Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jan Glauber | 3859 | 62.75% | 42 | 28.38% |
Julian Wiedmann | 1443 | 23.46% | 58 | 39.19% |
Martin Schwidefsky | 350 | 5.69% | 11 | 7.43% |
Frank Blaschka | 183 | 2.98% | 3 | 2.03% |
Sebastian Ott | 107 | 1.74% | 7 | 4.73% |
Frank Pavlic | 73 | 1.19% | 2 | 1.35% |
Swen Schillig | 50 | 0.81% | 2 | 1.35% |
Heiko Carstens | 14 | 0.23% | 4 | 2.70% |
Stefan Raspl | 13 | 0.21% | 1 | 0.68% |
Steffen Maier | 12 | 0.20% | 1 | 0.68% |
Michael Holzheu | 7 | 0.11% | 2 | 1.35% |
Andreas Herrmann | 6 | 0.10% | 1 | 0.68% |
Ursula Braun-Krahl | 6 | 0.10% | 2 | 1.35% |
Linus Torvalds (pre-git) | 5 | 0.08% | 3 | 2.03% |
Fabian Frederick | 5 | 0.08% | 1 | 0.68% |
Cornelia Huck | 4 | 0.07% | 2 | 1.35% |
Klaus-Dieter Wacker | 4 | 0.07% | 1 | 0.68% |
Avi Kivity | 3 | 0.05% | 1 | 0.68% |
Peter Oberparleiter | 3 | 0.05% | 1 | 0.68% |
Greg Kroah-Hartman | 1 | 0.02% | 1 | 0.68% |
Arun Sharma | 1 | 0.02% | 1 | 0.68% |
Coly Li | 1 | 0.02% | 1 | 0.68% |
Total | 6150 | 148 |
// SPDX-License-Identifier: GPL-2.0 /* * Linux for s390 qdio support, buffer handling, qdio API and module support. * * Copyright IBM Corp. 2000, 2008 * Author(s): Utz Bacher <utz.bacher@de.ibm.com> * Jan Glauber <jang@linux.vnet.ibm.com> * 2.6 cio integration by Cornelia Huck <cornelia.huck@de.ibm.com> */ #include <linux/module.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/kmemleak.h> #include <linux/delay.h> #include <linux/gfp.h> #include <linux/io.h> #include <linux/atomic.h> #include <asm/debug.h> #include <asm/qdio.h> #include <asm/ipl.h> #include "cio.h" #include "css.h" #include "device.h" #include "qdio.h" #include "qdio_debug.h" MODULE_AUTHOR("Utz Bacher <utz.bacher@de.ibm.com>,"\ "Jan Glauber <jang@linux.vnet.ibm.com>"); MODULE_DESCRIPTION("QDIO base support"); MODULE_LICENSE("GPL"); static inline int do_siga_sync(unsigned long schid, unsigned long out_mask, unsigned long in_mask, unsigned int fc) { int cc; asm volatile( " lgr 0,%[fc]\n" " lgr 1,%[schid]\n" " lgr 2,%[out]\n" " lgr 3,%[in]\n" " siga 0\n" " ipm %[cc]\n" " srl %[cc],28\n" : [cc] "=&d" (cc) : [fc] "d" (fc), [schid] "d" (schid), [out] "d" (out_mask), [in] "d" (in_mask) : "cc", "0", "1", "2", "3"); return cc; } static inline int do_siga_input(unsigned long schid, unsigned long mask, unsigned long fc) { int cc; asm volatile( " lgr 0,%[fc]\n" " lgr 1,%[schid]\n" " lgr 2,%[mask]\n" " siga 0\n" " ipm %[cc]\n" " srl %[cc],28\n" : [cc] "=&d" (cc) : [fc] "d" (fc), [schid] "d" (schid), [mask] "d" (mask) : "cc", "0", "1", "2"); return cc; } /** * do_siga_output - perform SIGA-w/wt function * @schid: subchannel id or in case of QEBSM the subchannel token * @mask: which output queues to process * @bb: busy bit indicator, set only if SIGA-w/wt could not access a buffer * @fc: function code to perform * @aob: asynchronous operation block * * Returns condition code. * Note: For IQDC unicast queues only the highest priority queue is processed. */ static inline int do_siga_output(unsigned long schid, unsigned long mask, unsigned int *bb, unsigned long fc, unsigned long aob) { int cc; asm volatile( " lgr 0,%[fc]\n" " lgr 1,%[schid]\n" " lgr 2,%[mask]\n" " lgr 3,%[aob]\n" " siga 0\n" " lgr %[fc],0\n" " ipm %[cc]\n" " srl %[cc],28\n" : [cc] "=&d" (cc), [fc] "+&d" (fc) : [schid] "d" (schid), [mask] "d" (mask), [aob] "d" (aob) : "cc", "0", "1", "2", "3"); *bb = fc >> 31; return cc; } /** * qdio_do_eqbs - extract buffer states for QEBSM * @q: queue to manipulate * @state: state of the extracted buffers * @start: buffer number to start at * @count: count of buffers to examine * @auto_ack: automatically acknowledge buffers * * Returns the number of successfully extracted equal buffer states. * Stops processing if a state is different from the last buffers state. */ static int qdio_do_eqbs(struct qdio_q *q, unsigned char *state, int start, int count, int auto_ack) { int tmp_count = count, tmp_start = start, nr = q->nr; unsigned int ccq = 0; qperf_inc(q, eqbs); if (!q->is_input_q) nr += q->irq_ptr->nr_input_qs; again: ccq = do_eqbs(q->irq_ptr->sch_token, state, nr, &tmp_start, &tmp_count, auto_ack); switch (ccq) { case 0: case 32: /* all done, or next buffer state different */ return count - tmp_count; case 96: /* not all buffers processed */ qperf_inc(q, eqbs_partial); DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "EQBS part:%02x", tmp_count); return count - tmp_count; case 97: /* no buffer processed */ DBF_DEV_EVENT(DBF_WARN, q->irq_ptr, "EQBS again:%2d", ccq); goto again; default: DBF_ERROR("%4x ccq:%3d", SCH_NO(q), ccq); DBF_ERROR("%4x EQBS ERROR", SCH_NO(q)); DBF_ERROR("%3d%3d%2d", count, tmp_count, nr); q->handler(q->irq_ptr->cdev, QDIO_ERROR_GET_BUF_STATE, q->nr, q->first_to_check, count, q->irq_ptr->int_parm); return 0; } } /** * qdio_do_sqbs - set buffer states for QEBSM * @q: queue to manipulate * @state: new state of the buffers * @start: first buffer number to change * @count: how many buffers to change * * Returns the number of successfully changed buffers. * Does retrying until the specified count of buffer states is set or an * error occurs. */ static int qdio_do_sqbs(struct qdio_q *q, unsigned char state, int start, int count) { unsigned int ccq = 0; int tmp_count = count, tmp_start = start; int nr = q->nr; qperf_inc(q, sqbs); if (!q->is_input_q) nr += q->irq_ptr->nr_input_qs; again: ccq = do_sqbs(q->irq_ptr->sch_token, state, nr, &tmp_start, &tmp_count); switch (ccq) { case 0: case 32: /* all done, or active buffer adapter-owned */ WARN_ON_ONCE(tmp_count); return count - tmp_count; case 96: /* not all buffers processed */ DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "SQBS again:%2d", ccq); qperf_inc(q, sqbs_partial); goto again; default: DBF_ERROR("%4x ccq:%3d", SCH_NO(q), ccq); DBF_ERROR("%4x SQBS ERROR", SCH_NO(q)); DBF_ERROR("%3d%3d%2d", count, tmp_count, nr); q->handler(q->irq_ptr->cdev, QDIO_ERROR_SET_BUF_STATE, q->nr, q->first_to_check, count, q->irq_ptr->int_parm); return 0; } } /* * Returns number of examined buffers and their common state in *state. * Requested number of buffers-to-examine must be > 0. */ static inline int get_buf_states(struct qdio_q *q, unsigned int bufnr, unsigned char *state, unsigned int count, int auto_ack) { unsigned char __state = 0; int i = 1; if (is_qebsm(q)) return qdio_do_eqbs(q, state, bufnr, count, auto_ack); /* get initial state: */ __state = q->slsb.val[bufnr]; /* Bail out early if there is no work on the queue: */ if (__state & SLSB_OWNER_CU) goto out; for (; i < count; i++) { bufnr = next_buf(bufnr); /* stop if next state differs from initial state: */ if (q->slsb.val[bufnr] != __state) break; } out: *state = __state; return i; } static inline int get_buf_state(struct qdio_q *q, unsigned int bufnr, unsigned char *state, int auto_ack) { return get_buf_states(q, bufnr, state, 1, auto_ack); } /* wrap-around safe setting of slsb states, returns number of changed buffers */ static inline int set_buf_states(struct qdio_q *q, int bufnr, unsigned char state, int count) { int i; if (is_qebsm(q)) return qdio_do_sqbs(q, state, bufnr, count); /* Ensure that all preceding changes to the SBALs are visible: */ mb(); for (i = 0; i < count; i++) { WRITE_ONCE(q->slsb.val[bufnr], state); bufnr = next_buf(bufnr); } /* Make our SLSB changes visible: */ mb(); return count; } static inline int set_buf_state(struct qdio_q *q, int bufnr, unsigned char state) { return set_buf_states(q, bufnr, state, 1); } /* set slsb states to initial state */ static void qdio_init_buf_states(struct qdio_irq *irq_ptr) { struct qdio_q *q; int i; for_each_input_queue(irq_ptr, q, i) set_buf_states(q, 0, SLSB_P_INPUT_NOT_INIT, QDIO_MAX_BUFFERS_PER_Q); for_each_output_queue(irq_ptr, q, i) set_buf_states(q, 0, SLSB_P_OUTPUT_NOT_INIT, QDIO_MAX_BUFFERS_PER_Q); } static inline int qdio_siga_sync(struct qdio_q *q, unsigned int output, unsigned int input) { unsigned long schid = *((u32 *) &q->irq_ptr->schid); unsigned int fc = QDIO_SIGA_SYNC; int cc; DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "siga-s:%1d", q->nr); qperf_inc(q, siga_sync); if (is_qebsm(q)) { schid = q->irq_ptr->sch_token; fc |= QDIO_SIGA_QEBSM_FLAG; } cc = do_siga_sync(schid, output, input, fc); if (unlikely(cc)) DBF_ERROR("%4x SIGA-S:%2d", SCH_NO(q), cc); return (cc) ? -EIO : 0; } static inline int qdio_sync_input_queue(struct qdio_q *q) { return qdio_siga_sync(q, 0, q->mask); } static inline int qdio_sync_output_queue(struct qdio_q *q) { return qdio_siga_sync(q, q->mask, 0); } static inline int qdio_siga_sync_q(struct qdio_q *q) { if (q->is_input_q) return qdio_sync_input_queue(q); else