Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Mika Westerberg | 5517 | 93.95% | 13 | 39.39% |
Bin Meng | 231 | 3.93% | 7 | 21.21% |
Alexander Sverdlin | 43 | 0.73% | 2 | 6.06% |
Yang Yingliang | 31 | 0.53% | 1 | 3.03% |
Jethro Beekman | 30 | 0.51% | 2 | 6.06% |
Herve Codina via Alsa-devel | 7 | 0.12% | 1 | 3.03% |
Christophe Jaillet | 4 | 0.07% | 1 | 3.03% |
Nicholas Mc Guire | 2 | 0.03% | 1 | 3.03% |
Mauro Lima | 2 | 0.03% | 2 | 6.06% |
Luis Alberto Herrera | 2 | 0.03% | 1 | 3.03% |
Tudor-Dan Ambarus | 2 | 0.03% | 1 | 3.03% |
Thomas Gleixner | 1 | 0.02% | 1 | 3.03% |
Total | 5872 | 33 |
// SPDX-License-Identifier: GPL-2.0-only /* * Intel PCH/PCU SPI flash driver. * * Copyright (C) 2016 - 2022, Intel Corporation * Author: Mika Westerberg <mika.westerberg@linux.intel.com> */ #include <linux/iopoll.h> #include <linux/module.h> #include <linux/mtd/partitions.h> #include <linux/mtd/spi-nor.h> #include <linux/spi/flash.h> #include <linux/spi/spi.h> #include <linux/spi/spi-mem.h> #include "spi-intel.h" /* Offsets are from @ispi->base */ #define BFPREG 0x00 #define HSFSTS_CTL 0x04 #define HSFSTS_CTL_FSMIE BIT(31) #define HSFSTS_CTL_FDBC_SHIFT 24 #define HSFSTS_CTL_FDBC_MASK (0x3f << HSFSTS_CTL_FDBC_SHIFT) #define HSFSTS_CTL_FCYCLE_SHIFT 17 #define HSFSTS_CTL_FCYCLE_MASK (0x0f << HSFSTS_CTL_FCYCLE_SHIFT) /* HW sequencer opcodes */ #define HSFSTS_CTL_FCYCLE_READ (0x00 << HSFSTS_CTL_FCYCLE_SHIFT) #define HSFSTS_CTL_FCYCLE_WRITE (0x02 << HSFSTS_CTL_FCYCLE_SHIFT) #define HSFSTS_CTL_FCYCLE_ERASE (0x03 << HSFSTS_CTL_FCYCLE_SHIFT) #define HSFSTS_CTL_FCYCLE_ERASE_64K (0x04 << HSFSTS_CTL_FCYCLE_SHIFT) #define HSFSTS_CTL_FCYCLE_RDSFDP (0x05 << HSFSTS_CTL_FCYCLE_SHIFT) #define HSFSTS_CTL_FCYCLE_RDID (0x06 << HSFSTS_CTL_FCYCLE_SHIFT) #define HSFSTS_CTL_FCYCLE_WRSR (0x07 << HSFSTS_CTL_FCYCLE_SHIFT) #define HSFSTS_CTL_FCYCLE_RDSR (0x08 << HSFSTS_CTL_FCYCLE_SHIFT) #define HSFSTS_CTL_FGO BIT(16) #define HSFSTS_CTL_FLOCKDN BIT(15) #define HSFSTS_CTL_FDV BIT(14) #define HSFSTS_CTL_SCIP BIT(5) #define HSFSTS_CTL_AEL BIT(2) #define HSFSTS_CTL_FCERR BIT(1) #define HSFSTS_CTL_FDONE BIT(0) #define FADDR 0x08 #define DLOCK 0x0c #define FDATA(n) (0x10 + ((n) * 4)) #define FRACC 0x50 #define FREG(n) (0x54 + ((n) * 4)) #define FREG_BASE_MASK GENMASK(14, 0) #define FREG_LIMIT_SHIFT 16 #define FREG_LIMIT_MASK GENMASK(30, 16) /* Offset is from @ispi->pregs */ #define PR(n) ((n) * 4) #define PR_WPE BIT(31) #define PR_LIMIT_SHIFT 16 #define PR_LIMIT_MASK GENMASK(30, 16) #define PR_RPE BIT(15) #define PR_BASE_MASK GENMASK(14, 0) /* Offsets are from @ispi->sregs */ #define SSFSTS_CTL 0x00 #define SSFSTS_CTL_FSMIE BIT(23) #define SSFSTS_CTL_DS BIT(22) #define SSFSTS_CTL_DBC_SHIFT 16 #define SSFSTS_CTL_SPOP BIT(11) #define SSFSTS_CTL_ACS BIT(10) #define SSFSTS_CTL_SCGO BIT(9) #define SSFSTS_CTL_COP_SHIFT 12 #define SSFSTS_CTL_FRS BIT(7) #define SSFSTS_CTL_DOFRS BIT(6) #define SSFSTS_CTL_AEL BIT(4) #define SSFSTS_CTL_FCERR BIT(3) #define