Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Hannes Reinecke | 6788 | 54.53% | 25 | 19.53% |
Justin T. Gibbs | 3757 | 30.18% | 23 | 17.97% |
Linus Torvalds | 714 | 5.74% | 7 | 5.47% |
Denys Vlasenko | 531 | 4.27% | 3 | 2.34% |
James Bottomley | 231 | 1.86% | 9 | 7.03% |
Christoph Hellwig | 103 | 0.83% | 9 | 7.03% |
Linus Torvalds (pre-git) | 67 | 0.54% | 21 | 16.41% |
Pekka J Enberg | 56 | 0.45% | 1 | 0.78% |
Jeff Garzik | 48 | 0.39% | 4 | 3.12% |
FUJITA Tomonori | 46 | 0.37% | 3 | 2.34% |
Jesper Juhl | 25 | 0.20% | 1 | 0.78% |
Suraj Upadhyay | 10 | 0.08% | 1 | 0.78% |
Arjan van de Ven | 9 | 0.07% | 1 | 0.78% |
Tobias Klauser | 8 | 0.06% | 1 | 0.78% |
Al Viro | 8 | 0.06% | 2 | 1.56% |
Adrian Bunk | 7 | 0.06% | 2 | 1.56% |
Amol Lad | 7 | 0.06% | 1 | 0.78% |
Lucas De Marchi | 5 | 0.04% | 2 | 1.56% |
Lee Jones | 5 | 0.04% | 1 | 0.78% |
Matt Domsch | 5 | 0.04% | 1 | 0.78% |
Dave Jones | 5 | 0.04% | 1 | 0.78% |
Andrew Morton | 3 | 0.02% | 1 | 0.78% |
Peter Zijlstra | 2 | 0.02% | 1 | 0.78% |
Gustavo A. R. Silva | 2 | 0.02% | 1 | 0.78% |
Uwe Kleine-König | 1 | 0.01% | 1 | 0.78% |
Randy Dunlap | 1 | 0.01% | 1 | 0.78% |
Kees Cook | 1 | 0.01% | 1 | 0.78% |
Michael Opdenacker | 1 | 0.01% | 1 | 0.78% |
Chi Minghao | 1 | 0.01% | 1 | 0.78% |
Joe Perches | 1 | 0.01% | 1 | 0.78% |
Total | 12448 | 128 |
/* * Adaptec AIC79xx device driver for Linux. * * $Id: //depot/aic7xxx/linux/drivers/scsi/aic7xxx/aic79xx_osm.c#171 $ * * -------------------------------------------------------------------------- * Copyright (c) 1994-2000 Justin T. Gibbs. * Copyright (c) 1997-1999 Doug Ledford * Copyright (c) 2000-2003 Adaptec Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include "aic79xx_osm.h" #include "aic79xx_inline.h" #include <scsi/scsicam.h> static struct scsi_transport_template *ahd_linux_transport_template = NULL; #include <linux/init.h> /* __setup */ #include <linux/mm.h> /* For fetching system memory size */ #include <linux/blkdev.h> /* For block_size() */ #include <linux/delay.h> /* For ssleep/msleep */ #include <linux/device.h> #include <linux/slab.h> /* * Bucket size for counting good commands in between bad ones. */ #define AHD_LINUX_ERR_THRESH 1000 /* * Set this to the delay in seconds after SCSI bus reset. * Note, we honor this only for the initial bus reset. * The scsi error recovery code performs its own bus settle * delay handling for error recovery actions. */ #ifdef CONFIG_AIC79XX_RESET_DELAY_MS #define AIC79XX_RESET_DELAY CONFIG_AIC79XX_RESET_DELAY_MS #else #define AIC79XX_RESET_DELAY 5000 #endif /* * To change the default number of tagged transactions allowed per-device, * add a line to the lilo.conf file like: * append="aic79xx=verbose,tag_info:{{32,32,32,32},{32,32,32,32}}" * which will result in the first four devices on the first two * controllers being set to a tagged queue depth of 32. * * The tag_commands is an array of 16 to allow for wide and twin adapters. * Twin adapters will use indexes 0-7 for channel 0, and indexes 8-15 * for channel 1. */ typedef struct { uint16_t tag_commands[16]; /* Allow for wide/twin adapters. */ } adapter_tag_info_t; /* * Modify this as you see fit for your system. * * 0 tagged queuing disabled * 1 <= n <= 253 n == max tags ever dispatched. * * The driver will throttle the number of commands dispatched to a * device if it returns queue full. For devices with a fixed maximum * queue depth, the driver will eventually determine this depth and * lock it in (a console message is printed to indicate that a lock * has occurred). On some devices, queue full is returned for a temporary * resource shortage. These devices will return queue full at varying * depths. The driver will throttle back when the queue fulls occur and * attempt to slowly increase the depth over time as the device recovers * from the resource shortage. * * In this example, the first line will disable tagged queueing for all * the devices on the first probed aic79xx adapter. * * The second line enables tagged queueing with 4 commands/LUN for IDs * (0, 2-11, 13-15), disables tagged queueing for ID 12, and tells the * driver to attempt to use up to 64 tags for ID 1. * * The third line is the same as the first line. * * The fourth line disables tagged queueing for devices 0 and 3. It * enables tagged queueing for the other IDs, with 16 commands/LUN * for IDs 1 and 4, 127 commands/LUN for ID 8, and 4 commands/LUN for * IDs 2, 5-7, and 9-15. */ /* * NOTE: The below structure is for reference only, the actual structure * to modify in order to change things is just below this comment block. adapter_tag_info_t aic79xx_tag_info[] = { {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}, {{4, 64, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 4, 4, 4}}, {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}, {{0, 16, 4, 0, 16, 4, 4, 4, 127, 4, 4, 4, 4, 4, 4, 4}} }; */ #ifdef CONFIG_AIC79XX_CMDS_PER_DEVICE #define AIC79XX_CMDS_PER_DEVICE CONFIG_AIC79XX_CMDS_PER_DEVICE #else #define AIC79XX_CMDS_PER_DEVICE AHD_MAX_QUEUE #endif #define AIC79XX_CONFIGED_TAG_COMMANDS { \ AIC79XX_CMDS_PER_DEVICE, AIC79XX_CMDS_PER_DEVICE, \ AIC79XX_CMDS_PER_DEVICE, AIC79XX_CMDS_PER_DEVICE, \ AIC79XX_CMDS_PER_DEVICE, AIC79XX_CMDS_PER_DEVICE, \ AIC79XX_CMDS_PER_DEVICE, AIC79XX_CMDS_PER_DEVICE, \ AIC79XX_CMDS_PER_DEVICE, AIC79XX_CMDS_PER_DEVICE, \ AIC79XX_CMDS_PER_DEVICE, AIC79XX_CMDS_PER_DEVICE, \ AIC79XX_CMDS_PER_DEVICE, AIC79XX_CMDS_PER_DEVICE, \ AIC79XX_CMDS_PER_DEVICE, AIC79XX_CMDS_PER_DEVICE \ } /* * By default, use the number of commands specified by * the users kernel configuration. */ static adapter_tag_info_t aic79xx_tag_info[] = { {AIC79XX_CONFIGED_TAG_COMMANDS}, {AIC79XX_CONFIGED_TAG_COMMANDS}, {AIC79XX_CONFIGED_TAG_COMMANDS}, {AIC79XX_CONFIGED_TAG_COMMANDS}, {AIC79XX_CONFIGED_TAG_COMMANDS}, {AIC79XX_CONFIGED_TAG_COMMANDS}, {AIC79XX_CONFIGED_TAG_COMMANDS}, {AIC79XX_CONFIGED_TAG_COMMANDS}, {AIC79XX_CONFIGED_TAG_COMMANDS}, {AIC79XX_CONFIGED_TAG_COMMANDS}, {AIC79XX_CONFIGED_TAG_COMMANDS}, {AIC79XX_CONFIGED_TAG_COMMANDS}, {AIC79XX_CONFIGED_TAG_COMMANDS}, {AIC79XX_CONFIGED_TAG_COMMANDS}, {AIC79XX_CONFIGED_TAG_COMMANDS}, {AIC79XX_CONFIGED_TAG_COMMANDS} }; /* * The I/O cell on the chip is very configurable in respect to its analog * characteristics. Set the defaults here; they can be overriden with * the proper insmod parameters. */ struct ahd_linux_iocell_opts { uint8_t precomp; uint8_t slewrate; uint8_t amplitude; }; #define AIC79XX_DEFAULT_PRECOMP 0xFF #define AIC79XX_DEFAULT_SLEWRATE 0xFF #define AIC79XX_DEFAULT_AMPLITUDE 0xFF #define AIC79XX_DEFAULT_IOOPTS \ { \ AIC79XX_DEFAULT_PRECOMP, \ AIC79XX_DEFAULT_SLEWRATE, \ AIC79XX_DEFAULT_AMPLITUDE \ } #define AIC79XX_PRECOMP_INDEX 0 #define AIC79XX_SLEWRATE_INDEX 1 #define AIC79XX_AMPLITUDE_INDEX 2 static struct ahd_linux_iocell_opts aic79xx_iocell_info[] __ro_after_init = { AIC79XX_DEFAULT_IOOPTS, AIC79XX_DEFAULT_IOOPTS, AIC79XX_DEFAULT_IOOPTS, AIC79XX_DEFAULT_IOOPTS, AIC79XX_DEFAULT_IOOPTS, AIC79XX_DEFAULT_IOOPTS, AIC79XX_DEFAULT_IOOPTS, AIC79XX_DEFAULT_IOOPTS, AIC79XX_DEFAULT_IOOPTS, AIC79XX_DEFAULT_IOOPTS, AIC79XX_DEFAULT_IOOPTS, AIC79XX_DEFAULT_IOOPTS, AIC79XX_DEFAULT_IOOPTS, AIC79XX_DEFAULT_IOOPTS, AIC79XX_DEFAULT_IOOPTS, AIC79XX_DEFAULT_IOOPTS }; /* * There should be a specific return value for this in scsi.h, but * it seems that most drivers ignore it. */ #define DID_UNDERFLOW DID_ERROR void ahd_print_path(struct ahd_softc *ahd, struct scb *scb) { printk("(scsi%d:%c:%d:%d): ", ahd->platform_data->host->host_no, scb != NULL ? SCB_GET_CHANNEL(ahd, scb) : 'X', scb != NULL ? SCB_GET_TARGET(ahd, scb) : -1, scb != NULL ? SCB_GET_LUN(scb) : -1); } /* * XXX - these options apply unilaterally to _all_ adapters * cards in the system. This should be fixed. Exceptions to this * rule are noted in the comments. */ /* * Skip the scsi bus reset. Non 0 make us skip the reset at startup. This * has no effect on any later resets that might occur due to things like * SCSI bus timeouts. */ static uint32_t aic79xx_no_reset; /* * Should we force EXTENDED translation on a controller. * 0 == Use whatever is in the SEEPROM or default to off * 1 == Use whatever is in the SEEPROM or default to on */ static uint32_t aic79xx_extended; /* * PCI bus parity checking of the Adaptec controllers. This is somewhat * dubious at best. To my knowledge, this option has never actually * solved a PCI parity problem, but on certain machines with broken PCI * chipset configurations, it can generate tons of false error messages. * It's included in the driver for completeness. * 0 = Shut off PCI parity check * non-0 = Enable PCI parity check * * NOTE: you can't actually pass -1 on the lilo prompt. So, to set this * variable to -1 you would actually want to simply pass the variable * name without a number. That will invert the 0 which will result in * -1. */ static uint32_t aic79xx_pci_parity = ~0; /* * There are lots of broken chipsets in the world. Some of them will * violate the PCI spec when we issue byte sized memory writes to our * controller. I/O mapped register access, if allowed by the given * platform, will work in almost all cases. */ uint32_t aic79xx_allow_memio = ~0; /* * So that we can set how long each device is