return qdio_sync_output_queue(q); } static int qdio_siga_output(struct qdio_q *q, unsigned int count, unsigned int *busy_bit, unsigned long aob) { unsigned long schid = *((u32 *) &q->irq_ptr->schid); unsigned int fc = QDIO_SIGA_WRITE; u64 start_time = 0; int retries = 0, cc; if (queue_type(q) == QDIO_IQDIO_QFMT && !multicast_outbound(q)) { if (count > 1) fc = QDIO_SIGA_WRITEM; else if (aob) fc = QDIO_SIGA_WRITEQ; } if (is_qebsm(q)) { schid = q->irq_ptr->sch_token; fc |= QDIO_SIGA_QEBSM_FLAG; } again: cc = do_siga_output(schid, q->mask, busy_bit, fc, aob); /* hipersocket busy condition */ if (unlikely(*busy_bit)) { retries++; if (!start_time) { start_time = get_tod_clock_fast(); goto again; } if (get_tod_clock_fast() - start_time < QDIO_BUSY_BIT_PATIENCE) goto again; } if (retries) { DBF_DEV_EVENT(DBF_WARN, q->irq_ptr, "%4x cc2 BB1:%1d", SCH_NO(q), q->nr); DBF_DEV_EVENT(DBF_WARN, q->irq_ptr, "count:%u", retries); } return cc; } static inline int qdio_siga_input(struct qdio_q *q) { unsigned long schid = *((u32 *) &q->irq_ptr->schid); unsigned int fc = QDIO_SIGA_READ; int cc; DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "siga-r:%1d", q->nr); qperf_inc(q, siga_read); if (is_qebsm(q)) { schid = q->irq_ptr->sch_token; fc |= QDIO_SIGA_QEBSM_FLAG; } cc = do_siga_input(schid, q->mask, fc); if (unlikely(cc)) DBF_ERROR("%4x SIGA-R:%2d", SCH_NO(q), cc); return (cc) ? -EIO : 0; } int debug_get_buf_state(struct qdio_q *q, unsigned int bufnr, unsigned char *state) { if (qdio_need_siga_sync(q->irq_ptr)) qdio_siga_sync_q(q); return get_buf_state(q, bufnr, state, 0); } static inline void qdio_stop_polling(struct qdio_q *q) { if (!q->u.in.batch_count) return; qperf_inc(q, stop_polling); /* show the card that we are not polling anymore */ set_buf_states(q, q->u.in.batch_start, SLSB_P_INPUT_NOT_INIT, q->u.in.batch_count); q->u.in.batch_count = 0; } static inline void account_sbals(struct qdio_q *q, unsigned int count) { q->q_stats.nr_sbal_total += count; q->q_stats.nr_sbals[ilog2(count)]++; } static void process_buffer_error(struct qdio_q *q, unsigned int start, int count) { /* special handling for no target buffer empty */ if (queue_type(q) == QDIO_IQDIO_QFMT && !q->is_input_q && q->sbal[start]->element[15].sflags == 0x10) { qperf_inc(q, target_full); DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "OUTFULL FTC:%02x", start); return; } DBF_ERROR("%4x BUF ERROR", SCH_NO(q)); DBF_ERROR((q->is_input_q) ? "IN:%2d" : "OUT:%2d", q->nr); DBF_ERROR("FTC:%3d C:%3d", start, count); DBF_ERROR("F14:%2x F15:%2x", q->sbal[start]->element[14].sflags, q->sbal[start]->element[15].sflags); } static inline void inbound_handle_work(struct qdio_q *q, unsigned int start, int count, bool auto_ack) { /* ACK the newest SBAL: */ if (!auto_ack) set_buf_state(q, add_buf(start, count - 1), SLSB_P_INPUT_ACK); if (!q->u.in.batch_count) q->u.in.batch_start = start; q->u.in.batch_count += count; } static int get_inbound_buffer_frontier(struct qdio_q *q, unsigned int start, unsigned int *error) { unsigned char state = 0; int count; q->timestamp = get_tod_clock_fast(); count = atomic_read(&q->nr_buf_used); if (!count) return 0; if (qdio_need_siga_sync(q->irq_ptr)) qdio_sync_input_queue(q); count = get_buf_states(q, start, &state, count, 1); if (!count) return 0; switch (state) { case SLSB_P_INPUT_PRIMED: DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "in prim:%1d %02x", q->nr, count); inbound_handle_work(q, start, count, is_qebsm(q)); if (atomic_sub_return(count, &q->nr_buf_used) == 0) qperf_inc(q, inbound_queue_full); if (q->irq_ptr->perf_stat_enabled) account_sbals(q, count); return count; case SLSB_P_INPUT_ERROR: DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "in err:%1d %02x", q->nr, count); *error = QDIO_ERROR_SLSB_STATE; process_buffer_error(q, start, count); inbound_handle_work(q, start, count, false); if (atomic_sub_return(count, &q->nr_buf_used) == 0) qperf_inc(q, inbound_queue_full); if (q->irq_ptr->perf_stat_enabled) account_sbals_error(q, count); return count; case SLSB_CU_INPUT_EMPTY: if (q->irq_ptr->perf_stat_enabled) q->q_stats.nr_sbal_nop++; DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "in nop:%1d %#02x", q->nr, start); return 0; case SLSB_P_INPUT_NOT_INIT: case SLSB_P_INPUT_ACK: /* We should never see