Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Yash Shah | 1312 | 87.58% | 1 | 5.56% |
Uwe Kleine-König | 172 | 11.48% | 12 | 66.67% |
Emil Renner Berthing | 5 | 0.33% | 1 | 5.56% |
Michael Walle | 3 | 0.20% | 1 | 5.56% |
Yangtao Li | 3 | 0.20% | 1 | 5.56% |
Krzysztof Kozlowski | 2 | 0.13% | 1 | 5.56% |
Guru Das Srinagesh | 1 | 0.07% | 1 | 5.56% |
Total | 1498 | 18 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2017-2018 SiFive * For SiFive's PWM IP block documentation please refer Chapter 14 of * Reference Manual : https://static.dev.sifive.com/FU540-C000-v1.0.pdf * * Limitations: * - When changing both duty cycle and period, we cannot prevent in * software that the output might produce a period with mixed * settings (new period length and old duty cycle). * - The hardware cannot generate a 100% duty cycle. * - The hardware generates only inverted output. */ #include <linux/clk.h> #include <linux/io.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/pwm.h> #include <linux/slab.h> #include <linux/bitfield.h> /* Register offsets */ #define PWM_SIFIVE_PWMCFG 0x0 #define PWM_SIFIVE_PWMCOUNT 0x8 #define PWM_SIFIVE_PWMS 0x10 #define PWM_SIFIVE_PWMCMP(i) (0x20 + 4 * (i)) /* PWMCFG fields */ #define PWM_SIFIVE_PWMCFG_SCALE GENMASK(3, 0) #define PWM_SIFIVE_PWMCFG_STICKY BIT(8) #define PWM_SIFIVE_PWMCFG_ZERO_CMP BIT(9) #define PWM_SIFIVE_PWMCFG_DEGLITCH BIT(10) #define PWM_SIFIVE_PWMCFG_EN_ALWAYS BIT(12) #define PWM_SIFIVE_PWMCFG_EN_ONCE BIT(13) #define PWM_SIFIVE_PWMCFG_CENTER BIT(16) #define PWM_SIFIVE_PWMCFG_GANG BIT(24) #define PWM_SIFIVE_PWMCFG_IP BIT(28) #define PWM_SIFIVE_CMPWIDTH 16 #define PWM_SIFIVE_DEFAULT_PERIOD 10000000 struct pwm_sifive_ddata { struct pwm_chip chip; struct mutex lock; /* lock to protect user_count and approx_period */ struct notifier_block notifier; struct clk *clk; void __iomem *regs; unsigned int real_period; unsigned int approx_period; int user_count; }; static inline struct pwm_sifive_ddata *pwm_sifive_chip_to_ddata(struct pwm_chip *chip) { return container_of(chip, struct pwm_sifive_ddata, chip); } static int pwm_sifive_request(struct pwm_chip *chip, struct pwm_device *pwm) { struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip); mutex_lock(&ddata->lock); ddata->user_count++; mutex_unlock(&ddata->lock); return 0; } static void pwm_sifive_free(struct pwm_chip *chip, struct pwm_device *pwm) { struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip); mutex_lock(&ddata->lock); ddata->user_count--; mutex_unlock(&ddata->lock); } /* Called holding ddata->lock */ static void pwm_sifive_update_clock(struct pwm_sifive_ddata *ddata, unsigned long rate) { unsigned long long num; unsigned long scale_pow; int scale; u32 val; /* * The PWM unit is used with pwmzerocmp=0, so the only way to modify the * period length is using pwmscale which provides the number of bits the * counter is shifted before being feed to the comparators. A period * lasts (1 << (PWM_SIFIVE_CMPWIDTH + pwmscale)) clock ticks. * (1 << (PWM_SIFIVE_CMPWIDTH + scale)) * 10^9/rate = period */ scale_pow = div64_ul(ddata->approx_period * (u64)rate, NSEC_PER_SEC); scale = clamp(ilog2(scale_pow) - PWM_SIFIVE_CMPWIDTH, 0, 0xf); val = PWM_SIFIVE_PWMCFG_EN_ALWAYS | FIELD_PREP(PWM_SIFIVE_PWMCFG_SCALE, scale); writel(val, ddata->regs + PWM_SIFIVE_PWMCFG); /* As scale <= 15 the shift operation cannot overflow. */ num = (unsigned long long)NSEC_PER_SEC << (PWM_SIFIVE_CMPWIDTH + scale); ddata->real_period = div64_ul(num, rate); dev_dbg(ddata->chip.dev, "New real_period = %u ns\n", ddata->real_period); } static int pwm_sifive_get_state(struct pwm_chip *chip, struct pwm_device *pwm, struct pwm_state *state) { struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip); u32 duty, val; duty = readl(ddata->regs + PWM_SIFIVE_PWMCMP(pwm->hwpwm)); state->enabled = duty > 0; val = readl(ddata->regs + PWM_SIFIVE_PWMCFG); if (!(val & PWM_SIFIVE_PWMCFG_EN_ALWAYS)) state->enabled = false; state->period = ddata->real_period; state->duty_cycle = (u64)duty * ddata->real_period >> PWM_SIFIVE_CMPWIDTH; state->polarity = PWM_POLARITY_INVERSED; return 0; } static int pwm_sifive_apply(struct pwm_chip *chip, struct pwm_device *pwm, const struct pwm_state *state) { struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip); struct pwm_state cur_state; unsigned int duty_cycle; unsigned long long num; bool enabled; int ret = 0; u32 frac; if (state->polarity != PWM_POLARITY_INVERSED) return -EINVAL; cur_state = pwm->state; enabled = cur_state.enabled; duty_cycle = state->duty_cycle; if (!state->enabled) duty_cycle = 0; /* * The problem of output producing mixed setting as mentioned at top, * occurs here. To