SSFSTS_CTL_FDONE BIT(2) #define SSFSTS_CTL_SCIP BIT(0) #define PREOP_OPTYPE 0x04 #define OPMENU0 0x08 #define OPMENU1 0x0c #define OPTYPE_READ_NO_ADDR 0 #define OPTYPE_WRITE_NO_ADDR 1 #define OPTYPE_READ_WITH_ADDR 2 #define OPTYPE_WRITE_WITH_ADDR 3 /* CPU specifics */ #define BYT_PR 0x74 #define BYT_SSFSTS_CTL 0x90 #define BYT_FREG_NUM 5 #define BYT_PR_NUM 5 #define LPT_PR 0x74 #define LPT_SSFSTS_CTL 0x90 #define LPT_FREG_NUM 5 #define LPT_PR_NUM 5 #define BXT_PR 0x84 #define BXT_SSFSTS_CTL 0xa0 #define BXT_FREG_NUM 12 #define BXT_PR_NUM 5 #define CNL_PR 0x84 #define CNL_FREG_NUM 6 #define CNL_PR_NUM 5 #define LVSCC 0xc4 #define UVSCC 0xc8 #define ERASE_OPCODE_SHIFT 8 #define ERASE_OPCODE_MASK (0xff << ERASE_OPCODE_SHIFT) #define ERASE_64K_OPCODE_SHIFT 16 #define ERASE_64K_OPCODE_MASK (0xff << ERASE_64K_OPCODE_SHIFT) /* Flash descriptor fields */ #define FLVALSIG_MAGIC 0x0ff0a55a #define FLMAP0_NC_MASK GENMASK(9, 8) #define FLMAP0_NC_SHIFT 8 #define FLMAP0_FCBA_MASK GENMASK(7, 0) #define FLCOMP_C0DEN_MASK GENMASK(3, 0) #define FLCOMP_C0DEN_512K 0x00 #define FLCOMP_C0DEN_1M 0x01 #define FLCOMP_C0DEN_2M 0x02 #define FLCOMP_C0DEN_4M 0x03 #define FLCOMP_C0DEN_8M 0x04 #define FLCOMP_C0DEN_16M 0x05 #define FLCOMP_C0DEN_32M 0x06 #define FLCOMP_C0DEN_64M 0x07 #define INTEL_SPI_TIMEOUT 5000 /* ms */ #define INTEL_SPI_FIFO_SZ 64 /** * struct intel_spi - Driver private data * @dev: Device pointer * @info: Pointer to board specific info * @base: Beginning of MMIO space * @pregs: Start of protection registers * @sregs: Start of software sequencer registers * @host: Pointer to the SPI controller structure * @nregions: Maximum number of regions * @pr_num: Maximum number of protected range registers * @chip0_size: Size of the first flash chip in bytes * @locked: Is SPI setting locked * @swseq_reg: Use SW sequencer in register reads/writes * @swseq_erase: Use SW sequencer in erase operation * @atomic_preopcode: Holds preopcode when atomic sequence is requested * @opcodes: Opcodes which are supported. This are programmed by BIOS * before it locks down the controller. * @mem_ops: Pointer to SPI MEM ops supported by the controller */ struct intel_spi { struct device *dev; const struct intel_spi_boardinfo *info; void __iomem *base; void __iomem *pregs; void __iomem *sregs; struct spi_controller *host; size_t nregions; size_t pr_num; size_t chip0_size; bool locked; bool swseq_reg; bool swseq_erase; u8 atomic_preopcode; u8 opcodes[8]; const struct intel_spi_mem_op *mem_ops; }; struct intel_spi_mem_op { struct spi_mem_op mem_op; u32 replacement_op; int (*exec_op)(struct intel_spi *ispi, const struct spi_mem *mem, const struct intel_spi_mem_op *iop, const struct spi_mem_op *op); }; static bool writeable; module_param(writeable, bool, 0); MODULE_PARM_DESC(writeable, "Enable write access to SPI flash chip (default=0)"); static void intel_spi_dump_regs(struct intel_spi *ispi) { u32 value; int i; dev_dbg(ispi->dev, "BFPREG=0x%08x\n", readl(ispi->base + BFPREG)); value = readl(ispi->base + HSFSTS_CTL); dev_dbg(ispi->dev, "HSFSTS_CTL=0x%08x\n", value); if (value & HSFSTS_CTL_FLOCKDN) dev_dbg(ispi->dev, "-> Locked\n"); dev_dbg(ispi->dev, "FADDR=0x%08x\n", readl(ispi->base + FADDR)); dev_dbg(ispi->dev, "DLOCK=0x%08x\n", readl(ispi->base + DLOCK)); for (i = 0; i < 16; i++) dev_dbg(ispi->dev, "FDATA(%d)=0x%08x\n", i, readl(ispi->base + FDATA(i))); dev_dbg(ispi->dev, "FRACC=0x%08x\n", readl(ispi->base + FRACC)); for (i = 0; i < ispi->nregions; i++) dev_dbg(ispi->dev, "FREG(%d)=0x%08x\n", i, readl(ispi->base + FREG(i))); for (i = 0; i < ispi->pr_num; i++) dev_dbg(ispi->dev, "PR(%d)=0x%08x\n", i, readl(ispi->pregs + PR(i))); if (ispi->sregs) { value = readl(ispi->sregs + SSFSTS_CTL); dev_dbg(ispi->dev, "SSFSTS_CTL=0x%08x\n", value); dev_dbg(ispi->dev, "PREOP_OPTYPE=0x%08x\n", readl(ispi->sregs + PREOP_OPTYPE)); dev_dbg(ispi->dev, "OPMENU0=0x%08x\n", readl(ispi->sregs + OPMENU0)); dev_dbg(ispi->dev, "OPMENU1=0x%08x\n", readl(ispi->sregs + OPMENU1)); } dev_dbg(ispi->dev, "LVSCC=0x%08x\n", readl(ispi->base + LVSCC)); dev_dbg(ispi->dev, "UVSCC=0x%08x\n", readl(ispi->base + UVSCC)); dev_dbg(ispi->dev, "Protected regions:\n"); for (i = 0; i < ispi->pr_num; i++) { u32 base, limit; value = readl(ispi->pregs + PR(i)); if (!(value & (PR_WPE | PR_RPE))) continue; limit = (value & PR_LIMIT_MASK) >> PR_LIMIT_SHIFT; base = value & PR_BASE_MASK; dev_dbg(ispi->dev, " %02d base: 0x%08x limit: 0x%08x [%c%c]\n", i, base << 12, (limit << 12) | 0xfff, value & PR_WPE ? 'W' : '.', value & PR_RPE ? 'R' : '.'); } dev_dbg(ispi->dev, "Flash regions:\n"); for (i = 0; i < ispi->nregions; i++) { u32 region, base, limit; region = readl(ispi->base + FREG(i)); base = region & FREG_BASE_MASK; limit = (region & FREG_LIMIT_MASK) >> FREG_LIMIT_SHIFT; if (base >= limit || (i > 0 && limit == 0)) dev_dbg(ispi->dev, " %02d disabled\n", i); else dev_dbg(ispi->dev, " %02d base: 0x%08x limit: 0x%08x\n", i, base << 12, (limit << 12) | 0xfff); } dev_dbg(ispi->dev, "Using %cW sequencer for register access\n", ispi->swseq_reg ? 'S' : 'H'); dev_dbg(ispi->dev, "Using %cW sequencer for erase operation\n", ispi->swseq_erase ? 'S' : 'H'); } /* Reads max INTEL_SPI_FIFO_SZ bytes from the device fifo */ static int intel_spi_read_block(struct intel_spi *ispi, void *buf, size_t size) { size_t bytes; int i = 0; if (size > INTEL_SPI_FIFO_SZ) return -EINVAL; while (size > 0) { bytes = min_t(size_t, size, 4); memcpy_fromio(buf, ispi->base + FDATA(i), bytes); size -= bytes; buf += bytes; i++; } return 0; } /* Writes max INTEL_SPI_FIFO_SZ bytes to the device fifo */ static int intel_spi_write_block(struct intel_spi *ispi, const void *buf, size_t size) { size_t bytes; int i = 0; if (size > INTEL_SPI_FIFO_SZ) return -EINVAL; while (size > 0) { bytes = min_t(size_t, size, 4); memcpy_toio(ispi->base + FDATA(i), buf, bytes); size -= bytes; buf += bytes; i++; } return 0; } static int intel_spi_wait_hw_busy(struct intel_spi *ispi) { u32 val; return readl_poll_timeout(ispi->base + HSFSTS_CTL, val, !