Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Thierry Reding | 1105 | 47.08% | 20 | 35.71% |
Peter 'p2' De Schrijver | 382 | 16.28% | 3 | 5.36% |
Dmitry Osipenko | 311 | 13.25% | 6 | 10.71% |
Jon Hunter | 195 | 8.31% | 2 | 3.57% |
kartik | 125 | 5.33% | 4 | 7.14% |
Danny Huang | 77 | 3.28% | 2 | 3.57% |
Olof Johansson | 47 | 2.00% | 1 | 1.79% |
Timo Alho | 19 | 0.81% | 2 | 3.57% |
JC Kuo | 18 | 0.77% | 1 | 1.79% |
Colin Cross | 18 | 0.77% | 1 | 1.79% |
Grant C. Likely | 13 | 0.55% | 1 | 1.79% |
Alexandre Courbot | 9 | 0.38% | 1 | 1.79% |
Stephen Warren | 6 | 0.26% | 4 | 7.14% |
Vince Hsu | 5 | 0.21% | 1 | 1.79% |
Yangtao Li | 5 | 0.21% | 1 | 1.79% |
Nagarjuna Kristam | 5 | 0.21% | 1 | 1.79% |
Prashant Gaikwad | 2 | 0.09% | 1 | 1.79% |
Paul Gortmaker | 2 | 0.09% | 1 | 1.79% |
Thomas Gleixner | 1 | 0.04% | 1 | 1.79% |
Nathan Chancellor | 1 | 0.04% | 1 | 1.79% |
Christoph Hellwig | 1 | 0.04% | 1 | 1.79% |
Total | 2347 | 56 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2013-2023, NVIDIA CORPORATION. All rights reserved. */ #include <linux/clk.h> #include <linux/device.h> #include <linux/kobject.h> #include <linux/init.h> #include <linux/io.h> #include <linux/nvmem-consumer.h> #include <linux/nvmem-provider.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/reset.h> #include <linux/slab.h> #include <linux/sys_soc.h> #include <soc/tegra/common.h> #include <soc/tegra/fuse.h> #include "fuse.h" struct tegra_sku_info tegra_sku_info; EXPORT_SYMBOL(tegra_sku_info); static const char *tegra_revision_name[TEGRA_REVISION_MAX] = { [TEGRA_REVISION_UNKNOWN] = "unknown", [TEGRA_REVISION_A01] = "A01", [TEGRA_REVISION_A02] = "A02", [TEGRA_REVISION_A03] = "A03", [TEGRA_REVISION_A03p] = "A03 prime", [TEGRA_REVISION_A04] = "A04", }; static const char *tegra_platform_name[TEGRA_PLATFORM_MAX] = { [TEGRA_PLATFORM_SILICON] = "Silicon", [TEGRA_PLATFORM_QT] = "QT", [TEGRA_PLATFORM_SYSTEM_FPGA] = "System FPGA", [TEGRA_PLATFORM_UNIT_FPGA] = "Unit FPGA", [TEGRA_PLATFORM_ASIM_QT] = "Asim QT", [TEGRA_PLATFORM_ASIM_LINSIM] = "Asim Linsim", [TEGRA_PLATFORM_DSIM_ASIM_LINSIM] = "Dsim Asim Linsim", [TEGRA_PLATFORM_VERIFICATION_SIMULATION] = "Verification Simulation", [TEGRA_PLATFORM_VDK] = "VDK", [TEGRA_PLATFORM_VSP] = "VSP", }; static const struct of_device_id car_match[] __initconst = { { .compatible = "nvidia,tegra20-car", }, { .compatible = "nvidia,tegra30-car", }, { .compatible = "nvidia,tegra114-car", }, { .compatible = "nvidia,tegra124-car", }, { .compatible = "nvidia,tegra132-car", }, { .compatible = "nvidia,tegra210-car", }, {}, }; static struct tegra_fuse *fuse = &(struct tegra_fuse) { .base = NULL, .soc = NULL, }; static const struct of_device_id tegra_fuse_match[] = { #ifdef CONFIG_ARCH_TEGRA_234_SOC { .compatible = "nvidia,tegra234-efuse", .data = &tegra234_fuse_soc }, #endif #ifdef CONFIG_ARCH_TEGRA_194_SOC { .compatible = "nvidia,tegra194-efuse", .data = &tegra194_fuse_soc }, #endif #ifdef CONFIG_ARCH_TEGRA_186_SOC { .compatible = "nvidia,tegra186-efuse", .data = &tegra186_fuse_soc }, #endif #ifdef CONFIG_ARCH_TEGRA_210_SOC { .compatible = "nvidia,tegra210-efuse", .data = &tegra210_fuse_soc }, #endif #ifdef CONFIG_ARCH_TEGRA_132_SOC { .compatible = "nvidia,tegra132-efuse", .data = &tegra124_fuse_soc }, #endif #ifdef CONFIG_ARCH_TEGRA_124_SOC { .compatible = "nvidia,tegra124-efuse", .data = &tegra124_fuse_soc }, #endif #ifdef CONFIG_ARCH_TEGRA_114_SOC { .compatible = "nvidia,tegra114-efuse", .data = &tegra114_fuse_soc }, #endif #ifdef CONFIG_ARCH_TEGRA_3x_SOC { .compatible = "nvidia,tegra30-efuse", .data = &tegra30_fuse_soc }, #endif #ifdef CONFIG_ARCH_TEGRA_2x_SOC { .compatible = "nvidia,tegra20-efuse", .data = &tegra20_fuse_soc }, #endif { /* sentinel */ } }; static int tegra_fuse_read(void *priv, unsigned int offset, void *value, size_t bytes) { unsigned int count = bytes / 4, i; struct tegra_fuse *fuse = priv; u32 *buffer = value; for (i = 0; i < count; i++) buffer[i] = fuse->read(fuse, offset + i * 4); return 0; } static void tegra_fuse_restore(void *base) { fuse->base = (void __iomem *)base; fuse->clk = NULL; } static int tegra_fuse_probe(struct platform_device *pdev) { void __iomem *base = fuse->base; struct nvmem_config nvmem; struct resource *res; int err; err = devm_add_action(&pdev->dev, tegra_fuse_restore, (void __force *)base); if (err) return err; /* take over the memory region from the early initialization */ fuse->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res); if (IS_ERR(fuse->base)) return PTR_ERR(fuse->base); fuse->phys = res->start; fuse->clk = devm_clk_get(&pdev->dev, "fuse"); if (IS_ERR(fuse->clk)) { if (PTR_ERR(fuse->clk) != -EPROBE_DEFER) dev_err(&pdev->dev, "failed to get FUSE clock: %ld", PTR_ERR(fuse->clk)); return PTR_ERR(fuse->clk); } platform_set_drvdata(pdev, fuse); fuse->dev = &pdev->dev; err = devm_pm_runtime_enable(&pdev->dev); if (err) return err; if (fuse->soc->probe) { err = fuse->soc->probe(fuse); if (err < 0) return err; } memset(&nvmem, 0, sizeof(nvmem)); nvmem.dev = &pdev->dev; nvmem.name = "fuse"; nvmem.id = -1; nvmem.owner = THIS_MODULE; nvmem.cells = fuse->soc->cells; nvmem.ncells = fuse->soc->num_cells; nvmem.keepout = fuse->soc->keepouts; nvmem.nkeepout = fuse->soc->num_keepouts; nvmem.type = NVMEM_TYPE_OTP; nvmem.read_only = true; nvmem.root_only = false; nvmem.reg_read = tegra_fuse_read; nvmem.size = fuse->soc->info->size; nvmem.word_size = 4; nvmem.stride = 4; nvmem.priv = fuse; fuse->nvmem = devm_nvmem_register(&pdev->dev, &nvmem); if (IS_ERR(fuse->nvmem)) { err = PTR_ERR(fuse->nvmem); dev_err(&pdev->dev, "failed to register NVMEM device: %d\n", err); return err; } fuse->rst = devm_reset_control_get_optional(&pdev->dev, "fuse"); if (IS_ERR(fuse->rst)) { err = PTR_ERR(fuse->rst); dev_err(&pdev->dev, "failed to get FUSE reset: %pe\n", fuse->rst); return err; } /* * FUSE clock is enabled at a boot time, hence this resume/suspend * disables the clock besides the h/w resetting. */ err = pm_runtime_resume_and_get(&pdev->dev); if (err) return err; err = reset_control_reset(fuse->rst); pm_runtime_put(&pdev->dev); if (err < 0) { dev_err(&pdev->dev, "failed to reset FUSE: %d\n", err); return err; } /* release the early I/O memory mapping */ iounmap(base); return 0; } static int __maybe_unused tegra_fuse_runtime_resume(struct device *dev) { int err; err = clk_prepare_enable(fuse->clk); if (err < 0) { dev_err(dev, "failed to enable FUSE clock: %d\n", err); return err; } return 0; } static int __maybe_unused tegra_fuse_runtime_suspend(struct device *dev) { clk_disable_unprepare(fuse->clk); return 0; } static int __maybe_unused tegra_fuse_suspend(struct device *dev) { int ret; /* * Critical