minimize the window for this problem, we are * calculating the register values first and then writing them * consecutively */ num = (u64)duty_cycle * (1U << PWM_SIFIVE_CMPWIDTH); frac = DIV64_U64_ROUND_CLOSEST(num, state->period); /* The hardware cannot generate a 100% duty cycle */ frac = min(frac, (1U << PWM_SIFIVE_CMPWIDTH) - 1); mutex_lock(&ddata->lock); if (state->period != ddata->approx_period) { /* * Don't let a 2nd user change the period underneath the 1st user. * However if ddate->approx_period == 0 this is the first time we set * any period, so let whoever gets here first set the period so other * users who agree on the period won't fail. */ if (ddata->user_count != 1 && ddata->approx_period) { mutex_unlock(&ddata->lock); return -EBUSY; } ddata->approx_period = state->period; pwm_sifive_update_clock(ddata, clk_get_rate(ddata->clk)); } mutex_unlock(&ddata->lock); /* * If the PWM is enabled the clk is already on. So only enable it * conditionally to have it on exactly once afterwards independent of * the PWM state. */ if (!enabled) { ret = clk_enable(ddata->clk); if (ret) { dev_err(ddata->chip.dev, "Enable clk failed\n"); return ret; } } writel(frac, ddata->regs + PWM_SIFIVE_PWMCMP(pwm->hwpwm)); if (!state->enabled) clk_disable(ddata->clk); return 0; } static const struct pwm_ops pwm_sifive_ops = { .request = pwm_sifive_request, .free = pwm_sifive_free, .get_state = pwm_sifive_get_state, .apply = pwm_sifive_apply, }; static int pwm_sifive_clock_notifier(struct notifier_block *nb, unsigned long event, void *data) { struct clk_notifier_data *ndata = data; struct pwm_sifive_ddata *ddata = container_of(nb, struct pwm_sifive_ddata, notifier); if (event == POST_RATE_CHANGE) { mutex_lock(&ddata->lock); pwm_sifive_update_clock(ddata, ndata->new_rate); mutex_unlock(&ddata->lock); } return NOTIFY_OK; } static int pwm_sifive_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct pwm_sifive_ddata *ddata; struct pwm_chip *chip; int ret; u32 val; unsigned int enabled_pwms = 0, enabled_clks = 1; ddata = devm_kzalloc(dev, sizeof(*ddata), GFP_KERNEL); if (!ddata) return -ENOMEM; mutex_init(&ddata->lock); chip = &ddata->chip; chip->dev = dev; chip->ops = &pwm_sifive_ops; chip->npwm = 4; ddata->regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(ddata->regs)) return PTR_ERR(ddata->regs); ddata->clk = devm_clk_get_prepared(dev, NULL); if (IS_ERR(ddata->clk)) return dev_err_probe(dev, PTR_ERR(ddata->clk), "Unable to find controller clock\n"); ret = clk_enable(ddata->clk); if (ret) { dev_err(dev, "failed to enable clock for pwm: %d\n", ret); return ret; } val = readl(ddata->regs + PWM_SIFIVE_PWMCFG); if (val & PWM_SIFIVE_PWMCFG_EN_ALWAYS) { unsigned int i; for (i = 0; i < chip->npwm; ++i) { val = readl(ddata->regs + PWM_SIFIVE_PWMCMP(i)); if (val > 0) ++enabled_pwms; } } /* The clk should be on once for each running PWM. */ if (enabled_pwms) { while (enabled_clks < enabled_pwms) { /* This is not expected to fail as the clk is already on */ ret = clk_enable(ddata->clk); if (unlikely(ret)) { dev_err_probe(dev, ret, "Failed to enable clk\n"); goto disable_clk; } ++enabled_clks; } } else { clk_disable(ddata->clk); enabled_clks = 0; } /* Watch for changes to underlying clock frequency */ ddata->notifier.notifier_call = pwm_sifive_clock_notifier; ret = clk_notifier_register(ddata->clk, &ddata->notifier); if (ret) { dev_err(dev, "failed to register clock notifier: %d\n", ret); goto disable_clk; } ret = pwmchip_add(chip); if (ret < 0) { dev_err(dev, "cannot register PWM: %d\n", ret); goto unregister_clk; } platform_set_drvdata(pdev, ddata); dev_dbg(dev, "SiFive PWM chip registered %d PWMs\n", chip->npwm); return 0; unregister_clk: clk_notifier_unregister(ddata->clk, &ddata->notifier); disable_clk: while (enabled_clks) { clk_disable(ddata->clk); --enabled_clks; } return ret; } static void pwm_sifive_remove(struct platform_device *dev) { struct pwm_sifive_ddata *ddata = platform_get_drvdata(dev); struct pwm_device *pwm; int ch; pwmchip_remove(&ddata->chip); clk_notifier_unregister(ddata->clk, &ddata->notifier); for (ch = 0; ch < ddata->chip.npwm; ch++) { pwm = &ddata->chip.pwms[ch]; if (pwm->state.enabled) clk_disable(ddata->clk); } } static const struct of_device_id pwm_sifive_of_match[] = { { .compatible = "sifive,pwm0" }, {}, }; MODULE_DEVICE_TABLE(of, pwm_sifive_of_match); static struct platform_driver pwm_sifive_driver = { .probe = pwm_sifive_probe, .remove_new = pwm_sifive_remove, .driver = { .name = "pwm-sifive", .of_match_table = pwm_sifive_of_match, }, }; module_platform_driver(pwm_sifive_driver); MODULE_DESCRIPTION("SiFive PWM driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1