(val & HSFSTS_CTL_SCIP), 0, INTEL_SPI_TIMEOUT * 1000); } static int intel_spi_wait_sw_busy(struct intel_spi *ispi) { u32 val; return readl_poll_timeout(ispi->sregs + SSFSTS_CTL, val, !(val & SSFSTS_CTL_SCIP), 0, INTEL_SPI_TIMEOUT * 1000); } static bool intel_spi_set_writeable(struct intel_spi *ispi) { if (!ispi->info->set_writeable) return false; return ispi->info->set_writeable(ispi->base, ispi->info->data); } static int intel_spi_opcode_index(struct intel_spi *ispi, u8 opcode, int optype) { int i; int preop; if (ispi->locked) { for (i = 0; i < ARRAY_SIZE(ispi->opcodes); i++) if (ispi->opcodes[i] == opcode) return i; return -EINVAL; } /* The lock is off, so just use index 0 */ writel(opcode, ispi->sregs + OPMENU0); preop = readw(ispi->sregs + PREOP_OPTYPE); writel(optype << 16 | preop, ispi->sregs + PREOP_OPTYPE); return 0; } static int intel_spi_hw_cycle(struct intel_spi *ispi, const struct intel_spi_mem_op *iop, size_t len) { u32 val, status; int ret; if (!iop->replacement_op) return -EINVAL; val = readl(ispi->base + HSFSTS_CTL); val &= ~(HSFSTS_CTL_FCYCLE_MASK | HSFSTS_CTL_FDBC_MASK); val |= (len - 1) << HSFSTS_CTL_FDBC_SHIFT; val |= HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE; val |= HSFSTS_CTL_FGO; val |= iop->replacement_op; writel(val, ispi->base + HSFSTS_CTL); ret = intel_spi_wait_hw_busy(ispi); if (ret) return ret; status = readl(ispi->base + HSFSTS_CTL); if (status & HSFSTS_CTL_FCERR) return -EIO; else if (status & HSFSTS_CTL_AEL) return -EACCES; return 0; } static int intel_spi_sw_cycle(struct intel_spi *ispi, u8 opcode, size_t len, int optype) { u32 val = 0, status; u8 atomic_preopcode; int ret; ret = intel_spi_opcode_index(ispi, opcode, optype); if (ret < 0) return ret; /* * Always clear it after each SW sequencer operation regardless * of whether it is successful or not. */ atomic_preopcode = ispi->atomic_preopcode; ispi->atomic_preopcode = 0; /* Only mark 'Data Cycle' bit when there is data to be transferred */ if (len > 0) val = ((len - 1) << SSFSTS_CTL_DBC_SHIFT) | SSFSTS_CTL_DS; val |= ret << SSFSTS_CTL_COP_SHIFT; val |= SSFSTS_CTL_FCERR | SSFSTS_CTL_FDONE; val |= SSFSTS_CTL_SCGO; if (atomic_preopcode) { u16 preop; switch (optype) { case OPTYPE_WRITE_NO_ADDR: case OPTYPE_WRITE_WITH_ADDR: /* Pick matching preopcode for the atomic sequence */ preop = readw(ispi->sregs + PREOP_OPTYPE); if ((preop & 0xff) == atomic_preopcode) ; /* Do nothing */ else if ((preop >> 8) == atomic_preopcode) val |= SSFSTS_CTL_SPOP; else return -EINVAL; /* Enable atomic sequence */ val |= SSFSTS_CTL_ACS; break; default: return -EINVAL; } } writel(val, ispi->sregs + SSFSTS_CTL); ret = intel_spi_wait_sw_busy(ispi); if (ret) return ret; status = readl(ispi->sregs + SSFSTS_CTL); if (status & SSFSTS_CTL_FCERR) return -EIO; else if (status & SSFSTS_CTL_AEL) return -EACCES; return 0; } static u32 intel_spi_chip_addr(const