Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Tianfei zhang | 1451 | 100.00% | 1 | 100.00% |
Total | 1451 | 1 |
// SPDX-License-Identifier: GPL-2.0-only /* * DFL device driver for Time-of-Day (ToD) private feature * * Copyright (C) 2023 Intel Corporation */ #include <linux/bitfield.h> #include <linux/delay.h> #include <linux/dfl.h> #include <linux/gcd.h> #include <linux/iopoll.h> #include <linux/module.h> #include <linux/ptp_clock_kernel.h> #include <linux/spinlock.h> #include <linux/units.h> #define FME_FEATURE_ID_TOD 0x22 /* ToD clock register space. */ #define TOD_CLK_FREQ 0x038 /* * The read sequence of ToD timestamp registers: TOD_NANOSEC, TOD_SECONDSL and * TOD_SECONDSH, because there is a hardware snapshot whenever the TOD_NANOSEC * register is read. * * The ToD IP requires writing registers in the reverse order to the read sequence. * The timestamp is corrected when the TOD_NANOSEC register is written, so the * sequence of write TOD registers: TOD_SECONDSH, TOD_SECONDSL and TOD_NANOSEC. */ #define TOD_SECONDSH 0x100 #define TOD_SECONDSL 0x104 #define TOD_NANOSEC 0x108 #define TOD_PERIOD 0x110 #define TOD_ADJUST_PERIOD 0x114 #define TOD_ADJUST_COUNT 0x118 #define TOD_DRIFT_ADJUST 0x11c #define TOD_DRIFT_ADJUST_RATE 0x120 #define PERIOD_FRAC_OFFSET 16 #define SECONDS_MSB GENMASK_ULL(47, 32) #define SECONDS_LSB GENMASK_ULL(31, 0) #define TOD_SECONDSH_SEC_MSB GENMASK_ULL(15, 0) #define CAL_SECONDS(m, l) ((FIELD_GET(TOD_SECONDSH_SEC_MSB, (m)) << 32) | (l)) #define TOD_PERIOD_MASK GENMASK_ULL(19, 0) #define TOD_PERIOD_MAX FIELD_MAX(TOD_PERIOD_MASK) #define TOD_PERIOD_MIN 0 #define TOD_DRIFT_ADJUST_MASK GENMASK_ULL(15, 0) #define TOD_DRIFT_ADJUST_FNS_MAX FIELD_MAX(TOD_DRIFT_ADJUST_MASK) #define TOD_DRIFT_ADJUST_RATE_MAX TOD_DRIFT_ADJUST_FNS_MAX #define TOD_ADJUST_COUNT_MASK GENMASK_ULL(19, 0) #define TOD_ADJUST_COUNT_MAX FIELD_MAX(TOD_ADJUST_COUNT_MASK) #define TOD_ADJUST_INTERVAL_US 10 #define TOD_ADJUST_MS \ (((TOD_PERIOD_MAX >> 16) + 1) * (TOD_ADJUST_COUNT_MAX + 1)) #define TOD_ADJUST_MS_MAX (TOD_ADJUST_MS / MICRO) #define TOD_ADJUST_MAX_US (TOD_ADJUST_MS_MAX * USEC_PER_MSEC) #define TOD_MAX_ADJ (500 * MEGA) struct dfl_tod { struct ptp_clock_info ptp_clock_ops; struct device *dev; struct ptp_clock *ptp_clock; /* ToD Clock address space */ void __iomem *tod_ctrl; /* ToD clock registers protection */ spinlock_t tod_lock; }; /* * A fine ToD HW clock offset adjustment. To perform the fine offset adjustment, the * adjust_period and adjust_count argument are used to update the TOD_ADJUST_PERIOD * and TOD_ADJUST_COUNT register for in hardware. The dt->tod_lock spinlock must be * held when calling this function. */ static int fine_adjust_tod_clock(struct dfl_tod *dt, u32 adjust_period, u32 adjust_count) { void __iomem *base = dt->tod_ctrl; u32 val; writel(adjust_period, base + TOD_ADJUST_PERIOD); writel(adjust_count, base + TOD_ADJUST_COUNT); /* Wait for present offset adjustment update to complete */ return readl_poll_timeout_atomic(base + TOD_ADJUST_COUNT, val, !val, TOD_ADJUST_INTERVAL_US, TOD_ADJUST_MAX_US); } /* * A coarse ToD HW clock offset adjustment. The coarse time adjustment performs by * adding