Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
suma hegde | 2494 | 99.84% | 4 | 57.14% |
Uwe Kleine-König | 2 | 0.08% | 1 | 14.29% |
Barnabás Pőcze | 1 | 0.04% | 1 | 14.29% |
Armin Wolf | 1 | 0.04% | 1 | 14.29% |
Total | 2498 | 7 |
// SPDX-License-Identifier: GPL-2.0 /* * AMD HSMP Platform Driver * Copyright (c) 2022, AMD. * All Rights Reserved. * * This file provides a device implementation for HSMP interface */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <asm/amd_hsmp.h> #include <asm/amd_nb.h> #include <linux/delay.h> #include <linux/io.h> #include <linux/miscdevice.h> #include <linux/module.h> #include <linux/pci.h> #include <linux/platform_device.h> #include <linux/semaphore.h> #define DRIVER_NAME "amd_hsmp" #define DRIVER_VERSION "2.0" /* HSMP Status / Error codes */ #define HSMP_STATUS_NOT_READY 0x00 #define HSMP_STATUS_OK 0x01 #define HSMP_ERR_INVALID_MSG 0xFE #define HSMP_ERR_INVALID_INPUT 0xFF /* Timeout in millsec */ #define HSMP_MSG_TIMEOUT 100 #define HSMP_SHORT_SLEEP 1 #define HSMP_WR true #define HSMP_RD false /* * To access specific HSMP mailbox register, s/w writes the SMN address of HSMP mailbox * register into the SMN_INDEX register, and reads/writes the SMN_DATA reg. * Below are required SMN address for HSMP Mailbox register offsets in SMU address space */ #define SMN_HSMP_MSG_ID 0x3B10534 #define SMN_HSMP_MSG_RESP 0x3B10980 #define SMN_HSMP_MSG_DATA 0x3B109E0 #define HSMP_INDEX_REG 0xc4 #define HSMP_DATA_REG 0xc8 #define HSMP_CDEV_NAME "hsmp_cdev" #define HSMP_DEVNODE_NAME "hsmp" #define HSMP_METRICS_TABLE_NAME "metrics_bin" #define HSMP_ATTR_GRP_NAME_SIZE 10 struct hsmp_socket { struct bin_attribute hsmp_attr; void __iomem *metric_tbl_addr; struct semaphore hsmp_sem; char name[HSMP_ATTR_GRP_NAME_SIZE]; u16 sock_ind; }; struct hsmp_plat_device { struct miscdevice hsmp_device; struct hsmp_socket *sock; struct device *dev; u32 proto_ver; u16 num_sockets; }; static struct hsmp_plat_device plat_dev; static int amd_hsmp_rdwr(struct pci_dev *root, u32 address, u32 *value, bool write) { int ret; ret = pci_write_config_dword(root, HSMP_INDEX_REG, address); if (ret) return ret; ret = (write ? pci_write_config_dword(root, HSMP_DATA_REG, *value) : pci_read_config_dword(root, HSMP_DATA_REG, value)); return ret; } /* * Send a message to the HSMP port via PCI-e config space registers. * * The caller is expected to zero out any unused arguments. * If a response is expected, the number of response words should be greater than 0. * * Returns 0 for success and populates the requested number of arguments. * Returns a negative error code for failure. */ static int __hsmp_send_message(struct pci_dev *root, struct hsmp_message *msg) { unsigned long timeout, short_sleep; u32 mbox_status; u32 index; int ret; /* Clear the status register */ mbox_status = HSMP_STATUS_NOT_READY; ret = amd_hsmp_rdwr(root, SMN_HSMP_MSG_RESP, &mbox_status, HSMP_WR); if (ret) { pr_err("Error %d clearing mailbox status register\n", ret); return ret; } index = 0; /* Write any message arguments */ while (index < msg->num_args) { ret = amd_hsmp_rdwr(root, SMN_HSMP_MSG_DATA + (index << 2), &msg->args[index], HSMP_WR); if (ret) { pr_err("Error %d writing message argument %d\n", ret, index); return ret; } index++; } /* Write the message ID which starts the operation */ ret = amd_hsmp_rdwr(root, SMN_HSMP_MSG_ID, &msg->msg_id, HSMP_WR); if (ret) { pr_err("Error %d writing message ID %u\n", ret, msg->msg_id); return ret; } /* * Depending on when the trigger write completes relative to the SMU * firmware 1 ms cycle, the operation may take from tens of us to 1 ms * to complete. Some operations may take more. Therefore we will try * a few short duration sleeps and switch to long sleeps if we don't * succeed quickly. */ short_sleep = jiffies + msecs_to_jiffies(HSMP_SHORT_SLEEP); timeout = jiffies + msecs_to_jiffies(HSMP_MSG_TIMEOUT); while (time_before(jiffies, timeout)) { ret = amd_hsmp_rdwr(root, SMN_HSMP_MSG_RESP, &mbox_status, HSMP_RD); if (ret) { pr_err("Error %d reading mailbox status\n", ret); return ret; } if (mbox_status != HSMP_STATUS_NOT_READY) break; if (time_before(jiffies, short_sleep)) usleep_range(50, 100); else usleep_range(1000, 2000); } if (unlikely(mbox_status == HSMP_STATUS_NOT_READY)) { return -ETIMEDOUT; } else if (unlikely(mbox_status == HSMP_ERR_INVALID_MSG)) { return -ENOMSG; } else if (unlikely(mbox_status == HSMP_ERR_INVALID_INPUT)) { return -EINVAL; } else if (unlikely(mbox_status != HSMP_STATUS_OK)) { pr_err("Message ID %u unknown failure (status = 0x%X)\n", msg->msg_id, mbox_status); return -EIO; } /* * SMU has responded OK. Read response data. * SMU reads the input arguments from eight 32 bit registers starting * from SMN_HSMP_MSG_DATA and writes the response data to the same * SMN_HSMP_MSG_DATA address. * We copy the response data if any, back to the args[]. */ index = 0; while (index < msg->response_sz) { ret = amd_hsmp_rdwr(root, SMN_HSMP_MSG_DATA + (index << 2), &msg->args[index], HSMP_RD); if (ret) { pr_err("Error %d reading response %u for message ID:%u\n", ret, index, msg->msg_id); break; } index++; } return ret; } static int validate_message(struct hsmp_message *msg) { /* msg_id against valid range of message IDs */ if (msg->msg_id < HSMP_TEST || msg->msg_id >= HSMP_MSG_ID_MAX) return -ENOMSG; /* msg_id is a reserved message ID */ if (hsmp_msg_desc_table[msg->msg_id].type == HSMP_RSVD) return -ENOMSG; /* num_args and response_sz against the HSMP spec */ if (msg->num_args != hsmp_msg_desc_table[msg->msg_id].num_args || msg->response_sz != hsmp_msg_desc_table[msg->msg_id].response_sz) return -EINVAL; return 0; } int hsmp_send_message(struct hsmp_message *msg) { struct hsmp_socket *sock = &plat_dev.sock[msg->sock_ind]; struct amd_northbridge *nb; int ret; if (!msg) return -EINVAL; nb = node_to_amd_nb(msg->sock_ind); if (!nb || !nb->root) return -ENODEV; ret = validate_message(msg); if (ret) return ret; /* * The time taken by smu operation to complete is between * 10us to 1ms. Sometime it may take more time. * In SMP system timeout of 100 millisecs should * be enough for the previous thread to finish the operation */ ret = down_timeout(&sock->hsmp_sem, msecs_to_jiffies(HSMP_MSG_TIMEOUT)); if (ret < 0) return ret; ret = __hsmp_send_message(nb->root, msg); up(&sock->hsmp_sem); return ret; } EXPORT_SYMBOL_GPL(hsmp_send_message); static int hsmp_test(u16 sock_ind, u32 value) { struct hsmp_message msg = { 0 }; struct amd_northbridge *nb; int ret = -ENODEV; nb = node_to_amd_nb(sock_ind); if (!nb || !nb->root) return ret; /* * Test the hsmp port by performing TEST command. The test message * takes one argument and returns the value of that argument + 1. */ msg.msg_id = HSMP_TEST; msg.num_args = 1; msg.response_sz = 1; msg.args[0] = value; msg.sock_ind = sock_ind; ret = __hsmp_send_message(nb->root, &msg); if (ret) return ret; /* Check the response value */ if (msg.args[0] != (value + 1)) { pr_err("Socket %d test message failed, Expected 0x%08X, received 0x%08X\n", sock_ind, (value + 1), msg.args[0]); return -EBADE; } return ret; } static long hsmp_ioctl(struct file *fp, unsigned int cmd, unsigned long arg) { int __user *arguser = (int __user *)arg; struct hsmp_message msg = { 0 }; int ret; if (copy_struct_from_user(&msg, sizeof(msg), arguser, sizeof(struct hsmp_message))) return -EFAULT; /* * Check msg_id is within the range of supported msg ids * i.e within the array bounds of hsmp_msg_desc_table */ if (msg.msg_id < HSMP_TEST || msg.msg_id >= HSMP_MSG_ID_MAX) return -ENOMSG; switch (fp->f_mode & (FMODE_WRITE | FMODE_READ)) { case FMODE_WRITE: /* * Device is opened in O_WRONLY mode * Execute only set/configure commands */ if (hsmp_msg_desc_table[msg.msg_id].type != HSMP_SET) return -EINVAL; break; case FMODE_READ: /* * Device is opened in O_RDONLY mode * Execute only get/monitor commands */ if (hsmp_msg_desc_table[msg.msg_id].type != HSMP_GET) return -EINVAL; break; case FMODE_READ | FMODE_WRITE: /* * Device is opened in O_RDWR mode * Execute both get/monitor and set/configure commands */ break; default: return -EINVAL; } ret = hsmp_send_message(&msg); if (ret) return ret; if (hsmp_msg_desc_table[msg.msg_id].response_sz > 0) { /* Copy results back to user for get/monitor commands */ if (copy_to_user(arguser, &msg, sizeof(struct hsmp_message))) return -EFAULT; } return 0; } static const struct file_operations hsmp_fops = { .owner = THIS_MODULE, .unlocked_ioctl = hsmp_ioctl, .compat_ioctl = hsmp_ioctl, }; static ssize_t hsmp_metric_tbl_read(struct file *filp, struct kobject *kobj, struct bin_attribute *bin_attr, char *buf, loff_t off, size_t count) { struct hsmp_socket *sock = bin_attr->private; struct hsmp_message msg = { 0 }; int ret; /* Do not support lseek(), reads entire metric table */ if (count < bin_attr->size) { dev_err(plat_dev.dev, "Wrong buffer size\n"); return -EINVAL; } if (!sock) { dev_err(plat_dev.dev, "Failed to read attribute private data\n"); return -EINVAL; } msg.msg_id = HSMP_GET_METRIC_TABLE; msg.sock_ind = sock->sock_ind; ret = hsmp_send_message(&msg); if (ret) return ret; memcpy_fromio(buf, sock->metric_tbl_addr, bin_attr->size); return bin_attr->size; } static int hsmp_get_tbl_dram_base(u16 sock_ind) { struct hsmp_socket *sock = &plat_dev.sock[sock_ind]; struct hsmp_message msg = { 0 }; phys_addr_t dram_addr; int ret; msg.sock_ind = sock_ind; msg.response_sz = hsmp_msg_desc_table[HSMP_GET_METRIC_TABLE_DRAM_ADDR].response_sz; msg.msg_id = HSMP_GET_METRIC_TABLE_DRAM_ADDR; ret = hsmp_send_message(&msg); if (ret) return ret; /* * calculate the metric table DRAM address from lower and upper 32 bits * sent from SMU and ioremap it to virtual address. */ dram_addr = msg.args[0] | ((u64)(msg.args[1]) << 32); if (!dram_addr) { dev_err(plat_dev.dev, "Invalid DRAM address for metric table\n"); return -ENOMEM; } sock->metric_tbl_addr = devm_ioremap(plat_dev.dev, dram_addr, sizeof(struct hsmp_metric_table)); if (!sock->metric_tbl_addr) { dev_err(plat_dev.dev, "Failed to ioremap metric table addr\n"); return -ENOMEM; } return 0; } static umode_t hsmp_is_sock_attr_visible(struct kobject *kobj, struct bin_attribute *battr, int id) { if (plat_dev.proto_ver == HSMP_PROTO_VER6) return battr->attr.mode; else return 0; } static int hsmp_init_metric_tbl_bin_attr(struct bin_attribute **hattrs, u16 sock_ind) { struct bin_attribute *hattr = &plat_dev.sock[sock_ind].hsmp_attr; sysfs_bin_attr_init(hattr); hattr->attr.name = HSMP_METRICS_TABLE_NAME; hattr->attr.mode = 0444; hattr->read = hsmp_metric_tbl_read; hattr->size = sizeof(struct hsmp_metric_table); hattr->private = &plat_dev.sock[sock_ind]; hattrs[0] = hattr; if (plat_dev.proto_ver == HSMP_PROTO_VER6) return (hsmp_get_tbl_dram_base(sock_ind)); else return 0; } /* One bin sysfs for metrics table*/ #define NUM_HSMP_ATTRS 1 static int hsmp_create_sysfs_interface(void) { const struct attribute_group **hsmp_attr_grps; struct bin_attribute **hsmp_bin_attrs; struct attribute_group *attr_grp; int ret; u16 i; /* String formatting is currently limited to u8 sockets */ if (WARN_ON(plat_dev.num_sockets > U8_MAX)) return -ERANGE; hsmp_attr_grps = devm_kzalloc(plat_dev.dev, sizeof(struct attribute_group *) * (plat_dev.num_sockets + 1), GFP_KERNEL); if (!hsmp_attr_grps) return -ENOMEM; /* Create a sysfs directory for each socket */ for (i = 0; i < plat_dev.num_sockets; i++) { attr_grp = devm_kzalloc(plat_dev.dev, sizeof(struct attribute_group), GFP_KERNEL); if (!attr_grp) return -ENOMEM; snprintf(plat_dev.sock[i].name, HSMP_ATTR_GRP_NAME_SIZE, "socket%u", (u8)i); attr_grp->name = plat_dev.sock[i].name; /* Null terminated list of attributes */ hsmp_bin_attrs = devm_kzalloc(plat_dev.dev, sizeof(struct bin_attribute *) * (NUM_HSMP_ATTRS + 1), GFP_KERNEL); if (!hsmp_bin_attrs) return -ENOMEM; attr_grp->bin_attrs = hsmp_bin_attrs; attr_grp->is_bin_visible = hsmp_is_sock_attr_visible; hsmp_attr_grps[i] = attr_grp; /* Now create the leaf nodes */ ret = hsmp_init_metric_tbl_bin_attr(hsmp_bin_attrs, i); if (ret) return ret; } return devm_device_add_groups(plat_dev.dev, hsmp_attr_grps); } static int hsmp_cache_proto_ver(void) { struct hsmp_message msg = { 0 }; int ret; msg.msg_id = HSMP_GET_PROTO_VER; msg.sock_ind = 0; msg.response_sz = hsmp_msg_desc_table[HSMP_GET_PROTO_VER].response_sz; ret = hsmp_send_message(&msg); if (!ret) plat_dev.proto_ver = msg.args[0]; return ret; } static int hsmp_pltdrv_probe(struct platform_device *pdev) { int ret, i; plat_dev.sock = devm_kzalloc(&pdev->dev, (plat_dev.num_sockets * sizeof(struct hsmp_socket)), GFP_KERNEL); if (!plat_dev.sock) return -ENOMEM; plat_dev.dev = &pdev->dev; for (i = 0; i < plat_dev.num_sockets; i++) { sema_init(&plat_dev.sock[i].hsmp_sem, 1); plat_dev.sock[i].sock_ind = i; } plat_dev.hsmp_device.name = HSMP_CDEV_NAME; plat_dev.hsmp_device.minor = MISC_DYNAMIC_MINOR; plat_dev.hsmp_device.fops = &hsmp_fops; plat_dev.hsmp_device.parent = &pdev->dev; plat_dev.hsmp_device.nodename = HSMP_DEVNODE_NAME; plat_dev.hsmp_device.mode = 0644; ret = hsmp_cache_proto_ver(); if (ret) { dev_err(plat_dev.dev, "Failed to read HSMP protocol version\n"); return ret; } ret = hsmp_create_sysfs_interface(); if (ret) dev_err(plat_dev.dev, "Failed to create HSMP sysfs interface\n"); return misc_register(&plat_dev.hsmp_device); } static void hsmp_pltdrv_remove(struct platform_device *pdev) { misc_deregister(&plat_dev.hsmp_device); } static struct platform_driver amd_hsmp_driver = { .probe = hsmp_pltdrv_probe, .remove_new = hsmp_pltdrv_remove, .driver = { .name = DRIVER_NAME, }, }; static struct platform_device *amd_hsmp_platdev; static int __init hsmp_plt_init(void) { int ret = -ENODEV; int i; if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD || boot_cpu_data.x86 < 0x19) { pr_err("HSMP is not supported on Family:%x model:%x\n", boot_cpu_data.x86, boot_cpu_data.x86_model); return ret; } /* * amd_nb_num() returns number of SMN/DF interfaces present in the system * if we have N SMN/DF interfaces that ideally means N sockets */ plat_dev.num_sockets = amd_nb_num(); if (plat_dev.num_sockets == 0) return ret; /* Test the hsmp interface on each socket */ for (i = 0; i < plat_dev.num_sockets; i++) { ret = hsmp_test(i, 0xDEADBEEF); if (ret) { pr_err("HSMP test message failed on Fam:%x model:%x\n", boot_cpu_data.x86, boot_cpu_data.x86_model); pr_err("Is HSMP disabled in BIOS ?\n"); return ret; } } ret = platform_driver_register(&amd_hsmp_driver); if (ret) return ret; amd_hsmp_platdev = platform_device_alloc(DRIVER_NAME, PLATFORM_DEVID_NONE); if (!amd_hsmp_platdev) { ret = -ENOMEM; goto drv_unregister; } ret = platform_device_add(amd_hsmp_platdev); if (ret) { platform_device_put(amd_hsmp_platdev); goto drv_unregister; } return 0; drv_unregister: platform_driver_unregister(&amd_hsmp_driver); return ret; } static void __exit hsmp_plt_exit(void) { platform_device_unregister(amd_hsmp_platdev); platform_driver_unregister(&amd_hsmp_driver); } device_initcall(hsmp_plt_init); module_exit(hsmp_plt_exit); MODULE_DESCRIPTION("AMD HSMP Platform Interface Driver"); MODULE_VERSION(DRIVER_VERSION); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1