given as a selection timeout. * The table of values goes like this: * 0 - 256ms * 1 - 128ms * 2 - 64ms * 3 - 32ms * We default to 256ms because some older devices need a longer time * to respond to initial selection. */ static uint32_t aic79xx_seltime; /* * Certain devices do not perform any aging on commands. Should the * device be saturated by commands in one portion of the disk, it is * possible for transactions on far away sectors to never be serviced. * To handle these devices, we can periodically send an ordered tag to * force all outstanding transactions to be serviced prior to a new * transaction. */ static uint32_t aic79xx_periodic_otag; /* Some storage boxes are using an LSI chip which has a bug making it * impossible to use aic79xx Rev B chip in 320 speeds. The following * storage boxes have been reported to be buggy: * EonStor 3U 16-Bay: U16U-G3A3 * EonStor 2U 12-Bay: U12U-G3A3 * SentinelRAID: 2500F R5 / R6 * SentinelRAID: 2500F R1 * SentinelRAID: 2500F/1500F * SentinelRAID: 150F * * To get around this LSI bug, you can set your board to 160 mode * or you can enable the SLOWCRC bit. */ uint32_t aic79xx_slowcrc; /* * Module information and settable options. */ static char *aic79xx = NULL; MODULE_AUTHOR("Maintainer: Hannes Reinecke <hare@suse.de>"); MODULE_DESCRIPTION("Adaptec AIC790X U320 SCSI Host Bus Adapter driver"); MODULE_LICENSE("Dual BSD/GPL"); MODULE_VERSION(AIC79XX_DRIVER_VERSION); module_param(aic79xx, charp, 0444); MODULE_PARM_DESC(aic79xx, "period-delimited options string:\n" " verbose Enable verbose/diagnostic logging\n" " allow_memio Allow device registers to be memory mapped\n" " debug Bitmask of debug values to enable\n" " no_reset Suppress initial bus resets\n" " extended Enable extended geometry on all controllers\n" " periodic_otag Send an ordered tagged transaction\n" " periodically to prevent tag starvation.\n" " This may be required by some older disk\n" " or drives/RAID arrays.\n" " tag_info:<tag_str> Set per-target tag depth\n" " global_tag_depth:<int> Global tag depth for all targets on all buses\n" " slewrate:<slewrate_list>Set the signal slew rate (0-15).\n" " precomp:<pcomp_list> Set the signal precompensation (0-7).\n" " amplitude:<int> Set the signal amplitude (0-7).\n" " seltime:<int> Selection Timeout:\n" " (0/256ms,1/128ms,2/64ms,3/32ms)\n" " slowcrc Turn on the SLOWCRC bit (Rev B only)\n" "\n" " Sample modprobe configuration file:\n" " # Enable verbose logging\n" " # Set tag depth on Controller 2/Target 2 to 10 tags\n" " # Shorten the selection timeout to 128ms\n" "\n" " options aic79xx 'aic79xx=verbose.tag_info:{{}.{}.{..10}}.seltime:1'\n" ); static void ahd_linux_handle_scsi_status(struct ahd_softc *, struct scsi_device *, struct scb *); static void ahd_linux_queue_cmd_complete(struct ahd_softc *ahd, struct scsi_cmnd *cmd); static int ahd_linux_queue_abort_cmd(struct scsi_cmnd *cmd); static void ahd_linux_initialize_scsi_bus(struct ahd_softc *ahd); static u_int ahd_linux_user_tagdepth(struct ahd_softc *ahd, struct ahd_devinfo *devinfo); static void ahd_linux_device_queue_depth(struct scsi_device *); static int ahd_linux_run_command(struct ahd_softc*, struct ahd_linux_device *, struct scsi_cmnd *); static void ahd_linux_setup_tag_info_global(char *p); static int aic79xx_setup(char *c); static void ahd_freeze_simq(struct ahd_softc *ahd); static void ahd_release_simq(struct ahd_softc *ahd); static int ahd_linux_unit; /************************** OS Utility Wrappers *******************************/ void ahd_delay(long); void ahd_delay(long usec) { /* * udelay on Linux can have problems for * multi-millisecond waits. Wait at most * 1024us per call. */ while (usec > 0) { udelay(usec % 1024); usec -= 1024; } } /***************************** Low Level I/O **********************************/ uint8_t ahd_inb(struct ahd_softc * ahd, long port); void ahd_outb(struct ahd_softc * ahd, long port, uint8_t val); void ahd_outw_atomic(struct ahd_softc * ahd, long port, uint16_t val); void ahd_outsb(struct ahd_softc * ahd, long port, uint8_t *, int count); void ahd_insb(struct ahd_softc * ahd, long port, uint8_t *, int count); uint8_t ahd_inb(struct ahd_softc * ahd, long port) { uint8_t x; if (ahd->tags[0] == BUS_SPACE_MEMIO) { x = readb(ahd->bshs[0].maddr + port); } else { x = inb(ahd->bshs[(port) >> 8].ioport + ((port) & 0xFF)); } mb(); return (x); } #if 0 /* unused */ static uint16_t ahd_inw_atomic(struct ahd_softc * ahd, long port) { uint8_t x; if (ahd->tags[0] == BUS_SPACE_MEMIO) { x = readw(ahd->bshs[0].maddr + port); } else { x = inw(ahd->bshs[(port) >> 8].ioport + ((port) & 0xFF)); } mb(); return (x); } #endif void ahd_outb(struct ahd_softc * ahd, long port, uint8_t val) { if (ahd->tags[0] == BUS_SPACE_MEMIO) { writeb(val, ahd->bshs[0].maddr + port); } else { outb(val, ahd->bshs[(port) >> 8].ioport + (port & 0xFF)); } mb(); } void ahd_outw_atomic(struct ahd_softc * ahd, long port, uint16_t val) { if (ahd->tags[0] == BUS_SPACE_MEMIO) { writew(val, ahd->bshs[0].maddr + port); } else { outw(val, ahd->bshs[(port) >> 8].ioport + (port & 0xFF)); } mb(); } void ahd_outsb(struct ahd_softc * ahd, long port, uint8_t *array, int count) { int i; /* * There is probably a more efficient way to do this on Linux * but we don't use this for anything speed critical and this * should work. */ for (i = 0; i < count; i++) ahd_outb(ahd, port, *array++); } void ahd_insb(struct ahd_softc * ahd, long port, uint8_t *array, int count) { int i; /* * There is probably a more efficient way to do this on Linux * but we don't use this for anything speed critical and this * should work. */ for (i = 0; i < count; i++) *array++ = ahd_inb(ahd, port); } /******************************* PCI Routines *********************************/ uint32_t ahd_pci_read_config(ahd_dev_softc_t pci, int reg, int width) { switch (width) { case 1: { uint8_t retval; pci_read_config_byte(pci, reg, &retval); return (retval); } case 2: { uint16_t retval; pci_read_config_word(pci, reg, &retval); return (retval); } case 4: { uint32_t retval; pci_read_config_dword(pci, reg, &retval); return (retval); } default: panic("ahd_pci_read_config: Read size too big"); /* NOTREACHED */ return (0); } } void ahd_pci_write_config(ahd_dev_softc_t pci, int reg, uint32_t value, int width) { switch (width) { case 1: pci_write_config_byte(pci, reg, value); break; case 2: pci_write_config_word(pci, reg, value); break; case 4: pci_write_config_dword(pci, reg, value); break; default: panic("ahd_pci_write_config: Write size too big"); /* NOTREACHED */ } } /****************************** Inlines ***************************************/ static void ahd_linux_unmap_scb(struct ahd_softc*, struct scb*); static void ahd_linux_unmap_scb(struct ahd_softc *ahd, struct scb *scb) { struct scsi_cmnd *cmd; cmd = scb->io_ctx; if (cmd) { ahd_sync_sglist(ahd, scb, BUS_DMASYNC_POSTWRITE); scsi_dma_unmap(cmd); } } /******************************** Macros **************************************/ static inline unsigned int ahd_build_scsiid(struct ahd_softc *ahd, struct scsi_device *sdev) { return ((sdev_id(sdev) << TID_SHIFT) & TID) | (ahd)->our_id; } /* * Return a string describing the driver. */ static const char * ahd_linux_info(struct Scsi_Host *host) { static char buffer[512]; char ahd_info[256]; char *bp; struct ahd_softc *ahd; bp = &buffer[0]; ahd = *(struct ahd_softc **)host->hostdata; memset(bp, 0, sizeof(buffer)); strcpy(bp, "Adaptec AIC79XX PCI-X SCSI HBA DRIVER, Rev " AIC79XX_DRIVER_VERSION "\n" " <"); strcat(bp, ahd->description); strcat(bp, ">\n" " "); ahd_controller_info(ahd, ahd_info); strcat(bp, ahd_info); return (bp); } /* * Queue an SCB to the controller. */ static int ahd_linux_queue_lck(struct scsi_cmnd *cmd) { struct ahd_softc *ahd; struct ahd_linux_device *dev = scsi_transport_device_data(cmd->device); int rtn = SCSI_MLQUEUE_HOST_BUSY; ahd = *(struct ahd_softc **)cmd->device->host->hostdata; cmd->result = CAM_REQ_INPROG << 16; rtn = ahd_linux_run_command(ahd, dev, cmd); return rtn; } static DEF_SCSI_QCMD(ahd_linux_queue) static struct scsi_target ** ahd_linux_target_in_softc(struct scsi_target *starget) { struct ahd_softc *ahd = *((struct ahd_softc **)dev_to_shost(&starget->dev)->hostdata); unsigned int target_offset; target_offset = starget->id; if (starget->channel != 0) target_offset += 8; return &ahd->platform_data->starget[target_offset]; } static int ahd_linux_target_alloc(struct scsi_target *starget) { struct ahd_softc *ahd = *((struct ahd_softc **)dev_to_shost(&starget->dev)->hostdata); struct seeprom_config *sc = ahd->seep_config; unsigned long flags; struct scsi_target **ahd_targp = ahd_linux_target_in_softc(starget); struct ahd_devinfo devinfo; struct ahd_initiator_tinfo *tinfo; struct ahd_tmode_tstate *tstate; char channel = starget->channel + 'A'; ahd_lock(ahd, &flags); BUG_ON(*ahd_targp != NULL); *ahd_targp = starget; if (sc) { int flags = sc->device_flags[starget->id]; tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id, starget->id, &tstate); if ((flags & CFPACKETIZED) == 0) { /* don't negotiate packetized (IU) transfers */ spi_max_iu(starget) = 0; } else { if ((ahd->features & AHD_RTI) == 0) spi_rti(starget) = 0; } if ((flags & CFQAS) == 0) spi_max_qas(starget) = 0; /* Transinfo values have been set to BIOS settings */ spi_max_width(starget) = (flags & CFWIDEB) ? 