for RAM re-repair operation, which must occur on resume * from LP1 system suspend and as part of CCPLEX cluster switching. */ if (fuse->soc->clk_suspend_on) ret = pm_runtime_resume_and_get(dev); else ret = pm_runtime_force_suspend(dev); return ret; } static int __maybe_unused tegra_fuse_resume(struct device *dev) { int ret = 0; if (fuse->soc->clk_suspend_on) pm_runtime_put(dev); else ret = pm_runtime_force_resume(dev); return ret; } static const struct dev_pm_ops tegra_fuse_pm = { SET_RUNTIME_PM_OPS(tegra_fuse_runtime_suspend, tegra_fuse_runtime_resume, NULL) SET_SYSTEM_SLEEP_PM_OPS(tegra_fuse_suspend, tegra_fuse_resume) }; static struct platform_driver tegra_fuse_driver = { .driver = { .name = "tegra-fuse", .of_match_table = tegra_fuse_match, .pm = &tegra_fuse_pm, .suppress_bind_attrs = true, }, .probe = tegra_fuse_probe, }; builtin_platform_driver(tegra_fuse_driver); u32 __init tegra_fuse_read_spare(unsigned int spare) { unsigned int offset = fuse->soc->info->spare + spare * 4; return fuse->read_early(fuse, offset) & 1; } u32 __init tegra_fuse_read_early(unsigned int offset) { return fuse->read_early(fuse, offset); } int tegra_fuse_readl(unsigned long offset, u32 *value) { if (!fuse->read || !fuse->clk) return -EPROBE_DEFER; if (IS_ERR(fuse->clk)) return PTR_ERR(fuse->clk); *value = fuse->read(fuse, offset); return 0; } EXPORT_SYMBOL(tegra_fuse_readl); static void tegra_enable_fuse_clk(void __iomem *base) { u32 reg; reg = readl_relaxed(base + 0x48); reg |= 1 << 28; writel(reg, base + 0x48); /* * Enable FUSE clock. This needs to be hardcoded because the clock * subsystem is not active during early boot. */ reg = readl(base + 0x14); reg |= 1 << 7; writel(reg, base + 0x14); } static ssize_t major_show(struct device *dev, struct device_attribute *attr, char *buf) { return sprintf(buf, "%d\n", tegra_get_major_rev()); } static DEVICE_ATTR_RO(major); static ssize_t minor_show(struct device *dev, struct device_attribute *attr, char *buf) { return sprintf(buf, "%d\n", tegra_get_minor_rev()); } static DEVICE_ATTR_RO(minor); static struct attribute *tegra_soc_attr[] = { &dev_attr_major.attr, &dev_attr_minor.attr, NULL, }; const struct attribute_group tegra_soc_attr_group = { .attrs = tegra_soc_attr, }; #if IS_ENABLED(CONFIG_ARCH_TEGRA_194_SOC) || \ IS_ENABLED(CONFIG_ARCH_TEGRA_234_SOC) static ssize_t platform_show(struct device *dev, struct device_attribute *attr, char *buf) { /* * Displays the value in the 'pre_si_platform' field of the HIDREV * register for Tegra194 devices. A value of 0 indicates that the * platform type is silicon and all other non-zero values indicate * the type of simulation platform is being used. */ return sprintf(buf, "%d\n", tegra_get_platform()); } static DEVICE_ATTR_RO(platform); static struct attribute *tegra194_soc_attr[] = { &dev_attr_major.attr, &dev_attr_minor.attr, &dev_attr_platform.attr, NULL, }; const struct attribute_group tegra194_soc_attr_group = { .attrs = tegra194_soc_attr, }; #endif struct device * __init tegra_soc_device_register(void) { struct soc_device_attribute *attr; struct soc_device *dev; attr = kzalloc(sizeof(*attr), GFP_KERNEL); if (!attr) return NULL; attr->family = kasprintf(GFP_KERNEL, "Tegra"); if (tegra_is_silicon()) attr->revision = kasprintf(GFP_KERNEL, "%s %s", tegra_platform_name[tegra_sku_info.platform], tegra_revision_name[tegra_sku_info.revision]); else