this state, throw a WARN: */ default: dev_WARN_ONCE(&q->irq_ptr->cdev->dev, 1, "found state %#x at index %u on queue %u\n", state, start, q->nr); return 0; } } int qdio_inspect_input_queue(struct ccw_device *cdev, unsigned int nr, unsigned int *bufnr, unsigned int *error) { struct qdio_irq *irq = cdev->private->qdio_data; unsigned int start; struct qdio_q *q; int count; if (!irq) return -ENODEV; q = irq->input_qs[nr]; start = q->first_to_check; *error = 0; count = get_inbound_buffer_frontier(q, start, error); if (count == 0) return 0; *bufnr = start; q->first_to_check = add_buf(start, count); return count; } EXPORT_SYMBOL_GPL(qdio_inspect_input_queue); static inline int qdio_inbound_q_done(struct qdio_q *q, unsigned int start) { unsigned char state = 0; if (!atomic_read(&q->nr_buf_used)) return 1; if (qdio_need_siga_sync(q->irq_ptr)) qdio_sync_input_queue(q); get_buf_state(q, start, &state, 0); if (state == SLSB_P_INPUT_PRIMED || state == SLSB_P_INPUT_ERROR) /* more work coming */ return 0; return 1; } static int get_outbound_buffer_frontier(struct qdio_q *q, unsigned int start, unsigned int *error) { unsigned char state = 0; int count; q->timestamp = get_tod_clock_fast(); count = atomic_read(&q->nr_buf_used); if (!count) return 0; if (qdio_need_siga_sync(q->irq_ptr)) qdio_sync_output_queue(q); count = get_buf_states(q, start, &state, count, 0); if (!count) return 0; switch (state) { case SLSB_P_OUTPUT_PENDING: *error = QDIO_ERROR_SLSB_PENDING; fallthrough; case SLSB_P_OUTPUT_EMPTY: /* the adapter got it */ DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "out empty:%1d %02x", q->nr, count); atomic_sub(count, &q->nr_buf_used); if (q->irq_ptr->perf_stat_enabled) account_sbals(q, count); return count; case SLSB_P_OUTPUT_ERROR: DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "out error:%1d %02x", q->nr, count); *error = QDIO_ERROR_SLSB_STATE; process_buffer_error(q, start, count); atomic_sub(count, &q->nr_buf_used); if (q->irq_ptr->perf_stat_enabled) account_sbals_error(q, count); return count; case SLSB_CU_OUTPUT_PRIMED: /* the adapter has not fetched the output yet */ if (q->irq_ptr->perf_stat_enabled) q->q_stats.nr_sbal_nop++; DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "out primed:%1d", q->nr); return 0; case SLSB_P_OUTPUT_HALTED: return 0; case SLSB_P_OUTPUT_NOT_INIT: /* We should never see this state, throw a WARN: */ default: dev_WARN_ONCE(&q->irq_ptr->cdev->dev, 1, "found state %#x at index %u on queue %u\n", state, start, q->nr); return 0; } } int qdio_inspect_output_queue(struct ccw_device *cdev, unsigned int nr, unsigned int *bufnr, unsigned int *error) { struct qdio_irq *irq = cdev->private->qdio_data; unsigned int start; struct qdio_q *q; int count; if (!irq) return -ENODEV; q = irq->output_qs[nr]; start = q->first_to_check; *error = 0; count = get_outbound_buffer_frontier(q, start, error); if (count == 0) return 0; *bufnr = start; q->first_to_check = add_buf(start, count); return count; } EXPORT_SYMBOL_GPL(qdio_inspect_output_queue); static int qdio_kick_outbound_q(struct qdio_q *q, unsigned int count, unsigned long aob) { int retries = 0, cc; unsigned int busy_bit; if (!qdio_need_siga_out(q->irq_ptr)) return 0; DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "siga-w:%1d", q->nr); retry: qperf_inc(q, siga_write); cc = qdio_siga_output(q, count, &busy_bit, aob); switch (cc) { case 0: break; case 2: if (busy_bit) { while (++retries < QDIO_BUSY_BIT_RETRIES) { mdelay(QDIO_BUSY_BIT_RETRY_DELAY); goto retry; } DBF_ERROR("%4x cc2 BBC:%1d", SCH_NO(q), q->nr); cc = -EBUSY; } else { DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "siga-w cc2:%1d", q->nr); cc = -ENOBUFS; } break; case 1: case 3: DBF_ERROR("%4x SIGA-W:%1d", SCH_NO(q), cc); cc = -EIO; break; } if (retries) { DBF_ERROR("%4x cc2 BB2:%1d", SCH_NO(q), q->nr); DBF_ERROR("count:%u", retries); } return cc; } static inline void qdio_set_state(struct qdio_irq *irq_ptr, enum qdio_irq_states state) { DBF_DEV_EVENT(DBF_INFO, irq_ptr, "newstate: %1d", state); irq_ptr->state = state; mb(); } static void qdio_irq_check_sense(struct qdio_irq *irq_ptr, struct irb *irb) { if (irb->esw.esw0.erw.cons) { DBF_ERROR("%4x sense:", irq_ptr->schid.sch_no); DBF_ERROR_HEX(irb, 64); DBF_ERROR_HEX(irb->ecw, 64); } } /* PCI interrupt handler */ static