or subtracting the delta value from the current ToD HW clock time. */ static int coarse_adjust_tod_clock(struct dfl_tod *dt, s64 delta) { u32 seconds_msb, seconds_lsb, nanosec; void __iomem *base = dt->tod_ctrl; u64 seconds, now; if (delta == 0) return 0; nanosec = readl(base + TOD_NANOSEC); seconds_lsb = readl(base + TOD_SECONDSL); seconds_msb = readl(base + TOD_SECONDSH); /* Calculate new time */ seconds = CAL_SECONDS(seconds_msb, seconds_lsb); now = seconds * NSEC_PER_SEC + nanosec + delta; seconds = div_u64_rem(now, NSEC_PER_SEC, &nanosec); seconds_msb = FIELD_GET(SECONDS_MSB, seconds); seconds_lsb = FIELD_GET(SECONDS_LSB, seconds); writel(seconds_msb, base + TOD_SECONDSH); writel(seconds_lsb, base + TOD_SECONDSL); writel(nanosec, base + TOD_NANOSEC); return 0; } static int dfl_tod_adjust_fine(struct ptp_clock_info *ptp, long scaled_ppm) { struct dfl_tod *dt = container_of(ptp, struct dfl_tod, ptp_clock_ops); u32 tod_period, tod_rem, tod_drift_adjust_fns, tod_drift_adjust_rate; void __iomem *base = dt->tod_ctrl; unsigned long flags, rate; u64 ppb; /* Get the clock rate from clock frequency register offset */ rate = readl(base + TOD_CLK_FREQ); /* add GIGA as nominal ppb */ ppb = scaled_ppm_to_ppb(scaled_ppm) + GIGA; tod_period = div_u64_rem(ppb << PERIOD_FRAC_OFFSET, rate, &tod_rem); if (tod_period > TOD_PERIOD_MAX) return -ERANGE; /* * The drift of ToD adjusted periodically by adding a drift_adjust_fns * correction value every drift_adjust_rate count of clock cycles. */ tod_drift_adjust_fns = tod_rem / gcd(tod_rem, rate); tod_drift_adjust_rate = rate / gcd(tod_rem, rate); while ((tod_drift_adjust_fns > TOD_DRIFT_ADJUST_FNS_MAX) || (tod_drift_adjust_rate > TOD_DRIFT_ADJUST_RATE_MAX)) { tod_drift_adjust_fns >>= 1; tod_drift_adjust_rate >>= 1; } if (tod_drift_adjust_fns == 0) tod_drift_adjust_rate = 0; spin_lock_irqsave(&dt->tod_lock, flags); writel(tod_period, base + TOD_PERIOD); writel(0, base + TOD_ADJUST_PERIOD); writel(0, base + TOD_ADJUST_COUNT); writel(tod_drift_adjust_fns, base + TOD_DRIFT_ADJUST); writel(tod_drift_adjust_rate, base + TOD_DRIFT_ADJUST_RATE); spin_unlock_irqrestore(&dt->tod_lock, flags); return 0; } static int dfl_tod_adjust_time(struct ptp_clock_info *ptp, s64 delta) { struct dfl_tod *dt = container_of(ptp, struct dfl_tod, ptp_clock_ops); u32 period, diff, rem, rem_period, adj_period; void __iomem *base = dt->tod_ctrl; unsigned long flags; bool neg_adj; u64 count; int ret; neg_adj = delta < 0; if (neg_adj) delta = -delta; spin_lock_irqsave(&dt->tod_lock, flags); /* * Get the maximum possible value of the Period register offset * adjustment in nanoseconds scale. This depends on the current * Period register setting and the maximum and minimum possible * values of the Period register. */ period = readl(base + TOD_PERIOD); if (neg_adj) { diff = (period - TOD_PERIOD_MIN) >> PERIOD_FRAC_OFFSET; adj_period = period - (diff << PERIOD_FRAC_OFFSET); count = div_u64_rem(delta, diff, &rem); rem_period = period - (rem << PERIOD_FRAC_OFFSET); } else { diff = (TOD_PERIOD_MAX - period) >> PERIOD_FRAC_OFFSET; adj_period = period + (diff << PERIOD_FRAC_OFFSET); count = div_u64_rem(delta, diff, &rem); rem_period = period + (rem << PERIOD_FRAC_OFFSET); } ret = 0; if (count > TOD_ADJUST_COUNT_MAX) { ret = coarse_adjust_tod_clock(dt, delta); } else { /* Adjust the period by count cycles to adjust the time */ if (count) ret = fine_adjust_tod_clock(dt, adj_period, count); /* If there is a remainder, adjust the period for an additional cycle */ if (rem) ret = fine_adjust_tod_clock(dt, rem_period, 1); } spin_unlock_irqrestore(&dt->tod_lock, flags); return ret; } static int dfl_tod_get_timex(struct ptp_clock_info *ptp, struct timespec64 *ts, struct ptp_system_timestamp *sts) { struct dfl_tod *dt = container_of(ptp, struct dfl_tod, ptp_clock_ops); u32 seconds_msb, seconds_lsb, nanosec; void __iomem *base = dt->tod_ctrl; unsigned long flags; u64 seconds; spin_lock_irqsave(&dt->tod_lock, flags); ptp_read_system_prets(sts); nanosec = readl(base + TOD_NANOSEC); seconds_lsb = readl(base + TOD_SECONDSL); seconds_msb = readl(base + TOD_SECONDSH); ptp_read_system_postts(sts); spin_unlock_irqrestore(&dt->tod_lock, flags); seconds = CAL_SECONDS(seconds_msb, seconds_lsb); ts->tv_nsec = nanosec; ts->tv_sec = seconds; return 0; } static int dfl_tod_set_time(struct ptp_clock_info *ptp, const struct timespec64 *ts) { struct dfl_tod *dt = container_of(ptp, struct dfl_tod, ptp_clock_ops); u32 seconds_msb = FIELD_GET(SECONDS_MSB, ts->tv_sec); u32 seconds_lsb = FIELD_GET(SECONDS_LSB, ts->tv_sec); u32 nanosec = FIELD_GET(SECONDS_LSB, ts->tv_nsec); void __iomem *base = dt->tod_ctrl; unsigned long flags; spin_lock_irqsave(&dt->tod_lock, flags); writel(seconds_msb, base + TOD_SECONDSH); writel(seconds_lsb, base + TOD_SECONDSL); writel(nanosec, base + TOD_NANOSEC); spin_unlock_irqrestore(&dt->tod_lock, flags); return 0; } static struct ptp_clock_info dfl_tod_clock_ops = { .owner = THIS_MODULE, .name = "dfl_tod", .max_adj = TOD_MAX_ADJ, .adjfine = dfl_tod_adjust_fine, .adjtime = dfl_tod_adjust_time, .gettimex64 = dfl_tod_get_timex, .settime64 = dfl_tod_set_time, }; static int dfl_tod_probe(struct dfl_device *ddev) { struct device *dev = &ddev->dev; struct dfl_tod *dt; dt = devm_kzalloc(dev, sizeof(*dt), GFP_KERNEL); if (!dt) return -ENOMEM; dt->tod_ctrl = devm_ioremap_resource(dev, &ddev->mmio_res); if (IS_ERR(dt->tod_ctrl)) return PTR_ERR(dt->tod_ctrl); dt->dev = dev; spin_lock_init(&dt->tod_lock); dev_set_drvdata(dev, dt); dt->ptp_clock_ops = dfl_tod_clock_ops; dt->ptp_clock = ptp_clock_register(&dt->ptp_clock_ops, dev); if (IS_ERR(dt->ptp_clock)) return dev_err_probe(dt->dev, PTR_ERR(dt->ptp_clock), "Unable to register PTP clock\n"); return 0; } static void dfl_tod_remove(struct dfl_device *ddev) { struct dfl_tod *dt = dev_get_drvdata(&ddev->dev); ptp_clock_unregister(dt->ptp_clock); } static const struct dfl_device_id dfl_tod_ids[] = { { FME_ID, FME_FEATURE_ID_TOD }, { } }; MODULE_DEVICE_TABLE(dfl, dfl_tod_ids); static struct dfl_driver dfl_tod_driver = { .drv = { .name = "dfl-tod", }, .id_table = dfl_tod_ids, .probe = dfl_tod_probe, .remove = dfl_tod_remove, }; module_dfl_driver(dfl_tod_driver); MODULE_DESCRIPTION("FPGA DFL ToD driver"); MODULE_AUTHOR("Intel Corporation"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1