attr->revision = kasprintf(GFP_KERNEL, "%s", tegra_platform_name[tegra_sku_info.platform]); attr->soc_id = kasprintf(GFP_KERNEL, "%u", tegra_get_chip_id()); attr->custom_attr_group = fuse->soc->soc_attr_group; dev = soc_device_register(attr); if (IS_ERR(dev)) { kfree(attr->soc_id); kfree(attr->revision); kfree(attr->family); kfree(attr); return ERR_CAST(dev); } return soc_device_to_device(dev); } static int __init tegra_init_fuse(void) { const struct of_device_id *match; struct device_node *np; struct resource regs; tegra_init_apbmisc(); np = of_find_matching_node_and_match(NULL, tegra_fuse_match, &match); if (!np) { /* * Fall back to legacy initialization for 32-bit ARM only. All * 64-bit ARM device tree files for Tegra are required to have * a FUSE node. * * This is for backwards-compatibility with old device trees * that didn't contain a FUSE node. */ if (IS_ENABLED(CONFIG_ARM) && soc_is_tegra()) { u8 chip = tegra_get_chip_id(); regs.start = 0x7000f800; regs.end = 0x7000fbff; regs.flags = IORESOURCE_MEM; switch (chip) { #ifdef CONFIG_ARCH_TEGRA_2x_SOC case TEGRA20: fuse->soc = &tegra20_fuse_soc; break; #endif #ifdef CONFIG_ARCH_TEGRA_3x_SOC case TEGRA30: fuse->soc = &tegra30_fuse_soc; break; #endif #ifdef CONFIG_ARCH_TEGRA_114_SOC case TEGRA114: fuse->soc = &tegra114_fuse_soc; break; #endif #ifdef CONFIG_ARCH_TEGRA_124_SOC case TEGRA124: fuse->soc = &tegra124_fuse_soc; break; #endif default: pr_warn("Unsupported SoC: %02x\n", chip); break; } } else { /* * At this point we're not running on Tegra, so play * nice with multi-platform kernels. */ return 0; } } else { /* * Extract information from the device tree if we've found a * matching node. */ if (of_address_to_resource(np, 0, ®s) < 0) { pr_err("failed to get FUSE register\n"); return -ENXIO; } fuse->soc = match->data; } np = of_find_matching_node(NULL, car_match); if (np) { void __iomem *base = of_iomap(np, 0); of_node_put(np); if (base) { tegra_enable_fuse_clk(base); iounmap(base); } else { pr_err("failed to map clock registers\n"); return -ENXIO; } } fuse->base = ioremap(regs.start, resource_size(®s)); if (!fuse->base) { pr_err("failed to map FUSE registers\n"); return -ENXIO; } fuse->soc->init(fuse); pr_info("Tegra Revision: %s SKU: %d CPU Process: %d SoC Process: %d\n", tegra_revision_name[tegra_sku_info.revision], tegra_sku_info.sku_id, tegra_sku_info.cpu_process_id, tegra_sku_info.soc_process_id); pr_debug("Tegra CPU Speedo ID %d, SoC Speedo ID %d\n", tegra_sku_info.cpu_speedo_id, tegra_sku_info.soc_speedo_id); if (fuse->soc->lookups) { size_t size = sizeof(*fuse->lookups) * fuse->soc->num_lookups; fuse->lookups = kmemdup(fuse->soc->lookups, size, GFP_KERNEL); if (fuse->lookups) nvmem_add_cell_lookups(fuse->lookups, fuse->soc->num_lookups); } return 0; } early_initcall(tegra_init_fuse); #ifdef CONFIG_ARM64 static int __init tegra_init_soc(void) { struct device_node *np; struct device *soc; /* make sure we're running on Tegra */ np = of_find_matching_node(NULL, tegra_fuse_match); if (!np) return 0; of_node_put(np); soc = tegra_soc_device_register(); if (IS_ERR(soc)) { pr_err("failed to register SoC device: %ld\n", PTR_ERR(soc)); return PTR_ERR(soc); } return 0; } device_initcall(tegra_init_soc); #endif
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1