void qdio_int_handler_pci(struct qdio_irq *irq_ptr) { if (unlikely(irq_ptr->state != QDIO_IRQ_STATE_ACTIVE)) return; qdio_deliver_irq(irq_ptr); irq_ptr->last_data_irq_time = S390_lowcore.int_clock; } static void qdio_handle_activate_check(struct qdio_irq *irq_ptr, unsigned long intparm, int cstat, int dstat) { unsigned int first_to_check = 0; DBF_ERROR("%4x ACT CHECK", irq_ptr->schid.sch_no); DBF_ERROR("intp :%lx", intparm); DBF_ERROR("ds: %2x cs:%2x", dstat, cstat); /* zfcp wants this: */ if (irq_ptr->nr_input_qs) first_to_check = irq_ptr->input_qs[0]->first_to_check; irq_ptr->error_handler(irq_ptr->cdev, QDIO_ERROR_ACTIVATE, 0, first_to_check, 0, irq_ptr->int_parm); qdio_set_state(irq_ptr, QDIO_IRQ_STATE_STOPPED); /* * In case of z/VM LGR (Live Guest Migration) QDIO recovery will happen. * Therefore we call the LGR detection function here. */ lgr_info_log(); } static void qdio_establish_handle_irq(struct qdio_irq *irq_ptr, int cstat, int dstat) { DBF_DEV_EVENT(DBF_INFO, irq_ptr, "qest irq"); if (cstat) goto error; if (dstat & ~(DEV_STAT_DEV_END | DEV_STAT_CHN_END)) goto error; if (!(dstat & DEV_STAT_DEV_END)) goto error; qdio_set_state(irq_ptr, QDIO_IRQ_STATE_ESTABLISHED); return; error: DBF_ERROR("%4x EQ:error", irq_ptr->schid.sch_no); DBF_ERROR("ds: %2x cs:%2x", dstat, cstat); qdio_set_state(irq_ptr, QDIO_IRQ_STATE_ERR); } /* qdio interrupt handler */ void qdio_int_handler(struct ccw_device *cdev, unsigned long intparm, struct irb *irb) { struct qdio_irq *irq_ptr = cdev->private->qdio_data; struct subchannel_id schid; int cstat, dstat; if (!intparm || !irq_ptr) { ccw_device_get_schid(cdev, &schid); DBF_ERROR("qint:%4x", schid.sch_no); return; } if (irq_ptr->perf_stat_enabled) irq_ptr->perf_stat.qdio_int++; if (IS_ERR(irb)) { DBF_ERROR("%4x IO error", irq_ptr->schid.sch_no); qdio_set_state(irq_ptr, QDIO_IRQ_STATE_ERR); wake_up(&cdev->private->wait_q); return; } qdio_irq_check_sense(irq_ptr, irb); cstat = irb->scsw.cmd.cstat; dstat = irb->scsw.cmd.dstat; switch (irq_ptr->state) { case QDIO_IRQ_STATE_INACTIVE: qdio_establish_handle_irq(irq_ptr, cstat, dstat); break; case QDIO_IRQ_STATE_CLEANUP: qdio_set_state(irq_ptr, QDIO_IRQ_STATE_INACTIVE); break; case QDIO_IRQ_STATE_ESTABLISHED: case QDIO_IRQ_STATE_ACTIVE: if (cstat & SCHN_STAT_PCI) { qdio_int_handler_pci(irq_ptr); return; } if (cstat || dstat) qdio_handle_activate_check(irq_ptr, intparm, cstat, dstat); break; case QDIO_IRQ_STATE_STOPPED: break; default: WARN_ON_ONCE(1); } wake_up(&cdev->private->wait_q); } /** * qdio_get_ssqd_desc - get qdio subchannel description * @cdev: ccw device to get description for * @data: where to store the ssqd * * Returns 0 or an error code. The results of the chsc are stored in the * specified structure. */ int qdio_get_ssqd_desc(struct ccw_device *cdev, struct qdio_ssqd_desc *data) { struct subchannel_id schid; if (!cdev || !cdev->private) return -EINVAL; ccw_device_get_schid(cdev, &schid); DBF_EVENT("get ssqd:%4x", schid.sch_no); return qdio_setup_get_ssqd(NULL, &schid, data); } EXPORT_SYMBOL_GPL(qdio_get_ssqd_desc); static int qdio_cancel_ccw(struct qdio_irq *irq, int how) { struct ccw_device *cdev = irq->cdev; long timeout; int rc; spin_lock_irq(get_ccwdev_lock(cdev)); qdio_set_state(irq, QDIO_IRQ_STATE_CLEANUP); if (how & QDIO_FLAG_CLEANUP_USING_CLEAR) rc = ccw_device_clear(cdev, QDIO_DOING_CLEANUP); else /* default behaviour is halt */ rc = ccw_device_halt(cdev, QDIO_DOING_CLEANUP); spin_unlock_irq(get_ccwdev_lock(cdev)); if (rc) { DBF_ERROR("%4x SHUTD ERR", irq->schid.sch_no); DBF_ERROR("rc:%4d", rc); return rc; } timeout = wait_event_interruptible_timeout(cdev->private->wait_q, irq->state == QDIO_IRQ_STATE_INACTIVE || irq->state == QDIO_IRQ_STATE_ERR, 10 * HZ); if (timeout <= 0) rc = (timeout == -ERESTARTSYS) ? -EINTR : -ETIME; return rc; } /** * qdio_shutdown - shut down a qdio subchannel * @cdev: associated ccw device * @how: use halt or clear to shutdown */ int qdio_shutdown(struct ccw_device *cdev, int how) { struct qdio_irq *irq_ptr = cdev->private->qdio_data; struct subchannel_id schid; int rc; if (!irq_ptr) return -ENODEV; WARN_ON_ONCE(irqs_disabled()); ccw_device_get_schid(cdev, &schid); DBF_EVENT("qshutdown:%4x", schid.sch_no); mutex_lock(&irq_ptr->setup_mutex); /* * Subchannel was already shot down. We cannot