1 : 0; spi_min_period(starget) = tinfo->user.period; spi_max_offset(starget) = tinfo->user.offset; } tinfo = ahd_fetch_transinfo(ahd, channel, ahd->our_id, starget->id, &tstate); ahd_compile_devinfo(&devinfo, ahd->our_id, starget->id, CAM_LUN_WILDCARD, channel, ROLE_INITIATOR); ahd_set_syncrate(ahd, &devinfo, 0, 0, 0, AHD_TRANS_GOAL, /*paused*/FALSE); ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT, AHD_TRANS_GOAL, /*paused*/FALSE); ahd_unlock(ahd, &flags); return 0; } static void ahd_linux_target_destroy(struct scsi_target *starget) { struct scsi_target **ahd_targp = ahd_linux_target_in_softc(starget); *ahd_targp = NULL; } static int ahd_linux_slave_alloc(struct scsi_device *sdev) { struct ahd_softc *ahd = *((struct ahd_softc **)sdev->host->hostdata); struct ahd_linux_device *dev; if (bootverbose) printk("%s: Slave Alloc %d\n", ahd_name(ahd), sdev->id); dev = scsi_transport_device_data(sdev); memset(dev, 0, sizeof(*dev)); /* * We start out life using untagged * transactions of which we allow one. */ dev->openings = 1; /* * Set maxtags to 0. This will be changed if we * later determine that we are dealing with * a tagged queuing capable device. */ dev->maxtags = 0; return (0); } static int ahd_linux_slave_configure(struct scsi_device *sdev) { if (bootverbose) sdev_printk(KERN_INFO, sdev, "Slave Configure\n"); ahd_linux_device_queue_depth(sdev); /* Initial Domain Validation */ if (!spi_initial_dv(sdev->sdev_target)) spi_dv_device(sdev); return 0; } #if defined(__i386__) /* * Return the disk geometry for the given SCSI device. */ static int ahd_linux_biosparam(struct scsi_device *sdev, struct block_device *bdev, sector_t capacity, int geom[]) { int heads; int sectors; int cylinders; int extended; struct ahd_softc *ahd; ahd = *((struct ahd_softc **)sdev->host->hostdata); if (scsi_partsize(bdev, capacity, geom)) return 0; heads = 64; sectors = 32; cylinders = aic_sector_div(capacity, heads, sectors); if (aic79xx_extended != 0) extended = 1; else extended = (ahd->flags & AHD_EXTENDED_TRANS_A) != 0; if (extended && cylinders >= 1024) { heads = 255; sectors = 63; cylinders = aic_sector_div(capacity, heads, sectors); } geom[0] = heads; geom[1] = sectors; geom[2] = cylinders; return (0); } #endif /* * Abort the current SCSI command(s). */ static int ahd_linux_abort(struct scsi_cmnd *cmd) { return ahd_linux_queue_abort_cmd(cmd); } /* * Attempt to send a target reset message to the device that timed out. */ static int ahd_linux_dev_reset(struct scsi_cmnd *cmd) { struct ahd_softc *ahd; struct ahd_linux_device *dev; struct scb *reset_scb; u_int cdb_byte; int retval = SUCCESS; struct ahd_initiator_tinfo *tinfo; struct ahd_tmode_tstate *tstate; unsigned long flags; DECLARE_COMPLETION_ONSTACK(done); reset_scb = NULL; ahd = *(struct ahd_softc **)cmd->device->host->hostdata; scmd_printk(KERN_INFO, cmd, "Attempting to queue a TARGET RESET message:"); printk("CDB:"); for (cdb_byte = 0; cdb_byte < cmd->cmd_len; cdb_byte++) printk(" 0x%x", cmd->cmnd[cdb_byte]); printk("\n"); /* * Determine if we currently own this command. */ dev = scsi_transport_device_data(cmd->device); if (dev == NULL) { /* * No target device for this command exists, * so we must not still own the command. */ scmd_printk(KERN_INFO, cmd, "Is not an active device\n"); return SUCCESS; } /* * Generate us a new SCB */ reset_scb = ahd_get_scb(ahd, AHD_NEVER_COL_IDX); if (!reset_scb) { scmd_printk(KERN_INFO, cmd, "No SCB available\n"); return FAILED; } tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id, cmd->device->id, &tstate); reset_scb->io_ctx = NULL; reset_scb->platform_data->dev = dev; reset_scb->sg_count = 0; ahd_set_residual(reset_scb, 0); ahd_set_sense_residual(reset_scb, 0); reset_scb->platform_data->xfer_len = 0; reset_scb->hscb->control = 0; reset_scb->hscb->scsiid = ahd_build_scsiid(ahd, cmd->device); reset_scb->hscb->lun = cmd->device->lun; reset_scb->hscb->cdb_len = 0; reset_scb->hscb->task_management = SIU_TASKMGMT_LUN_RESET; reset_scb->flags |= SCB_DEVICE_RESET|SCB_RECOVERY_SCB|SCB_ACTIVE; if ((tinfo->curr.ppr_options & MSG_EXT_PPR_IU_REQ) != 0) { reset_scb->flags |= SCB_PACKETIZED; } else { reset_scb->hscb->control |= MK_MESSAGE; } dev->openings--; dev->active++; dev->commands_issued++; ahd_lock(ahd, &flags); LIST_INSERT_HEAD(&ahd->pending_scbs, reset_scb, pending_links); ahd_queue_scb(ahd, reset_scb); ahd->platform_data->eh_done = &done; ahd_unlock(ahd, &flags); printk("%s: Device reset code sleeping\n", ahd_name(ahd)); if (!wait_for_completion_timeout(&done, 5 * HZ)) { ahd_lock(ahd, &flags); ahd->platform_data->eh_done = NULL; ahd_unlock(ahd, &flags); printk("%s: Device reset timer expired (active %d)\n", ahd_name(ahd), dev->active); retval = FAILED; } printk("%s: Device reset returning 0x%x\n", ahd_name(ahd), retval); return (retval); } /* * Reset the SCSI bus. */ static int ahd_linux_bus_reset(struct scsi_cmnd *cmd) { struct ahd_softc *ahd; int found; unsigned long flags; ahd = *(struct ahd_softc **)cmd->device->host->hostdata; #ifdef AHD_DEBUG if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) printk("%s: Bus reset called for cmd %p\n", ahd_name(ahd), cmd); #endif ahd_lock(ahd, &flags); found = ahd_reset_channel(ahd, scmd_channel(cmd) + 'A', /*initiate reset*/TRUE); ahd_unlock(ahd, &flags); if (bootverbose) printk("%s: SCSI bus reset delivered. " "%d SCBs aborted.\n", ahd_name(ahd), found); return (SUCCESS); } struct scsi_host_template aic79xx_driver_template = { .module = THIS_MODULE, .name = "aic79xx", .proc_name = "aic79xx", .show_info = ahd_linux_show_info, .write_info = ahd_proc_write_seeprom, .info = ahd_linux_info, .queuecommand = ahd_linux_queue, .eh_abort_handler = ahd_linux_abort, .eh_device_reset_handler = ahd_linux_dev_reset, .eh_bus_reset_handler = ahd_linux_bus_reset, #if defined(__i386__) .bios_param = ahd_linux_biosparam, #endif .can_queue = AHD_MAX_QUEUE, .this_id = -1, .max_sectors = 8192, .cmd_per_lun = 2, .slave_alloc = ahd_linux_slave_alloc, .slave_configure = ahd_linux_slave_configure, .target_alloc = ahd_linux_target_alloc, .target_destroy = ahd_linux_target_destroy, }; /******************************** Bus DMA *************************************/ int ahd_dma_tag_create(struct ahd_softc *ahd, bus_dma_tag_t parent, bus_size_t alignment, bus_size_t boundary, dma_addr_t lowaddr, dma_addr_t highaddr, bus_dma_filter_t *filter, void *filterarg, bus_size_t maxsize, int nsegments, bus_size_t maxsegsz, int flags, bus_dma_tag_t *ret_tag) { bus_dma_tag_t dmat; dmat = kmalloc(sizeof(*dmat), GFP_ATOMIC); if (dmat == NULL) return (ENOMEM); /* * Linux is very simplistic about DMA memory. For now don't * maintain all specification information. Once Linux supplies * better facilities for doing these operations, or the * needs of this particular driver change, we might need to do * more here. */ dmat->alignment = alignment; dmat->boundary = boundary; dmat->maxsize = maxsize; *ret_tag = dmat; return (0); } void ahd_dma_tag_destroy(struct ahd_softc *ahd, bus_dma_tag_t dmat) { kfree(dmat); } int ahd_dmamem_alloc(struct ahd_softc *ahd, bus_dma_tag_t dmat, void** vaddr, int flags, bus_dmamap_t *mapp) { *vaddr = dma_alloc_coherent(&ahd->dev_softc->dev, dmat->maxsize, mapp, GFP_ATOMIC); if (*vaddr == NULL) return (ENOMEM); return(0); } void ahd_dmamem_free(struct ahd_softc *ahd, bus_dma_tag_t dmat, void* vaddr, bus_dmamap_t map) { dma_free_coherent(&ahd->dev_softc->dev, dmat->maxsize, vaddr, map); } int ahd_dmamap_load(struct ahd_softc *ahd, bus_dma_tag_t dmat, bus_dmamap_t map, void *buf, bus_size_t buflen, bus_dmamap_callback_t *cb, void *cb_arg, int flags) { /* * Assume for now that this will only be used during * initialization and not for per-transaction buffer mapping. */ bus_dma_segment_t stack_sg; stack_sg.ds_addr = map; stack_sg.ds_len = dmat->maxsize; cb(cb_arg, &stack_sg, /*nseg*/1, /*error*/0); return (0); } void ahd_dmamap_destroy(struct ahd_softc *ahd, bus_dma_tag_t dmat, bus_dmamap_t map) { } int ahd_dmamap_unload(struct ahd_softc *ahd, bus_dma_tag_t dmat, bus_dmamap_t map) { /* Nothing to do */ return (0); } /********************* Platform Dependent Functions ***************************/ static void ahd_linux_setup_iocell_info(u_long index, int instance, int targ, int32_t value) { if ((instance >= 0) && (instance < ARRAY_SIZE(aic79xx_iocell_info))) { uint8_t *iocell_info; iocell_info = (uint8_t*)&aic79xx_iocell_info[instance]; iocell_info[index] = value & 0xFFFF; if (bootverbose) printk("iocell[%d:%ld] = %d\n", instance, index, value); } } static void ahd_linux_setup_tag_info_global(char *p) { int tags, i, j; tags = simple_strtoul(p + 1, NULL, 0) & 0xff; printk("Setting Global Tags= %d\n", tags); for (i = 0; i < ARRAY_SIZE(aic79xx_tag_info); i++) { for (j = 0; j < AHD_NUM_TARGETS; j++) { aic79xx_tag_info[i].tag_commands[j] = tags; } } } static void ahd_linux_setup_tag_info(u_long arg, int instance, int targ, int32_t value) { if ((instance >= 0) && (targ >= 0) && (instance < ARRAY_SIZE(aic79xx_tag_info)) && (targ < AHD_NUM_TARGETS)) { aic79xx_tag_info[instance].tag_commands[targ] = value & 0x1FF; if (bootverbose) printk("tag_info[%d:%d] = %d\n", instance, targ, value); } } static char * ahd_parse_brace_option(char *opt_name, char *opt_arg, char *end, int depth, void (*callback)(u_long, int, int, int32_t), u_long callback_arg) { char *tok_end; char *tok_end2; int i; int instance; int targ; int done; char tok_list[] = {'.', ',', '{', '}', '\0'}; /* All options use a ':' name/arg separator */ if (*opt_arg != ':') return (opt_arg); opt_arg++; instance = -1; targ = -1; done = FALSE; /* * Restore separator that may be in * the middle of our option argument. */ tok_end = strchr(opt_arg, '\0'); if (tok_end < end) *tok_end = ','; while (!done) { switch (*opt_arg) { case '{': if (instance == -1) { instance = 0; } else { if (depth > 1) { if (targ == -1) targ = 0; } else { printk("Malformed Option %s\n", opt_name); done = TRUE; } } opt_arg++; break; case '}': if (targ != -1) targ = -1; else if (instance != -1) instance = -1; opt_arg++; break; case ',': case '.': if (instance == -1) done = TRUE; else if (targ >= 0) targ++; else if (instance >= 0) instance++; opt_arg++; break; case '\0': done = TRUE; break; default: tok_end = end; for (i = 0; tok_list[i]; i++) { tok_end2 = strchr(opt_arg, tok_list[i]); if ((tok_end2) && (tok_end2 < tok_end)) tok_end = tok_end2; } callback(callback_arg, instance, targ, simple_strtol(opt_arg, NULL, 0)); opt_arg = tok_end; break; } } return (opt_arg); } /* * Handle Linux boot parameters. This routine allows for assigning a value * to a parameter with a ':' between the parameter and the value. * ie. aic79xx=stpwlev:1,extended */ static int aic79xx_setup(char *s) { int i, n; char *p; char *end; static const struct { const char *name; uint32_t *flag; } options[] = { { "extended", &aic79xx_extended }, { "no_reset", &aic79xx_no_reset }, { "verbose", &aic79xx_verbose }, { "allow_memio", &aic79xx_allow_memio}, #ifdef AHD_DEBUG { "debug", &ahd_debug }, #endif { "periodic_otag", &aic79xx_periodic_otag }, { "pci_parity", &aic79xx_pci_parity }, { "seltime", &aic79xx_seltime }, { "tag_info", NULL }, { "global_tag_depth", NULL}, { "slewrate", NULL }, { "precomp", NULL }, { "amplitude", NULL }, { "slowcrc", &aic79xx_slowcrc }, }; end = strchr(s, '\0'); /* * XXX ia64 gcc isn't smart enough to know that ARRAY_SIZE * will never be 0 in this case. */ n = 0; while ((p = strsep(&s, ",.")) != NULL) { if (*p == '\0') continue; for (i = 0; i < ARRAY_SIZE(options); i++) { n = strlen(options[i].name); if (strncmp(options[i].name, p, n) == 0) break; } if (i == ARRAY_SIZE(options)) continue; if (strncmp(p, "global_tag_depth", n) == 0) { ahd_linux_setup_tag_info_global(p + n); } else if (strncmp(p, "tag_info", n) == 0) { s = ahd_parse_brace_option("tag_info", p + n, end, 2, ahd_linux_setup_tag_info, 0); } else if (strncmp(p, "slewrate", n) == 0) { s = ahd_parse_brace_option("slewrate", p + n, end, 1, ahd_linux_setup_iocell_info, AIC79XX_SLEWRATE_INDEX); } else if (strncmp(p, "precomp", n) == 0) { s = ahd_parse_brace_option("precomp", p + n, end, 1, ahd_linux_setup_iocell_info, AIC79XX_PRECOMP_INDEX); } else if (strncmp(p, "amplitude", n) == 0) { s = ahd_parse_brace_option("amplitude", p + n, end, 1, ahd_linux_setup_iocell_info, AIC79XX_AMPLITUDE_INDEX); } else if (p[n] == ':') { *(options[i].flag) = simple_strtoul(p + n + 1, NULL, 0); } else if (!strncmp(p, "verbose", n)) { *(options[i].flag) = 1; } else { *(options[i].flag) ^= 0xFFFFFFFF; } } return 1; } __setup("aic79xx=", aic79xx_setup); uint32_t aic79xx_verbose; int ahd_linux_register_host(struct ahd_softc *ahd, struct scsi_host_template *template) { char buf[80]; struct Scsi_Host *host; char *new_name; u_long s; int retval; template->name = ahd->description; host = scsi_host_alloc(template, sizeof(struct ahd_softc *)); if (host == NULL) return (ENOMEM); *((struct ahd_softc **)host->hostdata) = ahd; ahd->platform_data->host = host; host->can_queue = AHD_MAX_QUEUE; host->cmd_per_lun = 2; host->sg_tablesize = AHD_NSEG; host->this_id = ahd->our_id; host->irq = ahd->platform_data->irq; host->max_id = (ahd->features & AHD_WIDE) ? 16 : 8; host->max_lun = AHD_NUM_LUNS; host->max_channel = 0; host->sg_tablesize = AHD_NSEG; ahd_lock(ahd, &s); ahd_set_unit(ahd, ahd_linux_unit++); ahd_unlock(ahd, &s); sprintf(buf, "scsi%d", host->host_no); new_name = kmalloc(strlen(buf) + 1, GFP_ATOMIC); if (new_name != NULL) { strcpy(new_name, buf); ahd_set_name(ahd, new_name); } host->unique_id = ahd->unit; ahd_linux_initialize_scsi_bus(ahd); ahd_intr_enable(ahd, TRUE); host->transportt = ahd_linux_transport_template; retval = scsi_add_host(host, &ahd->dev_softc->dev); if (retval) { printk(KERN_WARNING "aic79xx: scsi_add_host failed\n"); scsi_host_put(host); return retval; } scsi_scan_host(host); return 0; } /* * Place the SCSI bus into a known state by either resetting it, * or forcing transfer negotiations on the next command to any * target. */ static void ahd_linux_initialize_scsi_bus(struct ahd_softc *ahd) { u_int target_id; u_int numtarg; unsigned long s; target_id = 0; numtarg = 0; if (aic79xx_no_reset != 0) ahd->flags &= ~AHD_RESET_BUS_A; if ((ahd->flags & AHD_RESET_BUS_A) != 0) ahd_reset_channel(ahd, 'A', /*initiate_reset*/TRUE); else numtarg = (ahd->features & AHD_WIDE) ? 16 : 8; ahd_lock(ahd, &s); /* * Force negotiation to async for all targets that * will not see an initial bus reset. */ for (; target_id < numtarg; target_id++) { struct ahd_devinfo devinfo; struct ahd_initiator_tinfo *tinfo; struct ahd_tmode_tstate *tstate; tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id, target_id, &tstate); ahd_compile_devinfo(&devinfo, ahd->our_id, target_id, CAM_LUN_WILDCARD, 'A', ROLE_INITIATOR); ahd_update_neg_request(ahd, &devinfo, tstate, tinfo, AHD_NEG_ALWAYS); } ahd_unlock(ahd, &s); /* Give the bus some time to recover */ if ((ahd->flags & AHD_RESET_BUS_A) != 0) { ahd_freeze_simq(ahd); msleep(AIC79XX_RESET_DELAY); ahd_release_simq(ahd); } } int ahd_platform_alloc(struct ahd_softc *ahd, void *platform_arg) { ahd->platform_data = kzalloc(sizeof(struct ahd_platform_data), GFP_ATOMIC); if (ahd->platform_data == NULL) return (ENOMEM); ahd->platform_data->irq = AHD_LINUX_NOIRQ; ahd_lockinit(ahd); ahd->seltime = (aic79xx_seltime & 0x3) << 4; return (0); } void ahd_platform_free(struct ahd_softc *ahd) { struct scsi_target *starget; int i; if (ahd->platform_data != NULL) { /* destroy all of the device and target objects */ for (i = 0; i < AHD_NUM_TARGETS; i++) { starget = ahd->platform_data->starget[i]; if (starget != NULL) { ahd->platform_data->starget[i] = NULL; } } if (ahd->platform_data->irq != AHD_LINUX_NOIRQ) free_irq(ahd->platform_data->irq, ahd); if (ahd->tags[0] == BUS_SPACE_PIO && ahd->bshs[0].ioport != 0) release_region(ahd->bshs[0].ioport, 256); if (ahd->tags[1] == BUS_SPACE_PIO && ahd->bshs[1].ioport != 0) release_region(ahd->bshs[1].ioport, 256); if (ahd->tags[0] == BUS_SPACE_MEMIO && ahd->bshs[0].maddr != NULL) { iounmap(ahd->bshs[0].maddr); release_mem_region(ahd->platform_data->mem_busaddr, 0x1000); } if (ahd->platform_data->host) scsi_host_put(ahd->platform_data->host); kfree(ahd->platform_data); } } void ahd_platform_init(struct ahd_softc *ahd) { /* * Lookup and commit any modified IO Cell options. */ if (ahd->unit < ARRAY_SIZE(aic79xx_iocell_info)) { const struct ahd_linux_iocell_opts *iocell_opts; iocell_opts = &aic79xx_iocell_info[ahd->unit]; if (iocell_opts->precomp != AIC79XX_DEFAULT_PRECOMP) AHD_SET_PRECOMP(ahd, iocell_opts->precomp); if (iocell_opts->slewrate != AIC79XX_DEFAULT_SLEWRATE) AHD_SET_SLEWRATE(ahd, iocell_opts->slewrate); if (iocell_opts->amplitude != AIC79XX_DEFAULT_AMPLITUDE) AHD_SET_AMPLITUDE(ahd, iocell_opts->amplitude); } } void ahd_platform_freeze_devq(struct ahd_softc *ahd, struct scb *scb) { ahd_platform_abort_scbs(ahd, SCB_GET_TARGET(ahd, scb), SCB_GET_CHANNEL(ahd, scb), SCB_GET_LUN(scb), SCB_LIST_NULL, ROLE_UNKNOWN, CAM_REQUEUE_REQ); } void ahd_platform_set_tags(struct ahd_softc *ahd, struct scsi_device *sdev, struct ahd_devinfo *devinfo, ahd_queue_alg alg) { struct ahd_linux_device *dev; int was_queuing; int now_queuing; if (sdev == NULL) return; dev = scsi_transport_device_data(sdev); if (dev == NULL) return; was_queuing = dev->flags & (AHD_DEV_Q_BASIC|AHD_DEV_Q_TAGGED); switch (alg) { default: case AHD_QUEUE_NONE: now_queuing = 0; break; case AHD_QUEUE_BASIC: now_queuing = AHD_DEV_Q_BASIC; break; case AHD_QUEUE_TAGGED: now_queuing = AHD_DEV_Q_TAGGED; break; } if ((dev->flags & AHD_DEV_FREEZE_TIL_EMPTY) == 0 && (was_queuing != now_queuing) && (dev->active != 0)) { dev->flags |= AHD_DEV_FREEZE_TIL_EMPTY; dev->qfrozen++; } dev->flags &= ~(AHD_DEV_Q_BASIC|AHD_DEV_Q_TAGGED|AHD_DEV_PERIODIC_OTAG); if (now_queuing) { u_int usertags; usertags = ahd_linux_user_tagdepth(ahd, devinfo); if (!was_queuing) { /* * Start out aggressively and allow our * dynamic queue depth algorithm to take * care of the rest. */ dev->maxtags = usertags; dev->openings = dev->maxtags - dev->active; } if (dev->maxtags == 0) { /* * Queueing is disabled by the user. */ dev->openings = 1; } else if (alg == AHD_QUEUE_TAGGED) { dev->flags |= AHD_DEV_Q_TAGGED; if (aic79xx_periodic_otag != 0) dev->flags |= AHD_DEV_PERIODIC_OTAG; } else dev->flags |= AHD_DEV_Q_BASIC; } else { /* We can only have one opening. */ dev->maxtags = 0; dev->openings = 1 - dev->active; } switch ((dev->flags & (AHD_DEV_Q_BASIC|AHD_DEV_Q_TAGGED))) { case AHD_DEV_Q_BASIC: case AHD_DEV_Q_TAGGED: scsi_change_queue_depth(sdev, dev->openings + dev->active); break; default: /* * We allow the OS to queue 2 untagged transactions to * us at any time even though we can only execute them * serially on the controller/device. This should * remove some latency. */ scsi_change_queue_depth(sdev, 1); break; } } int ahd_platform_abort_scbs(struct ahd_softc *ahd, int target, char channel, int lun, u_int tag, role_t role, uint32_t status) { return 0; } static u_int ahd_linux_user_tagdepth(struct ahd_softc *ahd, struct ahd_devinfo *devinfo) { static int warned_user; u_int tags; tags = 0; if ((ahd->user_discenable & devinfo->target_mask) != 0) { if (ahd->unit >= ARRAY_SIZE(aic79xx_tag_info)) { if (warned_user == 0) { printk(KERN_WARNING "aic79xx: WARNING: Insufficient tag_info instances\n" "aic79xx: for installed controllers. Using defaults\n" "aic79xx: Please update the aic79xx_tag_info array in\n" "aic79xx: the aic79xx_osm.c source file.