Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jonathan Neuschäfer | 567 | 98.44% | 1 | 33.33% |
Uwe Kleine-König | 9 | 1.56% | 2 | 66.67% |
Total | 576 | 3 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * The Netronix embedded controller is a microcontroller found in some * e-book readers designed by the original design manufacturer Netronix, Inc. * It contains RTC, battery monitoring, system power management, and PWM * functionality. * * This driver implements PWM output. * * Copyright 2020 Jonathan Neuschäfer <j.neuschaefer@gmx.net> * * Limitations: * - The get_state callback is not implemented, because the current state of * the PWM output can't be read back from the hardware. * - The hardware can only generate normal polarity output. * - The period and duty cycle can't be changed together in one atomic action. */ #include <linux/mfd/ntxec.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/pwm.h> #include <linux/regmap.h> #include <linux/types.h> struct ntxec_pwm { struct ntxec *ec; struct pwm_chip chip; }; static struct ntxec_pwm *ntxec_pwm_from_chip(struct pwm_chip *chip) { return container_of(chip, struct ntxec_pwm, chip); } #define NTXEC_REG_AUTO_OFF_HI 0xa1 #define NTXEC_REG_AUTO_OFF_LO 0xa2 #define NTXEC_REG_ENABLE 0xa3 #define NTXEC_REG_PERIOD_LOW 0xa4 #define NTXEC_REG_PERIOD_HIGH 0xa5 #define NTXEC_REG_DUTY_LOW 0xa6 #define NTXEC_REG_DUTY_HIGH 0xa7 /* * The time base used in the EC is 8MHz, or 125ns. Period and duty cycle are * measured in this unit. */ #define TIME_BASE_NS 125 /* * The maximum input value (in nanoseconds) is determined by the time base and * the range of the hardware registers that hold the converted value. * It fits into 32 bits, so we can do our calculations in 32 bits as well. */ #define MAX_PERIOD_NS (TIME_BASE_NS * 0xffff) static int ntxec_pwm_set_raw_period_and_duty_cycle(struct pwm_chip *chip, int period, int duty) { struct ntxec_pwm *priv = ntxec_pwm_from_chip(chip); /* * Changes to the period and duty cycle take effect as soon as the * corresponding low byte is written, so the hardware may be configured * to an inconsistent state after the period is written and before the * duty cycle is fully written. If, in such a case, the old duty cycle * is longer than the new period, the EC may output 100% for a moment. * * To minimize the time between the changes to period and duty cycle * taking effect, the writes are interleaved. */ struct reg_sequence regs[] = { { NTXEC_REG_PERIOD_HIGH, ntxec_reg8(period >> 8) }, { NTXEC_REG_DUTY_HIGH, ntxec_reg8(duty >> 8) }, { NTXEC_REG_PERIOD_LOW, ntxec_reg8(period) }, { NTXEC_REG_DUTY_LOW, ntxec_reg8(duty) }, }; return regmap_multi_reg_write(priv->ec->regmap, regs, ARRAY_SIZE(regs)); } static int ntxec_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm_dev, const struct pwm_state *state) { struct ntxec_pwm *priv = ntxec_pwm_from_chip(chip); unsigned int period, duty; int res; if (state->polarity != PWM_POLARITY_NORMAL) return -EINVAL; period = min_t(u64, state->period, MAX_PERIOD_NS); duty = min_t(u64, state->duty_cycle, period); period /= TIME_BASE_NS; duty /= TIME_BASE_NS; /* * Writing a duty cycle of zero puts the device into a state where * writing a higher duty cycle doesn't result in the brightness that it * usually results in. This can be fixed by cycling the ENABLE register. * * As a workaround, write ENABLE=0 when the duty cycle is zero. * The case that something has previously set the duty cycle to zero * but ENABLE=1, is not handled. */ if (state->enabled && duty != 0) { res = ntxec_pwm_set_raw_period_and_duty_cycle(chip, period, duty); if (res) return res; res = regmap_write(priv->ec->regmap, NTXEC_REG_ENABLE, ntxec_reg8(1)); if (res) return res; /* Disable the auto-off timer */ res = regmap_write(priv->ec->regmap, NTXEC_REG_AUTO_OFF_HI, ntxec_reg8(0xff)); if (res) return res; return regmap_write(priv->ec->regmap, NTXEC_REG_AUTO_OFF_LO, ntxec_reg8(0xff)); } else { return regmap_write(priv->ec->regmap, NTXEC_REG_ENABLE, ntxec_reg8(0)); } } static const struct pwm_ops ntxec_pwm_ops = { .apply = ntxec_pwm_apply, /* * No .get_state callback, because the current state cannot be read * back from the hardware. */ }; static int ntxec_pwm_probe(struct platform_device *pdev) { struct ntxec *ec = dev_get_drvdata(pdev->dev.parent); struct ntxec_pwm *priv; struct pwm_chip *chip; device_set_of_node_from_dev(&pdev->dev, pdev->dev.parent); priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->ec = ec; chip = &priv->chip; chip->dev = &pdev->dev; chip->ops = &ntxec_pwm_ops; chip->npwm = 1; return devm_pwmchip_add(&pdev->dev, chip); } static struct platform_driver ntxec_pwm_driver = { .driver = { .name = "ntxec-pwm", }, .probe = ntxec_pwm_probe, }; module_platform_driver(ntxec_pwm_driver); MODULE_AUTHOR("Jonathan Neuschäfer <j.neuschaefer@gmx.net>"); MODULE_DESCRIPTION("PWM driver for Netronix EC"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:ntxec-pwm");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1