prevent being called * twice since cio may trigger a shutdown asynchronously. */ if (irq_ptr->state == QDIO_IRQ_STATE_INACTIVE) { mutex_unlock(&irq_ptr->setup_mutex); return 0; } /* * Indicate that the device is going down. */ qdio_set_state(irq_ptr, QDIO_IRQ_STATE_STOPPED); qdio_shutdown_debug_entries(irq_ptr); rc = qdio_cancel_ccw(irq_ptr, how); qdio_shutdown_thinint(irq_ptr); qdio_shutdown_irq(irq_ptr); qdio_set_state(irq_ptr, QDIO_IRQ_STATE_INACTIVE); mutex_unlock(&irq_ptr->setup_mutex); if (rc) return rc; return 0; } EXPORT_SYMBOL_GPL(qdio_shutdown); /** * qdio_free - free data structures for a qdio subchannel * @cdev: associated ccw device */ int qdio_free(struct ccw_device *cdev) { struct qdio_irq *irq_ptr = cdev->private->qdio_data; struct subchannel_id schid; if (!irq_ptr) return -ENODEV; ccw_device_get_schid(cdev, &schid); DBF_EVENT("qfree:%4x", schid.sch_no); DBF_DEV_EVENT(DBF_ERR, irq_ptr, "dbf abandoned"); mutex_lock(&irq_ptr->setup_mutex); irq_ptr->debug_area = NULL; cdev->private->qdio_data = NULL; mutex_unlock(&irq_ptr->setup_mutex); qdio_free_queues(irq_ptr); free_page((unsigned long) irq_ptr->qdr); free_page(irq_ptr->chsc_page); kfree(irq_ptr->ccw); free_page((unsigned long) irq_ptr); return 0; } EXPORT_SYMBOL_GPL(qdio_free); /** * qdio_allocate - allocate qdio queues and associated data * @cdev: associated ccw device * @no_input_qs: allocate this number of Input Queues * @no_output_qs: allocate this number of Output Queues */ int qdio_allocate(struct ccw_device *cdev, unsigned int no_input_qs, unsigned int no_output_qs) { struct subchannel_id schid; struct qdio_irq *irq_ptr; int rc = -ENOMEM; ccw_device_get_schid(cdev, &schid); DBF_EVENT("qallocate:%4x", schid.sch_no); if (no_input_qs > QDIO_MAX_QUEUES_PER_IRQ || no_output_qs > QDIO_MAX_QUEUES_PER_IRQ) return -EINVAL; irq_ptr = (void *) get_zeroed_page(GFP_KERNEL); if (!irq_ptr) return -ENOMEM; irq_ptr->ccw = kmalloc(sizeof(*irq_ptr->ccw), GFP_KERNEL | GFP_DMA); if (!irq_ptr->ccw) goto err_ccw; /* kmemleak doesn't scan the page-allocated irq_ptr: */ kmemleak_not_leak(irq_ptr->ccw); irq_ptr->cdev = cdev; mutex_init(&irq_ptr->setup_mutex); if (qdio_allocate_dbf(irq_ptr)) goto err_dbf; DBF_DEV_EVENT(DBF_ERR, irq_ptr, "alloc niq:%1u noq:%1u", no_input_qs, no_output_qs); /* * Allocate a page for the chsc calls in qdio_establish. * Must be pre-allocated since a zfcp recovery will call * qdio_establish. In case of low memory and swap on a zfcp disk * we may not be able to allocate memory otherwise. */ irq_ptr->chsc_page = get_zeroed_page(GFP_KERNEL); if (!irq_ptr->chsc_page) goto err_chsc; /* qdr is used in ccw1.cda which is u32 */ irq_ptr->qdr = (struct qdr *) get_zeroed_page(GFP_KERNEL | GFP_DMA); if (!irq_ptr->qdr) goto err_qdr; rc = qdio_allocate_qs(irq_ptr, no_input_qs, no_output_qs); if (rc) goto err_queues; cdev->private->qdio_data = irq_ptr; qdio_set_state(irq_ptr, QDIO_IRQ_STATE_INACTIVE); return 0; err_queues: free_page((unsigned long) irq_ptr->qdr); err_qdr: free_page(irq_ptr->chsc_page); err_chsc: err_dbf: kfree(irq_ptr->ccw); err_ccw: free_page((unsigned long) irq_ptr); return rc; } EXPORT_SYMBOL_GPL(qdio_allocate); static void qdio_trace_init_data(struct qdio_irq *irq, struct qdio_initialize *data) { DBF_DEV_EVENT(DBF_ERR, irq, "qfmt:%1u", data->q_format); DBF_DEV_EVENT(DBF_ERR, irq, "qpff%4x", data->qib_param_field_format); DBF_DEV_HEX(irq, &data->qib_param_field, sizeof(void *), DBF_ERR); DBF_DEV_EVENT(DBF_ERR, irq, "niq:%1u noq:%1u", data->no_input_qs, data->no_output_qs); DBF_DEV_HEX(irq, &data->input_handler, sizeof(void *), DBF_ERR); DBF_DEV_HEX(irq, &data->output_handler, sizeof(void *), DBF_ERR); DBF_DEV_HEX(irq, &data->int_parm, sizeof(long), DBF_ERR); DBF_DEV_HEX(irq, &data->input_sbal_addr_array, sizeof(void *), DBF_ERR); DBF_DEV_HEX(irq, &data->output_sbal_addr_array, sizeof(void *), DBF_ERR); } /** * qdio_establish - establish queues on a qdio subchannel * @cdev: associated ccw device * @init_data: initialization data */ int qdio_establish(struct ccw_device *cdev, struct qdio_initialize *init_data) { struct qdio_irq *irq_ptr = cdev->private->qdio_data; struct subchannel_id schid; struct ciw *ciw; long timeout; int rc; ccw_device_get_schid(cdev, &schid); DBF_EVENT("qestablish:%4x", schid.sch_no); if (!irq_ptr) return -ENODEV; if (init_data->no_input_qs > irq_ptr->max_input_qs || init_data->no_output_qs > irq_ptr->max_output_qs) return -EINVAL; /* Needed as error_handler: */ if (!init_data->input_handler) return -EINVAL; if (init_data->no_output_qs && !init_data->output_handler) return -EINVAL; if (!init_data->input_sbal_addr_array || !init_data->output_sbal_addr_array) return -EINVAL; if (!init_data->irq_poll) return -EINVAL; ciw = ccw_device_get_ciw(cdev, CIW_TYPE_EQUEUE); if (!ciw) { DBF_ERROR("%4x NO EQ", schid.sch_no); return -EIO; } mutex_lock(&irq_ptr->setup_mutex); qdio_trace_init_data(irq_ptr, init_data); qdio_setup_irq(irq_ptr, init_data); rc = qdio_establish_thinint(irq_ptr); if (rc) goto err_thinint; /* establish q */ irq_ptr->ccw->cmd_code = ciw->cmd; irq_ptr->ccw->flags = CCW_FLAG_SLI; irq_ptr->ccw->count = ciw->count; irq_ptr->ccw->cda = (u32) virt_to_phys(irq_ptr->qdr); spin_lock_irq(get_ccwdev_lock(cdev)); ccw_device_set_options_mask(cdev, 0); rc = ccw_device_start(cdev, irq_ptr->ccw, QDIO_DOING_ESTABLISH, 0, 0); spin_unlock_irq(get_ccwdev_lock(cdev)); if (rc) { DBF_ERROR("%4x est IO ERR", irq_ptr->schid.sch_no); DBF_ERROR("rc:%4x", rc); goto err_ccw_start; } timeout = wait_event_interruptible_timeout(cdev->private->wait_q, irq_ptr->state == QDIO_IRQ_STATE_ESTABLISHED || irq_ptr->state == QDIO_IRQ_STATE_ERR, HZ); if (timeout <= 0) { rc = (timeout == -ERESTARTSYS) ? -EINTR : -ETIME; goto err_ccw_timeout; } if (irq_ptr->state != QDIO_IRQ_STATE_ESTABLISHED) { rc = -EIO; goto err_ccw_error; } qdio_setup_ssqd_info(irq_ptr); /* qebsm is now setup if available, initialize buffer states */ qdio_init_buf_states(irq_ptr); mutex_unlock(&irq_ptr->setup_mutex); qdio_print_subchannel_info(irq_ptr); qdio_setup_debug_entries(irq_ptr); return 0; err_ccw_timeout: qdio_cancel_ccw(irq_ptr, QDIO_FLAG_CLEANUP_USING_CLEAR); err_ccw_error: err_ccw_start: qdio_shutdown_thinint(irq_ptr); err_thinint: qdio_shutdown_irq(irq_ptr); qdio_set_state(irq_ptr, QDIO_IRQ_STATE_INACTIVE); mutex_unlock(&irq_ptr->setup_mutex); return rc; } EXPORT_SYMBOL_GPL(qdio_establish); /** * qdio_activate - activate queues on a qdio subchannel * @cdev: associated cdev */ int qdio_activate(struct ccw_device *cdev) { struct qdio_irq *irq_ptr = cdev->private->qdio_data; struct subchannel_id schid; struct ciw *ciw; int rc; ccw_device_get_schid(cdev, &schid); DBF_EVENT("qactivate:%4x", schid.sch_no); if (!irq_ptr) return -ENODEV; ciw = ccw_device_get_ciw(cdev, CIW_TYPE_AQUEUE); if (!ciw) { DBF_ERROR("%4x NO AQ", schid.sch_no); return -EIO; } mutex_lock(&irq_ptr->setup_mutex); if (irq_ptr->state == QDIO_IRQ_STATE_INACTIVE) { rc = -EBUSY; goto out; } irq_ptr->ccw->cmd_code = ciw->cmd; irq_ptr->ccw->flags = CCW_FLAG_SLI; irq_ptr->ccw->count = ciw->count; irq_ptr->ccw->cda = 0; spin_lock_irq(get_ccwdev_lock(cdev)); ccw_device_set_options(cdev, CCWDEV_REPORT_ALL); rc = ccw_device_start(cdev, irq_ptr->ccw, QDIO_DOING_ACTIVATE, 0, DOIO_DENY_PREFETCH); spin_unlock_irq(get_ccwdev_lock(cdev)); if (rc) { DBF_ERROR("%4x act IO ERR", irq_ptr->schid.sch_no); DBF_ERROR("rc:%4x", rc); goto out; } /* wait for subchannel to become active */ msleep(5); switch (irq_ptr->state) { case QDIO_IRQ_STATE_STOPPED: case QDIO_IRQ_STATE_ERR: rc = -EIO; break; default: qdio_set_state(irq_ptr, QDIO_IRQ_STATE_ACTIVE); rc = 0; } out: mutex_unlock(&irq_ptr->setup_mutex); return rc; } EXPORT_SYMBOL_GPL(qdio_activate); /** * handle_inbound - reset processed input buffers * @q: queue containing the buffers * @bufnr: first buffer to process * @count: how many buffers are emptied */ static int handle_inbound(struct qdio_q *q, int bufnr, int count) { int overlap; qperf_inc(q, inbound_call); /* If any processed SBALs are returned to HW, adjust our tracking: */ overlap = min_t(int, count - sub_buf(q->u.in.batch_start, bufnr), q->u.in.batch_count); if (overlap > 0) { q->u.in.batch_start = add_buf(q->u.in.batch_start, overlap); q->u.in.batch_count -= overlap; } count = set_buf_states(q, bufnr, SLSB_CU_INPUT_EMPTY, count); atomic_add(count, &q->nr_buf_used); if (qdio_need_siga_in(q->irq_ptr)) return qdio_siga_input(q); return 0; } /** * qdio_add_bufs_to_input_queue - process buffers on an Input Queue * @cdev: associated ccw_device for the qdio subchannel * @q_nr: queue number * @bufnr: buffer number * @count: how many