lock); for (word = 0; word < MLNX_MFG_VAL_QWORD_CNT(OPN); word++) { arm_smccc_smc(MLXBF_BOOTCTL_SET_MFG_INFO, MLNX_MFG_TYPE_OPN_0 + word, sizeof(u64), opn[word], 0, 0, 0, 0, &res); if (res.a0) { mutex_unlock(&mfg_ops_lock); return -EPERM; } } mutex_unlock(&mfg_ops_lock); return count; } static ssize_t sku_show(struct device *dev, struct device_attribute *attr, char *buf) { u64 sku_data[MLNX_MFG_VAL_QWORD_CNT(SKU) + 1] = { 0 }; struct arm_smccc_res res; int word; mutex_lock(&mfg_ops_lock); for (word = 0; word < MLNX_MFG_VAL_QWORD_CNT(SKU); word++) { arm_smccc_smc(MLXBF_BOOTCTL_GET_MFG_INFO, MLNX_MFG_TYPE_SKU_0 + word, 0, 0, 0, 0, 0, 0, &res); if (res.a0) { mutex_unlock(&mfg_ops_lock); return -EPERM; } sku_data[word] = res.a1; } mutex_unlock(&mfg_ops_lock); return snprintf(buf, PAGE_SIZE, "%s", (char *)sku_data); } static ssize_t sku_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { u64 sku[MLNX_MFG_VAL_QWORD_CNT(SKU)] = { 0 }; struct arm_smccc_res res; int word; if (count > MLNX_MFG_SKU_VAL_LEN) return -EINVAL; memcpy(sku, buf, count); mutex_lock(&mfg_ops_lock); for (word = 0; word < MLNX_MFG_VAL_QWORD_CNT(SKU); word++) { arm_smccc_smc(MLXBF_BOOTCTL_SET_MFG_INFO, MLNX_MFG_TYPE_SKU_0 + word, sizeof(u64), sku[word], 0, 0, 0, 0, &res); if (res.a0) { mutex_unlock(&mfg_ops_lock); return -EPERM; } } mutex_unlock(&mfg_ops_lock); return count; } static ssize_t modl_show(struct device *dev, struct device_attribute *attr, char *buf) { u64 modl_data[MLNX_MFG_VAL_QWORD_CNT(MODL) + 1] = { 0 }; struct arm_smccc_res res; int word; mutex_lock(&mfg_ops_lock); for (word = 0; word < MLNX_MFG_VAL_QWORD_CNT(MODL); word++) { arm_smccc_smc(MLXBF_BOOTCTL_GET_MFG_INFO, MLNX_MFG_TYPE_MODL_0 + word, 0, 0, 0, 0, 0, 0, &res); if (res.a0) { mutex_unlock(&mfg_ops_lock); return -EPERM; } modl_data[word] = res.a1; } mutex_unlock(&mfg_ops_lock); return snprintf(buf, PAGE_SIZE, "%s", (char *)modl_data); } static ssize_t modl_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { u64 modl[MLNX_MFG_VAL_QWORD_CNT(MODL)] = { 0 }; struct arm_smccc_res res; int word; if (count > MLNX_MFG_MODL_VAL_LEN) return -EINVAL; memcpy(modl, buf, count); mutex_lock(&mfg_ops_lock); for (word = 0; word < MLNX_MFG_VAL_QWORD_CNT(MODL); word++) { arm_smccc_smc(MLXBF_BOOTCTL_SET_MFG_INFO, MLNX_MFG_TYPE_MODL_0 + word, sizeof(u64), modl[word], 0, 0, 0, 0, &res); if (res.a0) { mutex_unlock(&mfg_ops_lock); return -EPERM; } } mutex_unlock(&mfg_ops_lock); return count; } static ssize_t sn_show(struct device *dev, struct device_attribute *attr, char *buf) { u64 sn_data[MLNX_MFG_VAL_QWORD_CNT(SN) + 1] = { 0 }; struct arm_smccc_res res; int word; mutex_lock(&mfg_ops_lock); for (word = 0; word < MLNX_MFG_VAL_QWORD_CNT(SN); word++) { arm_smccc_smc(MLXBF_BOOTCTL_GET_MFG_INFO, MLNX_MFG_TYPE_SN_0 + word, 0, 0, 0, 0, 0, 0, &res); if (res.a0) { mutex_unlock(&mfg_ops_lock); return -EPERM; } sn_data[word] = res.a1; } mutex_unlock(&mfg_ops_lock); return snprintf(buf, PAGE_SIZE, "%s", (char *)sn_data); } static ssize_t sn_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { u64 sn[MLNX_MFG_VAL_QWORD_CNT(SN)] = { 0 }; struct arm_smccc_res res; int word; if (count > MLNX_MFG_SN_VAL_LEN) return -EINVAL; memcpy(sn, buf, count); mutex_lock(&mfg_ops_lock); for (word = 0; word < MLNX_MFG_VAL_QWORD_CNT(SN); word++) { arm_smccc_smc(MLXBF_BOOTCTL_SET_MFG_INFO, MLNX_MFG_TYPE_SN_0 + word, sizeof(u64), sn[word], 0, 0, 0, 0, &res); if (res.a0) { mutex_unlock(&mfg_ops_lock); return -EPERM; } } mutex_unlock(&mfg_ops_lock); return count; } static ssize_t uuid_show(struct device *dev, struct device_attribute *attr, char *buf) { u64 uuid_data[MLNX_MFG_VAL_QWORD_CNT(UUID) + 1] = { 0 }; struct arm_smccc_res res; int word; mutex_lock(&mfg_ops_lock); for (word = 0; word < MLNX_MFG_VAL_QWORD_CNT(UUID); word++) { arm_smccc_smc(MLXBF_BOOTCTL_GET_MFG_INFO, MLNX_MFG_TYPE_UUID_0 + word, 0, 0, 0, 0, 0, 0, &res); if (res.a0) { mutex_unlock(&mfg_ops_lock); return -EPERM; } uuid_data[word] = res.a1; } mutex_unlock(&mfg_ops_lock); return snprintf(buf, PAGE_SIZE, "%s", (char *)uuid_data); } static ssize_t uuid_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { u64 uuid[MLNX_MFG_VAL_QWORD_CNT(UUID)] = { 0 }; struct arm_smccc_res res; int word; if (count > MLNX_MFG_UUID_VAL_LEN) return -EINVAL; memcpy(uuid, buf, count); mutex_lock(&mfg_ops_lock); for (word = 0; word < MLNX_MFG_VAL_QWORD_CNT(UUID); word++) { arm_smccc_smc(MLXBF_BOOTCTL_SET_MFG_INFO, MLNX_MFG_TYPE_UUID_0 + word, sizeof(u64), uuid[word], 0, 0, 0, 0, &res); if (res.a0) { mutex_unlock(&mfg_ops_lock); return -EPERM; } } mutex_unlock(&mfg_ops_lock); return count; } static ssize_t rev_show(struct device *dev, struct device_attribute *attr, char *buf) { u64 rev_data[MLNX_MFG_VAL_QWORD_CNT(REV) + 1] = { 0 }; struct arm_smccc_res res; int word; mutex_lock(&mfg_ops_lock); for (word = 0; word < MLNX_MFG_VAL_QWORD_CNT(REV); word++) { arm_smccc_smc(MLXBF_BOOTCTL_GET_MFG_INFO, MLNX_MFG_TYPE_REV + word, 0, 0, 0, 0, 0, 0, &res); if (res.a0) { mutex_unlock(&mfg_ops_lock); return -EPERM; } rev_data[word] = res.a1; } mutex_unlock(&mfg_ops_lock); return snprintf(buf, PAGE_SIZE, "%s", (char *)rev_data); } static ssize_t rev_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { u64 rev[MLNX_MFG_VAL_QWORD_CNT(REV)] = { 0 }; struct arm_smccc_res res; int word; if (count > MLNX_MFG_REV_VAL_LEN) return -EINVAL; memcpy(rev, buf, count); mutex_lock(&mfg_ops_lock); for (word = 0; word < MLNX_MFG_VAL_QWORD_CNT(REV); word++) { arm_smccc_smc(MLXBF_BOOTCTL_SET_MFG_INFO, MLNX_MFG_TYPE_REV + word, sizeof(u64), rev[word], 0, 0, 0, 0, &res); if (res.a0) { mutex_unlock(&mfg_ops_lock); return -EPERM; } } mutex_unlock(&mfg_ops_lock); return count; } static ssize_t mfg_lock_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct arm_smccc_res res; unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; if (val != 1) return -EINVAL; mutex_lock(&mfg_ops_lock); arm_smccc_smc(MLXBF_BOOTCTL_LOCK_MFG_INFO, 0, 0, 0, 0, 0, 0, 0, &res); mutex_unlock(&mfg_ops_lock); return count; } static DEVICE_ATTR_RW(post_reset_wdog); static DEVICE_ATTR_RW(reset_action); static DEVICE_ATTR_RW(second_reset_action); static DEVICE_ATTR_RO(lifecycle_state); static DEVICE_ATTR_RO(secure_boot_fuse_state); static DEVICE_ATTR_WO(fw_reset); static DEVICE_ATTR_WO(rsh_log); static DEVICE_ATTR_RW(large_icm); static DEVICE_ATTR_WO(os_up); static DEVICE_ATTR_RW(oob_mac); static DEVICE_ATTR_RW(opn); static DEVICE_ATTR_RW(sku); static DEVICE_ATTR_RW(modl); static DEVICE_ATTR_RW(sn); static DEVICE_ATTR_RW(uuid); static DEVICE_ATTR_RW(rev); static DEVICE_ATTR_WO(mfg_lock); static struct attribute *mlxbf_bootctl_attrs[] = { &dev_attr_post_reset_wdog.attr, &dev_attr_reset_action.attr, &dev_attr_second_reset_action.attr, &dev_attr_lifecycle_state.attr, &dev_attr_secure_boot_fuse_state.attr, &dev_attr_fw_reset.attr, &dev_attr_rsh_log.attr, &dev_attr_large_icm.attr, &dev_attr_os_up.attr, &dev_attr_oob_mac.attr, &dev_attr_opn.attr, &dev_attr_sku.attr, &dev_attr_modl.attr, &dev_attr_sn.attr, &dev_attr_uuid.attr, &dev_attr_rev.attr, &dev_attr_mfg_lock.attr, NULL }; ATTRIBUTE_GROUPS(mlxbf_bootctl); static const struct acpi_device_id mlxbf_bootctl_acpi_ids[] = { {"MLNXBF04", 