Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Qiao Zhou | 1848 | 93.15% | 1 | 8.33% |
Vaibhav Hiremath | 47 | 2.37% | 1 | 8.33% |
Alexandre Belloni | 44 | 2.22% | 4 | 33.33% |
Colin Ian King | 28 | 1.41% | 1 | 8.33% |
Jingoo Han | 11 | 0.55% | 2 | 16.67% |
Devendra Naga | 3 | 0.15% | 1 | 8.33% |
Uwe Kleine-König | 2 | 0.10% | 1 | 8.33% |
Bartosz Golaszewski | 1 | 0.05% | 1 | 8.33% |
Total | 1984 | 12 |
// SPDX-License-Identifier: GPL-2.0 /* * Real Time Clock driver for Marvell 88PM80x PMIC * * Copyright (c) 2012 Marvell International Ltd. * Wenzeng Chen<wzch@marvell.com> * Qiao Zhou <zhouqiao@marvell.com> */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/regmap.h> #include <linux/mfd/core.h> #include <linux/mfd/88pm80x.h> #include <linux/rtc.h> #define PM800_RTC_COUNTER1 (0xD1) #define PM800_RTC_COUNTER2 (0xD2) #define PM800_RTC_COUNTER3 (0xD3) #define PM800_RTC_COUNTER4 (0xD4) #define PM800_RTC_EXPIRE1_1 (0xD5) #define PM800_RTC_EXPIRE1_2 (0xD6) #define PM800_RTC_EXPIRE1_3 (0xD7) #define PM800_RTC_EXPIRE1_4 (0xD8) #define PM800_RTC_TRIM1 (0xD9) #define PM800_RTC_TRIM2 (0xDA) #define PM800_RTC_TRIM3 (0xDB) #define PM800_RTC_TRIM4 (0xDC) #define PM800_RTC_EXPIRE2_1 (0xDD) #define PM800_RTC_EXPIRE2_2 (0xDE) #define PM800_RTC_EXPIRE2_3 (0xDF) #define PM800_RTC_EXPIRE2_4 (0xE0) #define PM800_POWER_DOWN_LOG1 (0xE5) #define PM800_POWER_DOWN_LOG2 (0xE6) struct pm80x_rtc_info { struct pm80x_chip *chip; struct regmap *map; struct rtc_device *rtc_dev; struct device *dev; int irq; }; static irqreturn_t rtc_update_handler(int irq, void *data) { struct pm80x_rtc_info *info = (struct pm80x_rtc_info *)data; int mask; mask = PM800_ALARM | PM800_ALARM_WAKEUP; regmap_update_bits(info->map, PM800_RTC_CONTROL, mask | PM800_ALARM1_EN, mask); rtc_update_irq(info->rtc_dev, 1, RTC_AF); return IRQ_HANDLED; } static int pm80x_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled) { struct pm80x_rtc_info *info = dev_get_drvdata(dev); if (enabled) regmap_update_bits(info->map, PM800_RTC_CONTROL, PM800_ALARM1_EN, PM800_ALARM1_EN); else regmap_update_bits(info->map, PM800_RTC_CONTROL, PM800_ALARM1_EN, 0); return 0; } /* * Calculate the next alarm time given the requested alarm time mask * and the current time. */ static void rtc_next_alarm_time(struct rtc_time *next, struct rtc_time *now, struct rtc_time *alrm) { unsigned long next_time; unsigned long now_time; next->tm_year = now->tm_year; next->tm_mon = now->tm_mon; next->tm_mday = now->tm_mday; next->tm_hour = alrm->tm_hour; next->tm_min = alrm->tm_min; next->tm_sec = alrm->tm_sec; now_time = rtc_tm_to_time64(now); next_time = rtc_tm_to_time64(next); if (next_time < now_time) { /* Advance one day */ next_time += 60 * 60 * 24; rtc_time64_to_tm(next_time, next); } } static int pm80x_rtc_read_time(struct device *dev, struct rtc_time *tm) { struct pm80x_rtc_info *info = dev_get_drvdata(dev); unsigned char buf[4]; unsigned long ticks, base, data; regmap_raw_read(info->map, PM800_RTC_EXPIRE2_1, buf, 4); base = ((unsigned long)buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0]; dev_dbg(info->dev, "%x-%x-%x-%x\n", buf[0], buf[1], buf[2], buf[3]); /* load 32-bit read-only