struct intel_spi *ispi, const struct spi_mem *mem) { /* Pick up the correct start address */ if (!mem) return 0; return (spi_get_chipselect(mem->spi, 0) == 1) ? ispi->chip0_size : 0; } static int intel_spi_read_reg(struct intel_spi *ispi, const struct spi_mem *mem, const struct intel_spi_mem_op *iop, const struct spi_mem_op *op) { u32 addr = intel_spi_chip_addr(ispi, mem) + op->addr.val; size_t nbytes = op->data.nbytes; u8 opcode = op->cmd.opcode; int ret; writel(addr, ispi->base + FADDR); if (ispi->swseq_reg) ret = intel_spi_sw_cycle(ispi, opcode, nbytes, OPTYPE_READ_NO_ADDR); else ret = intel_spi_hw_cycle(ispi, iop, nbytes); if (ret) return ret; return intel_spi_read_block(ispi, op->data.buf.in, nbytes); } static int intel_spi_write_reg(struct intel_spi *ispi, const struct spi_mem *mem, const struct intel_spi_mem_op *iop, const struct spi_mem_op *op) { u32 addr = intel_spi_chip_addr(ispi, mem) + op->addr.val; size_t nbytes = op->data.nbytes; u8 opcode = op->cmd.opcode; int ret; /* * This is handled with atomic operation and preop code in Intel * controller so we only verify that it is available. If the * controller is not locked, program the opcode to the PREOP * register for later use. * * When hardware sequencer is used there is no need to program * any opcodes (it handles them automatically as part of a command). */ if (opcode == SPINOR_OP_WREN) { u16 preop; if (!ispi->swseq_reg) return 0; preop = readw(ispi->sregs + PREOP_OPTYPE); if ((preop & 0xff) != opcode && (preop >> 8) != opcode) { if (ispi->locked) return -EINVAL; writel(opcode, ispi->sregs + PREOP_OPTYPE); } /* * This enables atomic sequence on next SW sycle. Will * be cleared after next operation. */ ispi->atomic_preopcode = opcode; return 0; } /* * We hope that HW sequencer will do the right thing automatically and * with the SW sequencer we cannot use preopcode anyway, so just ignore * the Write Disable operation and pretend it was completed * successfully. */ if (opcode == SPINOR_OP_WRDI) return 0; writel(addr, ispi->base + FADDR); /* Write the value beforehand */ ret = intel_spi_write_block(ispi, op->data.buf.out, nbytes); if (ret) return ret; if (ispi->swseq_reg) return intel_spi_sw_cycle(ispi, opcode, nbytes, OPTYPE_WRITE_NO_ADDR); return intel_spi_hw_cycle(ispi, iop, nbytes); } static int intel_spi_read(struct intel_spi *ispi, const struct spi_mem *mem, const struct intel_spi_mem_op *iop, const struct spi_mem_op *op) { u32 addr = intel_spi_chip_addr(ispi, mem) + op->addr.val; size_t block_size, nbytes = op->data.nbytes; void *read_buf = op->data.buf.in; u32 val, status; int ret; /* * Atomic sequence is not expected with HW sequencer reads. Make * sure it is cleared regardless. */ if (WARN_ON_ONCE(ispi->atomic_preopcode)) ispi->atomic_preopcode = 0; while (nbytes > 0) { block_size = min_t(size_t, nbytes, INTEL_SPI_FIFO_SZ); /* Read cannot cross 4K boundary */ block_size = min_t(loff_t, addr + block_size, round_up(addr + 