0}, {} }; MODULE_DEVICE_TABLE(acpi, mlxbf_bootctl_acpi_ids); static ssize_t mlxbf_bootctl_bootfifo_read(struct file *filp, struct kobject *kobj, struct bin_attribute *bin_attr, char *buf, loff_t pos, size_t count) { unsigned long timeout = msecs_to_jiffies(500); unsigned long expire = jiffies + timeout; u64 data, cnt = 0; char *p = buf; while (count >= sizeof(data)) { /* Give up reading if no more data within 500ms. */ if (!cnt) { cnt = readq(mlxbf_rsh_boot_cnt); if (!cnt) { if (time_after(jiffies, expire)) break; usleep_range(10, 50); continue; } } data = readq(mlxbf_rsh_boot_data); memcpy(p, &data, sizeof(data)); count -= sizeof(data); p += sizeof(data); cnt--; expire = jiffies + timeout; } return p - buf; } static struct bin_attribute mlxbf_bootctl_bootfifo_sysfs_attr = { .attr = { .name = "bootfifo", .mode = 0400 }, .read = mlxbf_bootctl_bootfifo_read, }; static bool mlxbf_bootctl_guid_match(const guid_t *guid, const struct arm_smccc_res *res) { guid_t id = GUID_INIT(res->a0, res->a1, res->a1 >> 16, res->a2, res->a2 >> 8, res->a2 >> 16, res->a2 >> 24, res->a3, res->a3 >> 8, res->a3 >> 16, res->a3 >> 24); return guid_equal(guid, &id); } static int mlxbf_bootctl_probe(struct platform_device *pdev) { struct arm_smccc_res res = { 0 }; void __iomem *reg; guid_t guid; int ret; /* Map the resource of the bootfifo data register. */ mlxbf_rsh_boot_data = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(mlxbf_rsh_boot_data)) return PTR_ERR(mlxbf_rsh_boot_data); /* Map the resource of the bootfifo counter register. */ mlxbf_rsh_boot_cnt = devm_platform_ioremap_resource(pdev, 1); if (IS_ERR(mlxbf_rsh_boot_cnt)) return PTR_ERR(mlxbf_rsh_boot_cnt); /* Map the resource of the rshim semaphore register. */ mlxbf_rsh_semaphore = devm_platform_ioremap_resource(pdev, 2); if (IS_ERR(mlxbf_rsh_semaphore)) return PTR_ERR(mlxbf_rsh_semaphore); /* Map the resource of the scratch buffer (log) registers. */ reg = devm_platform_ioremap_resource(pdev, 3); if (IS_ERR(reg)) return PTR_ERR(reg); mlxbf_rsh_scratch_buf_ctl = reg + MLXBF_RSH_SCRATCH_BUF_CTL_OFF; mlxbf_rsh_scratch_buf_data = reg + MLXBF_RSH_SCRATCH_BUF_DATA_OFF; /* Ensure we have the UUID we expect for this service. */ arm_smccc_smc(MLXBF_BOOTCTL_SIP_SVC_UID, 0, 0, 0, 0, 0, 0, 0, &res); guid_parse(mlxbf_bootctl_svc_uuid_str, &guid); if (!mlxbf_bootctl_guid_match(&guid, &res)) return -ENODEV; /* * When watchdog is used, it sets boot mode to MLXBF_BOOTCTL_SWAP_EMMC * in case of boot failures. However it doesn't clear the state if there * is no failure. Restore the default boot mode here to avoid any * unnecessary boot partition swapping. */ ret = mlxbf_bootctl_smc(MLXBF_BOOTCTL_SET_RESET_ACTION, MLXBF_BOOTCTL_EMMC); if (ret < 0) dev_warn(&pdev->dev, "Unable to reset the EMMC boot mode\n"); ret = sysfs_create_bin_file(&pdev->dev.kobj, &mlxbf_bootctl_bootfifo_sysfs_attr); if (ret) pr_err("Unable to create bootfifo sysfs file, error %d\n", ret); return ret; } static void mlxbf_bootctl_remove(struct platform_device *pdev) { sysfs_remove_bin_file(&pdev->dev.kobj, &mlxbf_bootctl_bootfifo_sysfs_attr); } static struct platform_driver mlxbf_bootctl_driver = { .probe = mlxbf_bootctl_probe, .remove_new = mlxbf_bootctl_remove, .driver = { .name = "mlxbf-bootctl", .dev_groups = mlxbf_bootctl_groups, .acpi_match_table = mlxbf_bootctl_acpi_ids, } }; module_platform_driver(mlxbf_bootctl_driver); MODULE_DESCRIPTION("Mellanox boot control driver"); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Mellanox Technologies");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1