\n"); warned_user++; } tags = AHD_MAX_QUEUE; } else { adapter_tag_info_t *tag_info; tag_info = &aic79xx_tag_info[ahd->unit]; tags = tag_info->tag_commands[devinfo->target_offset]; if (tags > AHD_MAX_QUEUE) tags = AHD_MAX_QUEUE; } } return (tags); } /* * Determines the queue depth for a given device. */ static void ahd_linux_device_queue_depth(struct scsi_device *sdev) { struct ahd_devinfo devinfo; u_int tags; struct ahd_softc *ahd = *((struct ahd_softc **)sdev->host->hostdata); ahd_compile_devinfo(&devinfo, ahd->our_id, sdev->sdev_target->id, sdev->lun, sdev->sdev_target->channel == 0 ? 'A' : 'B', ROLE_INITIATOR); tags = ahd_linux_user_tagdepth(ahd, &devinfo); if (tags != 0 && sdev->tagged_supported != 0) { ahd_platform_set_tags(ahd, sdev, &devinfo, AHD_QUEUE_TAGGED); ahd_send_async(ahd, devinfo.channel, devinfo.target, devinfo.lun, AC_TRANSFER_NEG); ahd_print_devinfo(ahd, &devinfo); printk("Tagged Queuing enabled. Depth %d\n", tags); } else { ahd_platform_set_tags(ahd, sdev, &devinfo, AHD_QUEUE_NONE); ahd_send_async(ahd, devinfo.channel, devinfo.target, devinfo.lun, AC_TRANSFER_NEG); } } static int ahd_linux_run_command(struct ahd_softc *ahd, struct ahd_linux_device *dev, struct scsi_cmnd *cmd) { struct scb *scb; struct hardware_scb *hscb; struct ahd_initiator_tinfo *tinfo; struct ahd_tmode_tstate *tstate; u_int col_idx; uint16_t mask; unsigned long flags; int nseg; nseg = scsi_dma_map(cmd); if (nseg < 0) return SCSI_MLQUEUE_HOST_BUSY; ahd_lock(ahd, &flags); /* * Get an scb to use. */ tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id, cmd->device->id, &tstate); if ((dev->flags & (AHD_DEV_Q_TAGGED|AHD_DEV_Q_BASIC)) == 0 || (tinfo->curr.ppr_options & MSG_EXT_PPR_IU_REQ) != 0) { col_idx = AHD_NEVER_COL_IDX; } else { col_idx = AHD_BUILD_COL_IDX(cmd->device->id, cmd->device->lun); } if ((scb = ahd_get_scb(ahd, col_idx)) == NULL) { ahd->flags |= AHD_RESOURCE_SHORTAGE; ahd_unlock(ahd, &flags); scsi_dma_unmap(cmd); return SCSI_MLQUEUE_HOST_BUSY; } scb->io_ctx = cmd; scb->platform_data->dev = dev; hscb = scb->hscb; cmd->host_scribble = (char *)scb; /* * Fill out basics of the HSCB. */ hscb->control = 0; hscb->scsiid = ahd_build_scsiid(ahd, cmd->device); hscb->lun = cmd->device->lun; scb->hscb->task_management = 0; mask = SCB_GET_TARGET_MASK(ahd, scb); if ((ahd->user_discenable & mask) != 0) hscb->control |= DISCENB; if ((tinfo->curr.ppr_options & MSG_EXT_PPR_IU_REQ) != 0) scb->flags |= SCB_PACKETIZED; if ((tstate->auto_negotiate & mask) != 0) { scb->flags |= SCB_AUTO_NEGOTIATE; scb->hscb->control |= MK_MESSAGE; } if ((dev->flags & (AHD_DEV_Q_TAGGED|AHD_DEV_Q_BASIC)) != 0) { if (dev->commands_since_idle_or_otag == AHD_OTAG_THRESH && (dev->flags & AHD_DEV_Q_TAGGED) != 0) { hscb->control |= ORDERED_QUEUE_TAG; dev->commands_since_idle_or_otag = 0; } else { hscb->control |= SIMPLE_QUEUE_TAG; } } hscb->cdb_len = cmd->cmd_len; memcpy(hscb->shared_data.idata.cdb, cmd->cmnd, hscb->cdb_len); scb->platform_data->xfer_len = 0; ahd_set_residual(scb, 0); ahd_set_sense_residual(scb, 0); scb->sg_count = 0; if (nseg > 0) { void *sg = scb->sg_list; struct scatterlist *cur_seg; int i; scb->platform_data->xfer_len = 0; scsi_for_each_sg(cmd, cur_seg, nseg, i) { dma_addr_t addr; bus_size_t len; addr = sg_dma_address(cur_seg); len = sg_dma_len(cur_seg); scb->platform_data->xfer_len += len; sg = ahd_sg_setup(ahd, scb, sg, addr, len, i == (nseg - 1)); } } LIST_INSERT_HEAD(&ahd->pending_scbs, scb, pending_links); dev->openings--; dev->active++; dev->commands_issued++; if ((dev->flags & AHD_DEV_PERIODIC_OTAG) != 0) dev->commands_since_idle_or_otag++; scb->flags |= SCB_ACTIVE; ahd_queue_scb(ahd, scb); ahd_unlock(ahd, &flags); return 0; } /* * SCSI controller interrupt handler. */ irqreturn_t ahd_linux_isr(int irq, void *dev_id) { struct ahd_softc *ahd; u_long flags; int ours; ahd = (struct ahd_softc *) dev_id; ahd_lock(ahd, &flags); ours = ahd_intr(ahd); ahd_unlock(ahd, &flags); return IRQ_RETVAL(ours); } void ahd_send_async(struct ahd_softc *ahd, char channel, u_int target, u_int lun, ac_code code) { switch (code) { case AC_TRANSFER_NEG: { struct scsi_target *starget; struct ahd_initiator_tinfo *tinfo; struct ahd_tmode_tstate *tstate; unsigned int target_ppr_options; BUG_ON(target == CAM_TARGET_WILDCARD); tinfo = ahd_fetch_transinfo(ahd, channel, ahd->our_id, target, &tstate); /* * Don't bother reporting results while * negotiations are still pending. */ if (tinfo->curr.period != tinfo->goal.period || tinfo->curr.width != tinfo->goal.width || tinfo->curr.offset != tinfo->goal.offset || tinfo->curr.ppr_options != tinfo->goal.ppr_options) if (bootverbose == 0) break; /* * Don't bother reporting results that * are identical to those last reported. */ starget = ahd->platform_data->starget[target]; if (starget == NULL) break; target_ppr_options = (spi_dt(starget) ? MSG_EXT_PPR_DT_REQ : 0) + (spi_qas(starget) ? MSG_EXT_PPR_QAS_REQ : 0) + (spi_iu(starget) ? MSG_EXT_PPR_IU_REQ : 0) + (spi_rd_strm(starget) ? MSG_EXT_PPR_RD_STRM : 0) + (spi_pcomp_en(starget) ? MSG_EXT_PPR_PCOMP_EN : 0) + (spi_rti(starget) ? MSG_EXT_PPR_RTI : 0) + (spi_wr_flow(starget) ? MSG_EXT_PPR_WR_FLOW : 0) + (spi_hold_mcs(starget) ? MSG_EXT_PPR_HOLD_MCS : 0); if (tinfo->curr.period == spi_period(starget) && tinfo->curr.width == spi_width(starget) && tinfo->curr.offset == spi_offset(starget) && tinfo->curr.ppr_options == target_ppr_options) if (bootverbose == 0) break; spi_period(starget) = tinfo->curr.period; spi_width(starget) = tinfo->curr.width; spi_offset(starget) = tinfo->curr.offset; spi_dt(starget) = tinfo->curr.ppr_options & MSG_EXT_PPR_DT_REQ ? 1 : 0; spi_qas(starget) = tinfo->curr.ppr_options & MSG_EXT_PPR_QAS_REQ ? 1 : 0; spi_iu(starget) = tinfo->curr.ppr_options & MSG_EXT_PPR_IU_REQ ? 1 : 0; spi_rd_strm(starget) = tinfo->curr.ppr_options & MSG_EXT_PPR_RD_STRM ? 1 : 0; spi_pcomp_en(starget) = tinfo->curr.ppr_options & MSG_EXT_PPR_PCOMP_EN ? 1 : 0; spi_rti(starget) = tinfo->curr.ppr_options & MSG_EXT_PPR_RTI ? 1 : 0; spi_wr_flow(starget) = tinfo->curr.ppr_options & MSG_EXT_PPR_WR_FLOW ? 1 : 0; spi_hold_mcs(starget) = tinfo->curr.ppr_options & MSG_EXT_PPR_HOLD_MCS ? 1 : 0; spi_display_xfer_agreement(starget); break; } case AC_SENT_BDR: { WARN_ON(lun != CAM_LUN_WILDCARD); scsi_report_device_reset(ahd->platform_data->host, channel - 'A', target); break; } case AC_BUS_RESET: if (ahd->platform_data->host != NULL) { scsi_report_bus_reset(ahd->platform_data->host, channel - 'A'); } break; default: panic("ahd_send_async: Unexpected async event"); } } /* * Calls the higher level scsi done function and frees the scb. */ void ahd_done(struct ahd_softc *ahd, struct scb *scb) { struct scsi_cmnd *cmd; struct ahd_linux_device *dev; if ((scb->flags & SCB_ACTIVE) == 0) { printk("SCB %d done'd twice\n", SCB_GET_TAG(scb)); ahd_dump_card_state(ahd); panic("Stopping for safety"); } LIST_REMOVE(scb, pending_links); cmd = scb->io_ctx; dev = scb->platform_data->dev; dev->active--; dev->openings++; if (cmd) { if ((cmd->result & (CAM_DEV_QFRZN << 16)) != 0) { cmd->result &= ~(CAM_DEV_QFRZN << 16); dev->qfrozen--; } } else if (scb->flags & SCB_DEVICE_RESET) { if (ahd->platform_data->eh_done) complete(ahd->platform_data->eh_done); ahd_free_scb(ahd, scb); return; } ahd_linux_unmap_scb(ahd, scb); /* * Guard against stale sense data. * The Linux mid-layer assumes that sense * was retrieved anytime the first byte of * the sense buffer looks "sane". */ cmd->sense_buffer[0] = 0; if (ahd_get_transaction_status(scb) == CAM_REQ_INPROG) { #ifdef AHD_REPORT_UNDERFLOWS uint32_t amount_xferred; amount_xferred = ahd_get_transfer_length(scb) - ahd_get_residual(scb); #endif if ((scb->flags & SCB_TRANSMISSION_ERROR) != 0) { #ifdef AHD_DEBUG if ((ahd_debug & AHD_SHOW_MISC) != 0) { ahd_print_path(ahd, scb); printk("Set CAM_UNCOR_PARITY\n"); } #endif ahd_set_transaction_status(scb, CAM_UNCOR_PARITY); #ifdef AHD_REPORT_UNDERFLOWS /* * This code is disabled by default as some * clients of the SCSI system do not properly * initialize the underflow parameter. This * results in spurious termination of commands * that complete as expected (e.g. underflow is * allowed as command can return variable amounts * of data. */ } else if (amount_xferred < scb->io_ctx->underflow) { u_int i; ahd_print_path(ahd, scb); printk("CDB:"); for (i = 0; i < scb->io_ctx->cmd_len; i++) printk(" 0x%x", scb->io_ctx->cmnd[i]); printk("\n"); ahd_print_path(ahd, scb); printk("Saw underflow (%ld of %ld bytes). " "Treated as error\n", ahd_get_residual(scb), ahd_get_transfer_length(scb)); ahd_set_transaction_status(scb, CAM_DATA_RUN_ERR); #endif } else { ahd_set_transaction_status(scb, CAM_REQ_CMP); } } else if (cmd && ahd_get_transaction_status(scb) == CAM_SCSI_STATUS_ERROR) { ahd_linux_handle_scsi_status(ahd, cmd->device, scb); } if (dev->openings == 1 && ahd_get_transaction_status(scb) == CAM_REQ_CMP && ahd_get_scsi_status(scb) != SAM_STAT_TASK_SET_FULL) dev->tag_success_count++; /* * Some devices deal with temporary internal resource * shortages by returning queue full. When the queue * full occurrs, we throttle back. Slowly try to get * back to our previous queue depth. */ if ((dev->openings + dev->active) < dev->maxtags && dev->tag_success_count > AHD_TAG_SUCCESS_INTERVAL) { dev->tag_success_count = 0; dev->openings++; } if (dev->active == 0) dev->commands_since_idle_or_otag = 0; if ((scb->flags & SCB_RECOVERY_SCB) != 0) { printk("Recovery SCB completes\n"); if (ahd_get_transaction_status(scb) == CAM_BDR_SENT || ahd_get_transaction_status(scb) == CAM_REQ_ABORTED) ahd_set_transaction_status(scb, CAM_CMD_TIMEOUT); if (ahd->platform_data->eh_done) complete(ahd->platform_data->eh_done); } ahd_free_scb(ahd, scb); if (cmd) ahd_linux_queue_cmd_complete(ahd, cmd); } static void ahd_linux_handle_scsi_status(struct ahd_softc *ahd, struct scsi_device *sdev, struct scb *scb) { struct ahd_devinfo devinfo; struct ahd_linux_device *dev = scsi_transport_device_data(sdev); ahd_compile_devinfo(&devinfo, ahd->our_id, sdev->sdev_target->id, sdev->lun, sdev->sdev_target->channel == 0 ? 'A' : 'B', ROLE_INITIATOR); /* * We don't currently trust the mid-layer to * properly deal with queue full or busy. So, * when one occurs, we tell the mid-layer to * unconditionally requeue the command to us * so that we can retry it ourselves. We also * implement our own throttling mechanism so * we don't clobber the device with too many * commands. */ switch (ahd_get_scsi_status(scb)) { default: break; case SAM_STAT_CHECK_CONDITION: case SAM_STAT_COMMAND_TERMINATED: { struct scsi_cmnd *cmd; /* * Copy sense information to the OS's cmd * structure if it is available. */ cmd = scb->io_ctx; if ((scb->flags & (SCB_SENSE|SCB_PKT_SENSE)) != 0) { struct scsi_status_iu_header *siu; u_int sense_size; u_int sense_offset; if (scb->flags & SCB_SENSE) { sense_size = min(sizeof(struct scsi_sense_data) - ahd_get_sense_residual(scb), (u_long)SCSI_SENSE_BUFFERSIZE); sense_offset = 0; } else { /* * Copy only the sense data into the provided * buffer. */ siu = (struct scsi_status_iu_header *) scb->sense_data; sense_size = min_t(size_t, scsi_4btoul(siu->sense_length), SCSI_SENSE_BUFFERSIZE); sense_offset = SIU_SENSE_OFFSET(siu); } memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); memcpy(cmd->sense_buffer, ahd_get_sense_buf(ahd, scb) + sense_offset, sense_size); set_status_byte(cmd, SAM_STAT_CHECK_CONDITION); #ifdef AHD_DEBUG if (ahd_debug & AHD_SHOW_SENSE) { int i; printk("Copied %d bytes of sense data at %d:", sense_size, sense_offset); for (i = 0; i < sense_size; i++) { if ((i & 0xF) == 0) printk("\n"); printk("0x%x ", cmd->sense_buffer[i]); } printk("\n"); } #endif } break; } case SAM_STAT_TASK_SET_FULL: /* * By the time the core driver has returned this * command, all other commands that were queued * to us but not the device have been returned. * This ensures that dev->active is equal to * the number of commands actually queued to * the device. */ dev->tag_success_count = 0; if (dev->active != 0) { /* * Drop our opening count to the number * of commands currently outstanding. */ dev->openings = 0; #ifdef AHD_DEBUG if ((ahd_debug & AHD_SHOW_QFULL) != 0) { ahd_print_path(ahd, scb); printk("Dropping tag count to %d\n", dev->active); } #endif if (dev->active == dev->tags_on_last_queuefull) { dev->last_queuefull_same_count++; /* * If we repeatedly see a queue full * at the same queue depth, this * device has a fixed number of tag * slots. Lock in this tag depth * so we stop seeing queue fulls from * this device. */ if (dev->last_queuefull_same_count == AHD_LOCK_TAGS_COUNT) { dev->maxtags = dev->active; ahd_print_path(ahd, scb); printk("Locking max tag count at %d\n", dev->active); } } else { dev->tags_on_last_queuefull = dev->active; dev->last_queuefull_same_count = 0; } ahd_set_transaction_status(scb, CAM_REQUEUE_REQ); ahd_set_scsi_status(scb, SAM_STAT_GOOD); ahd_platform_set_tags(ahd, sdev, &devinfo, (dev->flags & AHD_DEV_Q_BASIC) ? AHD_QUEUE_BASIC : AHD_QUEUE_TAGGED); break; } /* * Drop down to a single opening, and treat this * as if the target returned BUSY SCSI status. */ dev->openings = 1; ahd_platform_set_tags(ahd, sdev, &devinfo, (dev->flags & AHD_DEV_Q_BASIC) ? AHD_QUEUE_BASIC : AHD_QUEUE_TAGGED); ahd_set_scsi_status(scb, SAM_STAT_BUSY); } } static void ahd_linux_queue_cmd_complete(struct ahd_softc *ahd, struct scsi_cmnd *cmd) { int status; int new_status = DID_OK; int do_fallback = 0; int scsi_status; struct scsi_sense_data *sense; /* * Map CAM error codes into Linux Error codes. We * avoid the conversion so that the DV code has the * full error information available when making * state change decisions. */ status = ahd_cmd_get_transaction_status(cmd); switch (status) { case CAM_REQ_INPROG: case CAM_REQ_CMP: new_status = DID_OK; break; case CAM_AUTOSENSE_FAIL: new_status = DID_ERROR; fallthrough; case CAM_SCSI_STATUS_ERROR: scsi_status = ahd_cmd_get_scsi_status(cmd); switch(scsi_status) { case SAM_STAT_COMMAND_TERMINATED: case SAM_STAT_CHECK_CONDITION: sense = (struct scsi_sense_data *) cmd->sense_buffer; if (sense->extra_len >= 5 && (sense->add_sense_code == 0x47 || sense->add_sense_code == 0x48)) do_fallback = 1; break; default: break; } break; case CAM_REQ_ABORTED: new_status = DID_ABORT; break; case CAM_BUSY: new_status = DID_BUS_BUSY; break; case CAM_REQ_INVALID: case CAM_PATH_INVALID: new_status = DID_BAD_TARGET; break; case CAM_SEL_TIMEOUT: new_status = DID_NO_CONNECT; break; case CAM_SCSI_BUS_RESET: case CAM_BDR_SENT: new_status = DID_RESET; break; case CAM_UNCOR_PARITY: new_status = DID_PARITY; do_fallback = 1; break; case CAM_CMD_TIMEOUT: new_status = DID_TIME_OUT; do_fallback = 1; break; case CAM_REQ_CMP_ERR: case CAM_UNEXP_BUSFREE: case CAM_DATA_RUN_ERR: new_status = DID_ERROR; do_fallback = 1; break; case CAM_UA_ABORT: case CAM_NO_HBA: case CAM_SEQUENCE_FAIL: case CAM_CCB_LEN_ERR: case CAM_PROVIDE_FAIL: case CAM_REQ_TERMIO: case CAM_UNREC_HBA_ERROR: case CAM_REQ_TOO_BIG: new_status = DID_ERROR; break; case CAM_REQUEUE_REQ: new_status = DID_REQUEUE; break; default: /* We should never get here */ new_status = DID_ERROR; break; } if (do_fallback) { printk("%s: device overrun (status %x) on %d:%d:%d\n", ahd_name(ahd), status, cmd->device->channel, cmd->device->id, (u8)cmd->device->lun); } ahd_cmd_set_transaction_status(cmd, new_status); scsi_done(cmd); } static void ahd_freeze_simq(struct ahd_softc *ahd) { scsi_block_requests(ahd->platform_data->host); } static void ahd_release_simq(struct ahd_softc *ahd) { scsi_unblock_requests(ahd->platform_data->host); } static int ahd_linux_queue_abort_cmd(struct scsi_cmnd *cmd) { struct ahd_softc *ahd; struct ahd_linux_device *dev; struct scb *pending_scb; u_int saved_scbptr; u_int active_scbptr; u_int last_phase; u_int cdb_byte; int retval = SUCCESS; int was_paused; int paused; int wait; int disconnected; ahd_mode_state saved_modes; unsigned long flags; pending_scb = NULL; paused = FALSE; wait = FALSE; ahd = *(struct ahd_softc **)cmd->device->host->hostdata; scmd_printk(KERN_INFO, cmd, "Attempting to queue an ABORT message:"); printk("CDB:"); for (cdb_byte = 0; cdb_byte < cmd->cmd_len; cdb_byte++) printk(" 0x%x", cmd->cmnd[cdb_byte]); printk("\n"); ahd_lock(ahd, &flags); /* * First determine if we currently own this command. * Start by searching the device queue. If not found * there, check the pending_scb list. If not found * at all, and the system wanted us to just abort the * command, return success. */ dev = scsi_transport_device_data(cmd->device); if (dev == NULL) { /* * No target device for this command exists, * so we must not still own the command. */ scmd_printk(KERN_INFO, cmd, "Is not an active device\n"); goto done; } /* * See if we can find a matching cmd in the pending list. */ LIST_FOREACH(pending_scb, &ahd->pending_scbs, pending_links) { if (pending_scb->io_ctx == cmd) break; } if (pending_scb == NULL) { scmd_printk(KERN_INFO, cmd, "Command not found\n"); goto done; } if ((pending_scb->flags & SCB_RECOVERY_SCB) != 0) { /* * We can't queue two recovery actions using the same SCB */ retval = FAILED; goto done; } /* * Ensure that the card doesn't do anything * behind our back. Also make sure that we * didn't "just" miss an interrupt that would * affect this cmd. */ was_paused = ahd_is_paused(ahd); ahd_pause_and_flushwork(ahd); paused = TRUE; if ((pending_scb->flags & SCB_ACTIVE) == 0) { scmd_printk(KERN_INFO, cmd, "Command already completed\n"); goto done; } printk("%s: At time of recovery, card was %spaused\n", ahd_name(ahd), was_paused ? "" : "not "); ahd_dump_card_state(ahd); disconnected = TRUE; if (ahd_search_qinfifo(ahd, cmd->device->id, cmd->device->channel + 'A', cmd->device->lun, pending_scb->hscb->tag, ROLE_INITIATOR, CAM_REQ_ABORTED, SEARCH_COMPLETE) > 0) { printk("%s:%d:%d:%d: Cmd aborted from QINFIFO\n", ahd_name(ahd), cmd->device->channel, cmd->device->id, (u8)cmd->device->lun); goto done; } saved_modes = ahd_save_modes(ahd); ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); last_phase = ahd_inb(ahd, LASTPHASE); saved_scbptr = ahd_get_scbptr(ahd); active_scbptr = saved_scbptr; if (disconnected && (ahd_inb(ahd, SEQ_FLAGS) & NOT_IDENTIFIED) == 0) { struct scb *bus_scb; bus_scb = ahd_lookup_scb(ahd, active_scbptr); if (bus_scb == pending_scb) disconnected = FALSE; } /* * At this point, pending_scb is the scb associated with the * passed in command. That command is currently active on the * bus or is in the disconnected state. */ ahd_inb(ahd, SAVED_SCSIID); if (last_phase != P_BUSFREE && SCB_GET_TAG(pending_scb) == active_scbptr) { /* * We're active on the bus, so assert ATN * and hope that the target responds. */ pending_scb = ahd_lookup_scb(ahd, active_scbptr); pending_scb->flags |= SCB_RECOVERY_SCB|SCB_ABORT; ahd_outb(ahd, MSG_OUT, HOST_MSG); ahd_outb(ahd, SCSISIGO, last_phase|ATNO); scmd_printk(KERN_INFO, cmd, "Device is active, asserting ATN\n"); wait = TRUE; } else if (disconnected) { /* * Actually re-queue this SCB in an attempt * to select the device before it reconnects. */ pending_scb->flags |= SCB_RECOVERY_SCB|SCB_ABORT; ahd_set_scbptr(ahd, SCB_GET_TAG(pending_scb)); pending_scb->hscb->cdb_len = 0; pending_scb->hscb->task_attribute = 0; pending_scb->hscb->task_management = SIU_TASKMGMT_ABORT_TASK; if ((pending_scb->flags & SCB_PACKETIZED) != 0) { /* * Mark the SCB has having an outstanding * task management function. Should the command * complete normally before the task management * function can be sent, the host will be notified * to abort our requeued SCB. */ ahd_outb(ahd, SCB_TASK_MANAGEMENT, pending_scb->hscb->task_management); } else { /* * If non-packetized, set the MK_MESSAGE control * bit indicating that we desire to send a message. * We also set the disconnected flag since there is * no guarantee that our SCB control byte matches * the version on the card. We don't want the * sequencer to abort the command thinking an * unsolicited reselection occurred. */ pending_scb->hscb->control |= MK_MESSAGE|DISCONNECTED; /* * The sequencer will never re-reference the * in-core SCB. To make sure we are notified * during reselection, set the MK_MESSAGE flag in * the card's copy of the SCB. */ ahd_outb(ahd, SCB_CONTROL, ahd_inb(ahd, SCB_CONTROL)|MK_MESSAGE); } /* * Clear out any entries in the QINFIFO first * so we are the next SCB for this target * to run. */ ahd_search_qinfifo(ahd, cmd->device->id, cmd->device->channel + 'A', cmd->device->lun, SCB_LIST_NULL, ROLE_INITIATOR, CAM_REQUEUE_REQ, SEARCH_COMPLETE); ahd_qinfifo_requeue_tail(ahd, pending_scb); ahd_set_scbptr(ahd, saved_scbptr); ahd_print_path(ahd, pending_scb); printk("Device is disconnected, re-queuing SCB\n"); wait = TRUE; } else { scmd_printk(KERN_INFO, cmd, "Unable to deliver message\n"); retval = FAILED; } ahd_restore_modes(ahd, saved_modes); done: if (paused) ahd_unpause(ahd); if (wait) { DECLARE_COMPLETION_ONSTACK(done); ahd->platform_data->eh_done = &done; ahd_unlock(ahd, &flags); printk("%s: Recovery code sleeping\n", ahd_name(ahd)); if (!wait_for_completion_timeout(&done, 5 * HZ)) { ahd_lock(ahd, &flags); ahd->platform_data->eh_done = NULL; ahd_unlock(ahd, &flags); printk("%s: Timer Expired (active %d)\n", ahd_name(ahd), dev->active); retval = FAILED; } printk("Recovery code awake\n"); } else ahd_unlock(ahd, &flags); if (retval != SUCCESS) printk("%s: Command abort returning 0x%x\n", ahd_name(ahd), retval); return retval; } static void ahd_linux_set_width(struct scsi_target *starget, int width) { struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); struct ahd_softc *ahd = *((struct ahd_softc **)shost->hostdata); struct ahd_devinfo devinfo; unsigned long flags; ahd_compile_devinfo(&devinfo, shost->this_id, starget->id, 0, starget->channel + 'A', ROLE_INITIATOR); ahd_lock(ahd, &flags); ahd_set_width(ahd, &devinfo, width, AHD_TRANS_GOAL, FALSE); ahd_unlock(ahd, &flags); } static void ahd_linux_set_period(struct scsi_target *starget, int period) { struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); struct ahd_softc *ahd = *((struct ahd_softc **)shost->hostdata); struct ahd_tmode_tstate *tstate; struct ahd_initiator_tinfo *tinfo = ahd_fetch_transinfo(ahd, starget->channel + 'A', shost->this_id, starget->id, &tstate); struct ahd_devinfo devinfo; unsigned int ppr_options = tinfo->goal.ppr_options; unsigned int dt; unsigned long flags; unsigned long offset = tinfo->goal.offset; #ifdef AHD_DEBUG if ((ahd_debug & AHD_SHOW_DV) != 0) printk("%s: set period to %d\n", ahd_name(ahd), period); #endif if (offset == 0) offset = MAX_OFFSET; if (period < 8) period = 8; if (period < 10) { if (spi_max_width(starget)) { ppr_options |= MSG_EXT_PPR_DT_REQ; if (period == 8) ppr_options |= MSG_EXT_PPR_IU_REQ; } else period = 10; } dt = ppr_options & MSG_EXT_PPR_DT_REQ; ahd_compile_devinfo(&devinfo, shost->this_id, starget->id, 0, starget->channel + 'A', ROLE_INITIATOR); /* all PPR requests apart from QAS require wide transfers */ if (ppr_options & ~MSG_EXT_PPR_QAS_REQ) { if (spi_width(starget) == 0) ppr_options &= MSG_EXT_PPR_QAS_REQ; } ahd_find_syncrate(ahd, &period, &ppr_options, dt ? AHD_SYNCRATE_MAX : AHD_SYNCRATE_ULTRA2); ahd_lock(ahd, &flags); ahd_set_syncrate(ahd, &devinfo, period, offset, ppr_options, AHD_TRANS_GOAL, FALSE); ahd_unlock(ahd, &flags); } static void ahd_linux_set_offset(struct scsi_target *starget, int offset) { struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); struct ahd_softc *ahd = *((struct ahd_softc **)shost->hostdata); struct ahd_tmode_tstate *tstate; struct ahd_initiator_tinfo *tinfo = ahd_fetch_transinfo(ahd, starget->channel + 'A', shost->this_id, starget->id, &tstate); struct ahd_devinfo devinfo; unsigned int ppr_options = 0; unsigned int period = 0; unsigned int dt = ppr_options & MSG_EXT_PPR_DT_REQ; unsigned long flags; #ifdef AHD_DEBUG if ((ahd_debug & AHD_SHOW_DV) != 0) printk("%s: set offset to %d\n", ahd_name(ahd), offset); #endif ahd_compile_devinfo(&devinfo, shost->this_id, starget->id, 0, starget->channel + 'A', ROLE_INITIATOR); if (offset != 0) { period = tinfo->goal.period; ppr_options = tinfo->goal.ppr_options; ahd_find_syncrate(ahd, &period, &ppr_options, dt ? AHD_SYNCRATE_MAX : AHD_SYNCRATE_ULTRA2); } ahd_lock(ahd, &flags); ahd_set_syncrate(ahd, &devinfo, period, offset, ppr_options, AHD_TRANS_GOAL, FALSE); ahd_unlock(ahd, &flags); } static void ahd_linux_set_dt(struct scsi_target *starget, int dt) { struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); struct ahd_softc *ahd = *((struct ahd_softc **)shost->hostdata); struct ahd_tmode_tstate *tstate; struct ahd_initiator_tinfo *tinfo = ahd_fetch_transinfo(ahd, starget->channel + 'A', shost->this_id, starget->id, &tstate); struct ahd_devinfo devinfo; unsigned int ppr_options = tinfo->goal.ppr_options & ~MSG_EXT_PPR_DT_REQ; unsigned int period = tinfo->goal.period; unsigned int width = tinfo->goal.width; unsigned long flags; #ifdef AHD_DEBUG if ((ahd_debug & AHD_SHOW_DV) != 0) printk("%s: %s DT\n", ahd_name(ahd), dt ? "enabling" : "disabling"); #endif if (dt && spi_max_width(starget)) { ppr_options |= MSG_EXT_PPR_DT_REQ; if (!width) ahd_linux_set_width(starget, 1); } else { if (period <= 9) period = 10; /* If resetting DT, period must be >= 25ns */ /* IU is invalid without DT set */ ppr_options &= ~MSG_EXT_PPR_IU_REQ; } ahd_compile_devinfo(&devinfo, shost->this_id, starget->id, 0, starget->channel + 'A', ROLE_INITIATOR); ahd_find_syncrate(ahd, &period, &ppr_options, dt ? AHD_SYNCRATE_MAX : AHD_SYNCRATE_ULTRA2); ahd_lock(ahd, &flags); ahd_set_syncrate(ahd, &devinfo, period, tinfo->goal.offset, ppr_options, AHD_TRANS_GOAL, FALSE); ahd_unlock(ahd, &flags); } static void ahd_linux_set_qas(struct scsi_target *starget, int qas) { struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); struct ahd_softc *ahd = *((struct ahd_softc **)shost->hostdata); struct ahd_tmode_tstate *tstate; struct ahd_initiator_tinfo *tinfo = ahd_fetch_transinfo(ahd, starget->channel + 'A', shost->this_id, starget->id, &tstate); struct ahd_devinfo devinfo; unsigned int ppr_options = tinfo->goal.ppr_options & ~MSG_EXT_PPR_QAS_REQ; unsigned int period = tinfo->goal.period; unsigned int dt; unsigned long flags; #ifdef AHD_DEBUG if ((ahd_debug & AHD_SHOW_DV) != 0) printk("%s: %s QAS\n", ahd_name(ahd), qas ? "enabling" : "disabling"); #endif if (qas) { ppr_options |= MSG_EXT_PPR_QAS_REQ; } dt = ppr_options & MSG_EXT_PPR_DT_REQ; ahd_compile_devinfo(&devinfo, shost->this_id, starget->id, 0, starget->channel + 'A', ROLE_INITIATOR); ahd_find_syncrate(ahd, &period, &ppr_options, dt ? AHD_SYNCRATE_MAX : AHD_SYNCRATE_ULTRA2); ahd_lock(ahd, &flags); ahd_set_syncrate(ahd, &devinfo, period, tinfo->goal.offset, ppr_options, AHD_TRANS_GOAL, FALSE); ahd_unlock(ahd, &flags); } static void ahd_linux_set_iu(struct scsi_target *starget, int iu) { struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); struct ahd_softc *ahd = *((struct ahd_softc **)shost->hostdata); struct ahd_tmode_tstate *tstate; struct ahd_initiator_tinfo *tinfo = ahd_fetch_transinfo(ahd, starget->channel + 'A', shost->this_id, starget->id, &tstate); struct ahd_devinfo devinfo; unsigned int ppr_options = tinfo->goal.ppr_options & ~MSG_EXT_PPR_IU_REQ; unsigned int period = tinfo->goal.period; unsigned int dt; unsigned long flags; #ifdef AHD_DEBUG if ((ahd_debug & AHD_SHOW_DV) != 0) printk("%s: %s IU\n", ahd_name(ahd), iu ? "enabling" : "disabling"); #endif if (iu && spi_max_width(starget)) { ppr_options |= MSG_EXT_PPR_IU_REQ; ppr_options |= MSG_EXT_PPR_DT_REQ; /* IU requires DT */ } dt = ppr_options & MSG_EXT_PPR_DT_REQ; ahd_compile_devinfo(&devinfo, shost->this_id, starget->id, 0, starget->channel + 'A', ROLE_INITIATOR); ahd_find_syncrate(ahd, &period, &ppr_options, dt ? AHD_SYNCRATE_MAX : AHD_SYNCRATE_ULTRA2); ahd_lock(ahd, &flags); ahd_set_syncrate(ahd, &devinfo, period, tinfo->goal.offset, ppr_options, AHD_TRANS_GOAL, FALSE); ahd_unlock(ahd, &flags); } static void ahd_linux_set_rd_strm(struct scsi_target *starget, int rdstrm) { struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); struct ahd_softc *ahd = *((struct ahd_softc **)shost->hostdata); struct ahd_tmode_tstate *tstate; struct ahd_initiator_tinfo *tinfo = ahd_fetch_transinfo(ahd, starget->channel + 'A', shost->this_id, starget->id, &tstate); struct ahd_devinfo devinfo; unsigned int ppr_options = tinfo->goal.ppr_options & ~MSG_EXT_PPR_RD_STRM; unsigned int period = tinfo->goal.period; unsigned int dt = ppr_options & MSG_EXT_PPR_DT_REQ; unsigned long flags; #ifdef AHD_DEBUG if ((ahd_debug & AHD_SHOW_DV) != 0) printk("%s: %s Read Streaming\n", ahd_name(ahd), rdstrm ? "enabling" : "disabling"); #endif if (rdstrm && spi_max_width(starget)) ppr_options |= MSG_EXT_PPR_RD_STRM; ahd_compile_devinfo(&devinfo, shost->this_id, starget->id, 0, starget->channel + 'A', ROLE_INITIATOR); ahd_find_syncrate(ahd, &period, &ppr_options, dt ? AHD_SYNCRATE_MAX : AHD_SYNCRATE_ULTRA2); ahd_lock(ahd, &flags); ahd_set_syncrate(ahd, &devinfo, period, tinfo->goal.offset, ppr_options, AHD_TRANS_GOAL, FALSE); ahd_unlock(ahd, &flags); } static void ahd_linux_set_wr_flow(struct scsi_target *starget, int wrflow) { struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); struct ahd_softc *ahd = *((struct ahd_softc **)shost->hostdata); struct ahd_tmode_tstate *tstate; struct ahd_initiator_tinfo *tinfo = ahd_fetch_transinfo(ahd, starget->channel + 'A', shost->this_id, starget->id, &tstate); struct ahd_devinfo devinfo; unsigned int ppr_options = tinfo->goal.ppr_options & ~MSG_EXT_PPR_WR_FLOW; unsigned int period = tinfo->goal.period; unsigned int dt = ppr_options & MSG_EXT_PPR_DT_REQ; unsigned long flags; #ifdef AHD_DEBUG if ((ahd_debug & AHD_SHOW_DV) != 0) printk("%s: %s Write Flow Control\n", ahd_name(ahd), wrflow ? "enabling" : "disabling"); #endif if (wrflow && spi_max_width(starget)) ppr_options |= MSG_EXT_PPR_WR_FLOW; ahd_compile_devinfo(&devinfo, shost->this_id, starget->id, 0, starget->channel + 'A', ROLE_INITIATOR); ahd_find_syncrate(ahd, &period, &ppr_options, dt ? AHD_SYNCRATE_MAX : AHD_SYNCRATE_ULTRA2); ahd_lock(ahd, &flags); ahd_set_syncrate(ahd, &devinfo, period, tinfo->goal.offset, ppr_options, AHD_TRANS_GOAL, FALSE); ahd_unlock(ahd, &flags); } static void ahd_linux_set_rti(struct scsi_target *starget, int rti) { struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); struct ahd_softc *ahd = *((struct ahd_softc **)shost->hostdata); struct ahd_tmode_tstate *tstate; struct ahd_initiator_tinfo *tinfo = ahd_fetch_transinfo(ahd, starget->channel + 'A', shost->this_id, starget->id, &tstate); struct ahd_devinfo devinfo; unsigned int ppr_options = tinfo->goal.ppr_options & ~MSG_EXT_PPR_RTI; unsigned int period = tinfo->goal.period; unsigned int dt = ppr_options & MSG_EXT_PPR_DT_REQ; unsigned long flags; if ((ahd->features & AHD_RTI) == 0) { #ifdef AHD_DEBUG if ((ahd_debug & AHD_SHOW_DV) != 0) printk("%s: RTI not available\n", ahd_name(ahd)); #endif return; } #ifdef AHD_DEBUG if ((ahd_debug & AHD_SHOW_DV) != 0) printk("%s: %s RTI\n", ahd_name(ahd), rti ? "enabling" : "disabling"); #endif if (rti && spi_max_width(starget)) ppr_options |= MSG_EXT_PPR_RTI; ahd_compile_devinfo(&devinfo, shost->this_id, starget->id, 0, starget->channel + 'A', ROLE_INITIATOR); ahd_find_syncrate(ahd, &period, &ppr_options, dt ? AHD_SYNCRATE_MAX : AHD_SYNCRATE_ULTRA2); ahd_lock(ahd, &flags); ahd_set_syncrate(ahd, &devinfo, period, tinfo->goal.offset, ppr_options, AHD_TRANS_GOAL, FALSE); ahd_unlock(ahd, &flags); } static void ahd_linux_set_pcomp_en(struct scsi_target *starget, int pcomp) { struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); struct ahd_softc *ahd = *((struct ahd_softc **)shost->hostdata); struct ahd_tmode_tstate *tstate; struct ahd_initiator_tinfo *tinfo = ahd_fetch_transinfo(ahd, starget->channel + 'A', shost->this_id, starget->id, &tstate); struct ahd_devinfo devinfo; unsigned int ppr_options = tinfo->goal.ppr_options & ~MSG_EXT_PPR_PCOMP_EN; unsigned int period = tinfo->goal.period; unsigned int dt = ppr_options & MSG_EXT_PPR_DT_REQ; unsigned long flags; #ifdef AHD_DEBUG if ((ahd_debug & AHD_SHOW_DV) != 0) printk("%s: %s Precompensation\n", ahd_name(ahd), pcomp ? "Enable" : "Disable"); #endif if (pcomp && spi_max_width(starget)) { uint8_t precomp; if (ahd->unit < ARRAY_SIZE(aic79xx_iocell_info)) { const struct ahd_linux_iocell_opts *iocell_opts; iocell_opts = &aic79xx_iocell_info[ahd->unit]; precomp = iocell_opts->precomp; } else { precomp = AIC79XX_DEFAULT_PRECOMP; } ppr_options |= MSG_EXT_PPR_PCOMP_EN; AHD_SET_PRECOMP(ahd, precomp); } else { AHD_SET_PRECOMP(ahd, 0); } ahd_compile_devinfo(&devinfo, shost->this_id, starget->id, 0, starget->channel + 'A', ROLE_INITIATOR); ahd_find_syncrate(ahd, &period, &ppr_options, dt ? AHD_SYNCRATE_MAX : AHD_SYNCRATE_ULTRA2); ahd_lock(ahd, &flags); ahd_set_syncrate(ahd, &devinfo, period, tinfo->goal.offset, ppr_options, AHD_TRANS_GOAL, FALSE); ahd_unlock(ahd, &flags); } static void ahd_linux_set_hold_mcs(struct scsi_target *starget, int hold) { struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); struct ahd_softc *ahd = *((struct ahd_softc **)shost->hostdata); struct ahd_tmode_tstate *tstate; struct ahd_initiator_tinfo *tinfo = ahd_fetch_transinfo(ahd, starget->channel + 'A', shost->this_id, starget->id, &tstate); struct ahd_devinfo devinfo; unsigned int ppr_options = tinfo->goal.ppr_options & ~MSG_EXT_PPR_HOLD_MCS; unsigned int period = tinfo->goal.period; unsigned int dt = ppr_options & MSG_EXT_PPR_DT_REQ; unsigned long flags; if (hold && spi_max_width(starget)) ppr_options |= MSG_EXT_PPR_HOLD_MCS; ahd_compile_devinfo(&devinfo, shost->this_id, starget->id, 0, starget->channel + 'A', ROLE_INITIATOR); ahd_find_syncrate(ahd, &period, &ppr_options, dt ? AHD_SYNCRATE_MAX : AHD_SYNCRATE_ULTRA2); ahd_lock(ahd, &flags); ahd_set_syncrate(ahd, &devinfo, period, tinfo->goal.offset, ppr_options, AHD_TRANS_GOAL, FALSE); ahd_unlock(ahd, &flags); } static void ahd_linux_get_signalling(struct Scsi_Host *shost) { struct ahd_softc *ahd = *(struct ahd_softc **)shost->hostdata; unsigned long flags; u8 mode; ahd_lock(ahd, &flags); ahd_pause(ahd); mode = ahd_inb(ahd, SBLKCTL); ahd_unpause(ahd); ahd_unlock(ahd, &flags); if (mode & ENAB40) spi_signalling(shost) = SPI_SIGNAL_LVD; else if (mode & ENAB20) spi_signalling(shost) = SPI_SIGNAL_SE; else spi_signalling(shost) = SPI_SIGNAL_UNKNOWN; } static struct spi_function_template ahd_linux_transport_functions = { .set_offset = ahd_linux_set_offset, .show_offset = 1, .set_period = ahd_linux_set_period, .show_period = 1, .set_width = ahd_linux_set_width, .show_width = 1, .set_dt = ahd_linux_set_dt, .show_dt = 1, .set_iu = ahd_linux_set_iu, .show_iu = 1, .set_qas = ahd_linux_set_qas, .show_qas = 1, .set_rd_strm = ahd_linux_set_rd_strm, .show_rd_strm = 1, .set_wr_flow = ahd_linux_set_wr_flow, .show_wr_flow = 1, .set_rti = ahd_linux_set_rti, .show_rti = 1, .set_pcomp_en = ahd_linux_set_pcomp_en, .show_pcomp_en = 1, .set_hold_mcs = ahd_linux_set_hold_mcs, .show_hold_mcs = 1, .get_signalling = ahd_linux_get_signalling, }; static int __init ahd_linux_init(void) { int error = 0; /* * If we've been passed any parameters, process them now. */ if (aic79xx) aic79xx_setup(aic79xx); ahd_linux_transport_template = spi_attach_transport(&ahd_linux_transport_functions); if (!ahd_linux_transport_template) return -ENODEV; scsi_transport_reserve_device(ahd_linux_transport_template, sizeof(struct ahd_linux_device)); error = ahd_linux_pci_init(); if (error) spi_release_transport(ahd_linux_transport_template); return error; } static void __exit ahd_linux_exit(void) { ahd_linux_pci_exit(); spi_release_transport(ahd_linux_transport_template); } module_init(ahd_linux_init); module_exit(ahd_linux_exit);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1