counter */ regmap_raw_read(info->map, PM800_RTC_COUNTER1, buf, 4); data = ((unsigned long)buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0]; ticks = base + data; dev_dbg(info->dev, "get base:0x%lx, RO count:0x%lx, ticks:0x%lx\n", base, data, ticks); rtc_time64_to_tm(ticks, tm); return 0; } static int pm80x_rtc_set_time(struct device *dev, struct rtc_time *tm) { struct pm80x_rtc_info *info = dev_get_drvdata(dev); unsigned char buf[4]; unsigned long ticks, base, data; ticks = rtc_tm_to_time64(tm); /* load 32-bit read-only counter */ regmap_raw_read(info->map, PM800_RTC_COUNTER1, buf, 4); data = ((unsigned long)buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0]; base = ticks - data; dev_dbg(info->dev, "set base:0x%lx, RO count:0x%lx, ticks:0x%lx\n", base, data, ticks); buf[0] = base & 0xFF; buf[1] = (base >> 8) & 0xFF; buf[2] = (base >> 16) & 0xFF; buf[3] = (base >> 24) & 0xFF; regmap_raw_write(info->map, PM800_RTC_EXPIRE2_1, buf, 4); return 0; } static int pm80x_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm) { struct pm80x_rtc_info *info = dev_get_drvdata(dev); unsigned char buf[4]; unsigned long ticks, base, data; int ret; regmap_raw_read(info->map, PM800_RTC_EXPIRE2_1, buf, 4); base = ((unsigned long)buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0]; dev_dbg(info->dev, "%x-%x-%x-%x\n", buf[0], buf[1], buf[2], buf[3]); regmap_raw_read(info->map, PM800_RTC_EXPIRE1_1, buf, 4); data = ((unsigned long)buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0]; ticks = base + data; dev_dbg(info->dev, "get base:0x%lx, RO count:0x%lx, ticks:0x%lx\n", base, data, ticks); rtc_time64_to_tm(ticks, &alrm->time); regmap_read(info->map, PM800_RTC_CONTROL, &ret); alrm->enabled = (ret & PM800_ALARM1_EN) ? 1 : 0; alrm->pending = (ret & (PM800_ALARM | PM800_ALARM_WAKEUP)) ? 1 : 0; return 0; } static int pm80x_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm) { struct pm80x_rtc_info *info = dev_get_drvdata(dev); struct rtc_time now_tm, alarm_tm; unsigned long ticks, base, data; unsigned char buf[4]; int mask; regmap_update_bits(info->map, PM800_RTC_CONTROL, PM800_ALARM1_EN, 0); regmap_raw_read(info->map, PM800_RTC_EXPIRE2_1, buf, 4); base = ((unsigned long)buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0]; dev_dbg(info->dev, "%x-%x-%x-%x\n", buf[0], buf[1], buf[2], buf[3]); /* load 32-bit read-only counter */ regmap_raw_read(info->map, PM800_RTC_COUNTER1, buf, 4); data = ((unsigned long)buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0]; ticks = base + data; dev_dbg(info->dev, "get base:0x%lx, RO count:0x%lx, ticks:0x%lx\n", base, data, ticks); rtc_time64_to_tm(ticks, &now_tm); dev_dbg(info->dev, "%s, now time : %lu\n", __func__, ticks); rtc_next_alarm_time(&alarm_tm, &now_tm, &alrm->time); /* get new ticks for alarm in 24 hours */ ticks = rtc_tm_to_time64(&alarm_tm); dev_dbg(info->dev, "%s, alarm time: %lu\n", __func__, ticks); data = ticks - base; buf[0] = data & 0xff; buf[1] = (data >> 8) & 0xff; buf[2] = (data >> 16) & 0xff; buf[3] = (data >> 24) & 0xff; regmap_raw_write(info->map, PM800_RTC_EXPIRE1_1, buf, 4); if (alrm->enabled) { mask = PM800_ALARM | PM800_ALARM_WAKEUP | PM800_ALARM1_EN; regmap_update_bits(info->map, PM800_RTC_CONTROL, mask, mask); } else { mask = PM800_ALARM | PM800_ALARM_WAKEUP | PM800_ALARM1_EN; regmap_update_bits(info->map, PM800_RTC_CONTROL, mask, PM800_ALARM | PM800_ALARM_WAKEUP); } return 0; } static const struct rtc_class_ops pm80x_rtc_ops = { .read_time = pm80x_rtc_read_time, .set_time = pm80x_rtc_set_time, .read_alarm = pm80x_rtc_read_alarm, .set_alarm = pm80x_rtc_set_alarm, .alarm_irq_enable = pm80x_rtc_alarm_irq_enable, }; #ifdef CONFIG_PM_SLEEP static int pm80x_rtc_suspend(struct device *dev) { return pm80x_dev_suspend(dev); } static int pm80x_rtc_resume(struct device *dev) { return pm80x_dev_resume(dev); } #endif static SIMPLE_DEV_PM_OPS(pm80x_rtc_pm_ops, pm80x_rtc_suspend, pm80x_rtc_resume); static int pm80x_rtc_probe(struct platform_device *pdev) { struct pm80x_chip *chip = dev_get_drvdata(pdev->dev.parent); struct pm80x_rtc_pdata *pdata = dev_get_platdata(&pdev->dev); struct pm80x_rtc_info *info; struct device_node *node = pdev->dev.of_node; int ret; if (!pdata && !node) { dev_err(&pdev->dev, "pm80x-rtc requires platform data or of_node\n"); return -EINVAL; } if (!pdata) { pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL); if (!pdata) { dev_err(&pdev->dev, "failed to allocate memory\n"); return -ENOMEM; } } info = devm_kzalloc(&pdev->dev, sizeof(struct pm80x_rtc_info), GFP_KERNEL); if (!info) return -ENOMEM; info->irq = platform_get_irq(pdev, 0); if (info->irq < 0) { ret = -EINVAL; goto out; } info->chip = chip; info->map = chip->regmap; if (!info->map) { dev_err(&pdev->dev, "no regmap!\n"); ret = -EINVAL; goto out; } info->dev = &pdev->dev; dev_set_drvdata(&pdev->dev, info); info->rtc_dev = devm_rtc_allocate_device(&pdev->dev); if (IS_ERR(info->rtc_dev)) return PTR_ERR(info->rtc_dev); ret = pm80x_request_irq(chip, info->irq, rtc_update_handler, IRQF_ONESHOT, "rtc", info); if (ret < 0) { dev_err(chip->dev, "Failed to request IRQ: #%d: %d\n", info->irq, ret); goto out; } info->rtc_dev->ops = &pm80x_rtc_ops; info->rtc_dev->range_max = U32_MAX; ret = devm_rtc_register_device(info->rtc_dev); if (ret) goto out_rtc; /* * enable internal XO instead of internal 3.25MHz clock since it can * free running in PMIC power-down state. */ regmap_update_bits(info->map, PM800_RTC_CONTROL, PM800_RTC1_USE_XO, PM800_RTC1_USE_XO); /* remember whether this power up is caused by PMIC RTC or not */ info->rtc_dev->dev.platform_data = &pdata->rtc_wakeup; device_init_wakeup(&pdev->dev, 1); return 0; out_rtc: pm80x_free_irq(chip, info->irq, info); out: return ret; } static void pm80x_rtc_remove(struct platform_device *pdev) { struct pm80x_rtc_info *info = platform_get_drvdata(pdev); pm80x_free_irq(info->chip, info->irq, info); } static struct platform_driver pm80x_rtc_driver = { .driver = { .name = "88pm80x-rtc", .pm = &pm80x_rtc_pm_ops, }, .probe = pm80x_rtc_probe, .remove_new = pm80x_rtc_remove, }; module_platform_driver(pm80x_rtc_driver); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Marvell 88PM80x RTC driver"); MODULE_AUTHOR("Qiao Zhou <zhouqiao@marvell.com>"); MODULE_ALIAS("platform:88pm80x-rtc");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1