buffers to process */ int qdio_add_bufs_to_input_queue(struct ccw_device *cdev, unsigned int q_nr, unsigned int bufnr, unsigned int count) { struct qdio_irq *irq_ptr = cdev->private->qdio_data; if (bufnr >= QDIO_MAX_BUFFERS_PER_Q || count > QDIO_MAX_BUFFERS_PER_Q) return -EINVAL; if (!irq_ptr) return -ENODEV; DBF_DEV_EVENT(DBF_INFO, irq_ptr, "addi b:%02x c:%02x", bufnr, count); if (irq_ptr->state != QDIO_IRQ_STATE_ACTIVE) return -EIO; if (!count) return 0; return handle_inbound(irq_ptr->input_qs[q_nr], bufnr, count); } EXPORT_SYMBOL_GPL(qdio_add_bufs_to_input_queue); /** * handle_outbound - process filled outbound buffers * @q: queue containing the buffers * @bufnr: first buffer to process * @count: how many buffers are filled * @aob: asynchronous operation block */ static int handle_outbound(struct qdio_q *q, unsigned int bufnr, unsigned int count, struct qaob *aob) { unsigned char state = 0; int used, rc = 0; qperf_inc(q, outbound_call); count = set_buf_states(q, bufnr, SLSB_CU_OUTPUT_PRIMED, count); used = atomic_add_return(count, &q->nr_buf_used); if (used == QDIO_MAX_BUFFERS_PER_Q) qperf_inc(q, outbound_queue_full); if (queue_type(q) == QDIO_IQDIO_QFMT) { unsigned long phys_aob = aob ? virt_to_phys(aob) : 0; WARN_ON_ONCE(!IS_ALIGNED(phys_aob, 256)); rc = qdio_kick_outbound_q(q, count, phys_aob); } else if (qdio_need_siga_sync(q->irq_ptr)) { rc = qdio_sync_output_queue(q); } else if (count < QDIO_MAX_BUFFERS_PER_Q && get_buf_state(q, prev_buf(bufnr), &state, 0) > 0 && state == SLSB_CU_OUTPUT_PRIMED) { /* The previous buffer is not processed yet, tack on. */ qperf_inc(q, fast_requeue); } else { rc = qdio_kick_outbound_q(q, count, 0); } return rc; } /** * qdio_add_bufs_to_output_queue - process buffers on an Output Queue * @cdev: associated ccw_device for the qdio subchannel * @q_nr: queue number * @bufnr: buffer number * @count: how many buffers to process * @aob: asynchronous operation block */ int qdio_add_bufs_to_output_queue(struct ccw_device *cdev, unsigned int q_nr, unsigned int bufnr, unsigned int count, struct qaob *aob) { struct qdio_irq *irq_ptr = cdev->private->qdio_data; if (bufnr >= QDIO_MAX_BUFFERS_PER_Q || count > QDIO_MAX_BUFFERS_PER_Q) return -EINVAL; if (!irq_ptr) return -ENODEV; DBF_DEV_EVENT(DBF_INFO, irq_ptr, "addo b:%02x c:%02x", bufnr, count); if (irq_ptr->state != QDIO_IRQ_STATE_ACTIVE) return -EIO; if (!count) return 0; return handle_outbound(irq_ptr->output_qs[q_nr], bufnr, count, aob); } EXPORT_SYMBOL_GPL(qdio_add_bufs_to_output_queue); /** * qdio_start_irq - enable interrupt processing for the device * @cdev: associated ccw_device for the qdio subchannel * * Return codes * 0 - success * 1 - irqs not started since new data is available */ int qdio_start_irq(struct ccw_device *cdev) { struct qdio_q *q; struct qdio_irq *irq_ptr = cdev->private->qdio_data; unsigned int i; if (!irq_ptr) return -ENODEV; for_each_input_queue(irq_ptr, q, i) qdio_stop_polling(q); clear_bit(QDIO_IRQ_DISABLED, &irq_ptr->poll_state); /* * We need to check again to not lose initiative after * resetting the ACK state. */ if (test_nonshared_ind(irq_ptr)) goto rescan; for_each_input_queue(irq_ptr, q, i) { if (!qdio_inbound_q_done(q, q->first_to_check)) goto rescan; } return 0; rescan: if (test_and_set_bit(QDIO_IRQ_DISABLED, &irq_ptr->poll_state)) return 0; else return 1; } EXPORT_SYMBOL(qdio_start_irq); /** * qdio_stop_irq - disable interrupt processing for the device * @cdev: associated ccw_device for the qdio subchannel * * Return codes * 0 - interrupts were already disabled * 1 - interrupts successfully disabled */ int qdio_stop_irq(struct ccw_device *cdev) { struct qdio_irq *irq_ptr = cdev->private->qdio_data; if (!irq_ptr) return -ENODEV; if (test_and_set_bit(QDIO_IRQ_DISABLED, &irq_ptr->poll_state)) return 0; else return 1; } EXPORT_SYMBOL(qdio_stop_irq); static int __init init_QDIO(void) { int rc; rc = qdio_debug_init(); if (rc) return rc; rc = qdio_setup_init(); if (rc) goto out_debug; rc = qdio_thinint_init(); if (rc) goto out_cache; return 0; out_cache: qdio_setup_exit(); out_debug: qdio_debug_exit(); return rc; } static void __exit exit_QDIO(void) { qdio_thinint_exit(); qdio_setup_exit(); qdio_debug_exit(); } module_init(init_QDIO); module_exit(exit_QDIO);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1