Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Srinivas Pandruvada | 1677 | 100.00% | 3 | 100.00% |
Total | 1677 | 3 |
// SPDX-License-Identifier: GPL-2.0-only /* * uncore-frquency-tpmi: Uncore frequency scaling using TPMI * * Copyright (c) 2023, Intel Corporation. * All Rights Reserved. * * The hardware interface to read/write is basically substitution of * MSR 0x620 and 0x621. * There are specific MMIO offset and bits to get/set minimum and * maximum uncore ratio, similar to MSRs. * The scope of the uncore MSRs was package scope. But TPMI allows * new gen CPUs to have multiple uncore controls at uncore-cluster * level. Each package can have multiple power domains which further * can have multiple clusters. * Here number of power domains = number of resources in this aux * device. There are offsets and bits to discover number of clusters * and offset for each cluster level controls. * */ #include <linux/auxiliary_bus.h> #include <linux/bitfield.h> #include <linux/bits.h> #include <linux/io.h> #include <linux/module.h> #include <linux/intel_tpmi.h> #include "uncore-frequency-common.h" #define UNCORE_MAJOR_VERSION 0 #define UNCORE_MINOR_VERSION 1 #define UNCORE_HEADER_INDEX 0 #define UNCORE_FABRIC_CLUSTER_OFFSET 8 /* status + control + adv_ctl1 + adv_ctl2 */ #define UNCORE_FABRIC_CLUSTER_SIZE (4 * 8) #define UNCORE_STATUS_INDEX 0 #define UNCORE_CONTROL_INDEX 8 #define UNCORE_FREQ_KHZ_MULTIPLIER 100000 struct tpmi_uncore_struct; /* Information for each cluster */ struct tpmi_uncore_cluster_info { bool root_domain; u8 __iomem *cluster_base; struct uncore_data uncore_data; struct tpmi_uncore_struct *uncore_root; }; /* Information for each power domain */ struct tpmi_uncore_power_domain_info { u8 __iomem *uncore_base; int ufs_header_ver; int cluster_count; struct tpmi_uncore_cluster_info *cluster_infos; }; /* Information for all power domains in a package */ struct tpmi_uncore_struct { int power_domain_count; int max_ratio; int min_ratio; struct tpmi_uncore_power_domain_info *pd_info; struct tpmi_uncore_cluster_info root_cluster; }; #define UNCORE_GENMASK_MIN_RATIO GENMASK_ULL(21, 15) #define UNCORE_GENMASK_MAX_RATIO GENMASK_ULL(14, 8) #define UNCORE_GENMASK_CURRENT_RATIO GENMASK_ULL(6, 0) /* Helper function to read MMIO offset for max/min control frequency */ static void read_control_freq(struct tpmi_uncore_cluster_info *cluster_info, unsigned int *min, unsigned int *max) { u64 control; control = readq(cluster_info->cluster_base + UNCORE_CONTROL_INDEX); *max = FIELD_GET(UNCORE_GENMASK_MAX_RATIO, control) * UNCORE_FREQ_KHZ_MULTIPLIER; *min = FIELD_GET(UNCORE_GENMASK_MIN_RATIO, control) * UNCORE_FREQ_KHZ_MULTIPLIER; } #define UNCORE_MAX_RATIO FIELD_MAX(UNCORE_GENMASK_MAX_RATIO) /* Callback for sysfs read for max/min frequencies. Called under mutex locks */ static int uncore_read_control_freq(struct uncore_data *data, unsigned int *min, unsigned int *max) { struct tpmi_uncore_cluster_info *cluster_info; cluster_info = container_of(data, struct tpmi_uncore_cluster_info, uncore_data); if (cluster_info->root_domain) { struct tpmi_uncore_struct *uncore_root = cluster_info->uncore_root; int i, _min = 0, _max = 0; *min = UNCORE_MAX_RATIO * UNCORE_FREQ_KHZ_MULTIPLIER; *max = 0; /* * Get the max/min by looking at each cluster. Get the lowest * min and highest max. */ for (i = 0; i < uncore_root->power_domain_count; ++i) { int j; for (j = 0; j < uncore_root->pd_info[i].cluster_count; ++j) { read_control_freq(&uncore_root->pd_info[i].cluster_infos[j], &_min, &_max); if (*min > _min) *min = _min; if (*max < _max) *max = _max; } } return 0; } read_control_freq(cluster_info, min, max); return 0; } /* Helper function to write MMIO offset for max/min control frequency */ static void write_control_freq(struct tpmi_uncore_cluster_info *cluster_info, unsigned int input, unsigned int min_max) { u64 control; control = readq(cluster_info->cluster_base + UNCORE_CONTROL_INDEX); if (min_max) { control &= ~UNCORE_GENMASK_MAX_RATIO; control |= FIELD_PREP(UNCORE_GENMASK_MAX_RATIO, input); } else { control &= ~UNCORE_GENMASK_MIN_RATIO; control |= FIELD_PREP(UNCORE_GENMASK_MIN_RATIO, input); } writeq(control, (cluster_info->cluster_base + UNCORE_CONTROL_INDEX)); } /* Callback for sysfs write for max/min frequencies. Called under mutex locks */ static int uncore_write_control_freq(struct uncore_data *data, unsigned int input, unsigned int min_max) { struct tpmi_uncore_cluster_info *cluster_info; struct tpmi_uncore_struct *uncore_root; input /= UNCORE_FREQ_KHZ_MULTIPLIER; if (!input || input > UNCORE_MAX_RATIO) return -EINVAL; cluster_info = container_of(data, struct tpmi_uncore_cluster_info, uncore_data); uncore_root = cluster_info->uncore_root; /* Update each cluster in a package */ if (cluster_info->root_domain) { struct tpmi_uncore_struct *uncore_root = cluster_info->uncore_root; int i; for (i = 0; i < uncore_root->power_domain_count; ++i) { int j; for (j = 0; j < uncore_root->pd_info[i].cluster_count; ++j) write_control_freq(&uncore_root->pd_info[i].cluster_infos[j], input, min_max); } if (min_max) uncore_root->max_ratio = input; else uncore_root->min_ratio = input; return 0; } if (min_max && uncore_root->max_ratio && uncore_root->max_ratio < input) return -EINVAL; if (!min_max && uncore_root->min_ratio && uncore_root->min_ratio > input) return -EINVAL; write_control_freq(cluster_info, input, min_max); return 0; } /* Callback for sysfs read for the current uncore frequency. Called under mutex locks */ static int uncore_read_freq(struct uncore_data *data, unsigned int *freq) { struct tpmi_uncore_cluster_info *cluster_info; u64 status; cluster_info = container_of(data, struct tpmi_uncore_cluster_info, uncore_data); if (cluster_info->root_domain) return -ENODATA; status = readq((u8 __iomem *)cluster_info->cluster_base + UNCORE_STATUS_INDEX); *freq = FIELD_GET(UNCORE_GENMASK_CURRENT_RATIO, status) * UNCORE_FREQ_KHZ_MULTIPLIER; return 0; } static void remove_cluster_entries(struct tpmi_uncore_struct *tpmi_uncore) { int i; for (i = 0; i < tpmi_uncore->power_domain_count; ++i) { struct tpmi_uncore_power_domain_info *pd_info; int j; pd_info = &tpmi_uncore->pd_info[i]; if (!pd_info->uncore_base) continue; for (j = 0; j < pd_info->cluster_count; ++j) { struct tpmi_uncore_cluster_info *cluster_info; cluster_info = &pd_info->cluster_infos[j]; uncore_freq_remove_die_entry(&cluster_info->uncore_data); } } } #define UNCORE_VERSION_MASK GENMASK_ULL(7, 0) #define UNCORE_LOCAL_FABRIC_CLUSTER_ID_MASK GENMASK_ULL(15, 8) #define UNCORE_CLUSTER_OFF_MASK GENMASK_ULL(7, 0) #define UNCORE_MAX_CLUSTER_PER_DOMAIN 8 static int uncore_probe(struct auxiliary_device *auxdev, const struct auxiliary_device_id *id) { struct intel_tpmi_plat_info *plat_info; struct tpmi_uncore_struct *tpmi_uncore; int ret, i, pkg = 0; int num_resources; /* Get number of power domains, which is equal to number of resources */ num_resources = tpmi_get_resource_count(auxdev); if (!num_resources) return -EINVAL; /* Register callbacks to uncore core */ ret = uncore_freq_common_init(uncore_read_control_freq, uncore_write_control_freq, uncore_read_freq); if (ret) return ret; /* Allocate uncore instance per package */ tpmi_uncore = devm_kzalloc(&auxdev->dev, sizeof(*tpmi_uncore), GFP_KERNEL); if (!tpmi_uncore) { ret = -ENOMEM; goto err_rem_common; } /* Allocate memory for all power domains in a package */ tpmi_uncore->pd_info = devm_kcalloc(&auxdev->dev, num_resources, sizeof(*tpmi_uncore->pd_info), GFP_KERNEL); if (!tpmi_uncore->pd_info) { ret = -ENOMEM; goto err_rem_common; } tpmi_uncore->power_domain_count = num_resources; /* Get the package ID from the TPMI core */ plat_info = tpmi_get_platform_data(auxdev); if (plat_info) pkg = plat_info->package_id; else dev_info(&auxdev->dev, "Platform information is NULL\n"); for (i = 0; i < num_resources; ++i) { struct tpmi_uncore_power_domain_info *pd_info; struct resource *res; u64 cluster_offset; u8 cluster_mask; int mask, j; u64 header; res = tpmi_get_resource_at_index(auxdev, i); if (!res) continue; pd_info = &tpmi_uncore->pd_info[i]; pd_info->uncore_base = devm_ioremap_resource(&auxdev->dev, res); if (IS_ERR(pd_info->uncore_base)) { ret = PTR_ERR(pd_info->uncore_base); /* * Set to NULL so that clean up can still remove other * entries already created if any by * remove_cluster_entries() */ pd_info->uncore_base = NULL; goto remove_clusters; } /* Check for version and skip this resource if there is mismatch */ header = readq(pd_info->uncore_base); pd_info->ufs_header_ver = header & UNCORE_VERSION_MASK; if (pd_info->ufs_header_ver == TPMI_VERSION_INVALID) continue; if (TPMI_MAJOR_VERSION(pd_info->ufs_header_ver) != UNCORE_MAJOR_VERSION) { dev_err(&auxdev->dev, "Uncore: Unsupported major version:%lx\n", TPMI_MAJOR_VERSION(pd_info->ufs_header_ver)); ret = -ENODEV; goto remove_clusters; } if (TPMI_MINOR_VERSION(pd_info->ufs_header_ver) != UNCORE_MINOR_VERSION) dev_info(&auxdev->dev, "Uncore: Ignore: Unsupported minor version:%lx\n", TPMI_MINOR_VERSION(pd_info->ufs_header_ver)); /* Get Cluster ID Mask */ cluster_mask = FIELD_GET(UNCORE_LOCAL_FABRIC_CLUSTER_ID_MASK, header); if (!cluster_mask) { dev_info(&auxdev->dev, "Uncore: Invalid cluster mask:%x\n", cluster_mask); continue; } /* Find out number of clusters in this resource */ pd_info->cluster_count = hweight8(cluster_mask); pd_info->cluster_infos = devm_kcalloc(&auxdev->dev, pd_info->cluster_count, sizeof(struct tpmi_uncore_cluster_info), GFP_KERNEL); if (!pd_info->cluster_infos) { ret = -ENOMEM; goto remove_clusters; } /* * Each byte in the register point to status and control * registers belonging to cluster id 0-8. */ cluster_offset = readq(pd_info->uncore_base + UNCORE_FABRIC_CLUSTER_OFFSET); for (j = 0; j < pd_info->cluster_count; ++j) { struct tpmi_uncore_cluster_info *cluster_info; /* Get the offset for this cluster */ mask = (cluster_offset & UNCORE_CLUSTER_OFF_MASK); /* Offset in QWORD, so change to bytes */ mask <<= 3; cluster_info = &pd_info->cluster_infos[j]; cluster_info->cluster_base = pd_info->uncore_base + mask; cluster_info->uncore_data.package_id = pkg; /* There are no dies like Cascade Lake */ cluster_info->uncore_data.die_id = 0; cluster_info->uncore_data.domain_id = i; cluster_info->uncore_data.cluster_id = j; cluster_info->uncore_root = tpmi_uncore; ret = uncore_freq_add_entry(&cluster_info->uncore_data, 0); if (ret) { cluster_info->cluster_base = NULL; goto remove_clusters; } /* Point to next cluster offset */ cluster_offset >>= UNCORE_MAX_CLUSTER_PER_DOMAIN; } } auxiliary_set_drvdata(auxdev, tpmi_uncore); tpmi_uncore->root_cluster.root_domain = true; tpmi_uncore->root_cluster.uncore_root = tpmi_uncore; tpmi_uncore->root_cluster.uncore_data.package_id = pkg; tpmi_uncore->root_cluster.uncore_data.domain_id = UNCORE_DOMAIN_ID_INVALID; ret = uncore_freq_add_entry(&tpmi_uncore->root_cluster.uncore_data, 0); if (ret) goto remove_clusters; return 0; remove_clusters: remove_cluster_entries(tpmi_uncore); err_rem_common: uncore_freq_common_exit(); return ret; } static void uncore_remove(struct auxiliary_device *auxdev) { struct tpmi_uncore_struct *tpmi_uncore = auxiliary_get_drvdata(auxdev); uncore_freq_remove_die_entry(&tpmi_uncore->root_cluster.uncore_data); remove_cluster_entries(tpmi_uncore); uncore_freq_common_exit(); } static const struct auxiliary_device_id intel_uncore_id_table[] = { { .name = "intel_vsec.tpmi-uncore" }, {} }; MODULE_DEVICE_TABLE(auxiliary, intel_uncore_id_table); static struct auxiliary_driver intel_uncore_aux_driver = { .id_table = intel_uncore_id_table, .remove = uncore_remove, .probe = uncore_probe, }; module_auxiliary_driver(intel_uncore_aux_driver); MODULE_IMPORT_NS(INTEL_TPMI); MODULE_IMPORT_NS(INTEL_UNCORE_FREQUENCY); MODULE_DESCRIPTION("Intel TPMI UFS Driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1