1, SZ_4K)) - addr; writel(addr, ispi->base + FADDR); val = readl(ispi->base + HSFSTS_CTL); val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK); val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE; val |= (block_size - 1) << HSFSTS_CTL_FDBC_SHIFT; val |= HSFSTS_CTL_FCYCLE_READ; val |= HSFSTS_CTL_FGO; writel(val, ispi->base + HSFSTS_CTL); ret = intel_spi_wait_hw_busy(ispi); if (ret) return ret; status = readl(ispi->base + HSFSTS_CTL); if (status & HSFSTS_CTL_FCERR) ret = -EIO; else if (status & HSFSTS_CTL_AEL) ret = -EACCES; if (ret < 0) { dev_err(ispi->dev, "read error: %x: %#x\n", addr, status); return ret; } ret = intel_spi_read_block(ispi, read_buf, block_size); if (ret) return ret; nbytes -= block_size; addr += block_size; read_buf += block_size; } return 0; } static int intel_spi_write(struct intel_spi *ispi, const struct spi_mem *mem, const struct intel_spi_mem_op *iop, const struct spi_mem_op *op) { u32 addr = intel_spi_chip_addr(ispi, mem) + op->addr.val; size_t block_size, nbytes = op->data.nbytes; const void *write_buf = op->data.buf.out; u32 val, status; int ret; /* Not needed with HW sequencer write, make sure it is cleared */ ispi->atomic_preopcode = 0; while (nbytes > 0) { block_size = min_t(size_t, nbytes, INTEL_SPI_FIFO_SZ); /* Write cannot cross 4K boundary */ block_size = min_t(loff_t, addr + block_size, round_up(addr + 1, SZ_4K)) - addr; writel(addr, ispi->base + FADDR); val = readl(ispi->base + HSFSTS_CTL); val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK); val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE; val |= (block_size - 1) << HSFSTS_CTL_FDBC_SHIFT; val |= HSFSTS_CTL_FCYCLE_WRITE; ret = intel_spi_write_block(ispi, write_buf, block_size); if (ret) { dev_err(ispi->dev, "failed to write block\n"); return ret; } /* Start the write now */ val |= HSFSTS_CTL_FGO; writel(val, ispi->base + HSFSTS_CTL); ret = intel_spi_wait_hw_busy(ispi); if (ret) { dev_err(ispi->dev, "timeout\n"); return ret; } status = readl(ispi->base + HSFSTS_CTL); if (status & HSFSTS_CTL_FCERR) ret = -EIO; else if (status & HSFSTS_CTL_AEL) ret = -EACCES; if (ret < 0) { dev_err(ispi->dev, "write error: %x: %#x\n", addr, status); return ret; } nbytes -= block_size; addr += block_size; write_buf += block_size; } return 0; } static int intel_spi_erase(struct intel_spi *ispi, const struct spi_mem *mem, const struct intel_spi_mem_op *iop, const struct spi_mem_op *op) { u32 addr = intel_spi_chip_addr(ispi, mem) + op->addr.val; u8 opcode = op->cmd.opcode; u32 val, status; int ret; writel(addr, ispi->base + FADDR); if (ispi->swseq_erase) return intel_spi_sw_cycle(ispi, opcode, 0, OPTYPE_WRITE_WITH_ADDR); /* Not needed with HW sequencer erase, make sure it is cleared */ ispi->atomic_preopcode = 0; val = readl(ispi->base + HSFSTS_CTL); val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK); val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE; val |= HSFSTS_CTL_FGO; val |= iop->replacement_op; writel(val, ispi->base + HSFSTS_CTL); ret = intel_spi_wait_hw_busy(ispi); if (ret) return ret; status = readl(ispi->base + HSFSTS_CTL); if (status & HSFSTS_CTL_FCERR) return -EIO; if (status & HSFSTS_CTL_AEL) return -EACCES; return 0; } static int intel_spi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op) { op->data.nbytes = clamp_val(op->data.nbytes, 0, INTEL_SPI_FIFO_SZ); return 0; } static bool intel_spi_cmp_mem_op(const struct intel_spi_mem_op *iop, const struct spi_mem_op *op) { if (iop->mem_op.cmd.nbytes != op->cmd.nbytes || iop->mem_op.cmd.buswidth != op->cmd.buswidth || iop->mem_op.cmd.dtr != op->cmd.dtr || iop->mem_op.cmd.opcode != op->cmd.opcode) return false; if (iop->mem_op.addr.nbytes != op->addr.nbytes || iop->mem_op.addr.dtr != op->addr.dtr) return false; if (iop->mem_op.data.dir != op->data.dir || iop->mem_op.data.dtr != op->data.dtr) return false; if (iop->mem_op.data.dir != SPI_MEM_NO_DATA) { if (iop->mem_op.data.buswidth != op->data.buswidth) return false; } return true; } static const struct intel_spi_mem_op * intel_spi_match_mem_op(struct intel_spi *ispi, const struct spi_mem_op *op) { const struct intel_spi_mem_op *iop; for (iop = ispi->mem_ops; iop->mem_op.cmd.opcode; iop++) { if (intel_spi_cmp_mem_op(iop, op)) break; } return iop->mem_op.cmd.opcode ? iop : NULL; } static bool intel_spi_supports_mem_op(struct spi_mem *mem, const struct spi_mem_op *op) { struct intel_spi *ispi = spi_controller_get_devdata(mem->spi->controller); const struct intel_spi_mem_op *iop; iop = intel_spi_match_mem_op(ispi, op); if (!iop) { dev_dbg(ispi->dev, "%#x not supported\n", op->cmd.opcode); return false; } /* * For software sequencer check that the opcode is actually * present in the opmenu if it is locked. */ if (ispi->swseq_reg && ispi->locked) { int i; /* Check if it is in the locked opcodes list */ for (i = 0; i < ARRAY_SIZE(ispi->opcodes); i++) { if (ispi->opcodes[i] == op->cmd.opcode) return true; } dev_dbg(ispi->dev, "%#x not supported\n", op->cmd.opcode); return false; } return true; } static int intel_spi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op) { struct intel_spi *ispi = spi_controller_get_devdata(mem->spi->controller); const struct intel_spi_mem_op *iop; iop = intel_spi_match_mem_op(ispi, op); if (!iop) return -EOPNOTSUPP; return iop->exec_op(ispi, mem, iop, op); } static const char *intel_spi_get_name(struct spi_mem *mem) { const struct intel_spi *ispi = spi_controller_get_devdata(mem->spi->controller); /* * Return name of the flash controller device to be compatible * with the MTD version. */ return dev_name(ispi->dev); } static int intel_spi_dirmap_create(struct spi_mem_dirmap_desc *desc) { struct intel_spi *ispi = spi_controller_get_devdata(desc->mem->spi->controller); const struct intel_spi_mem_op *iop; iop = intel_spi_match_mem_op(ispi, &desc->info.op_tmpl); if (!iop) return -EOPNOTSUPP; desc->priv = (void *)iop; return 0; } static ssize_t intel_spi_dirmap_read(struct spi_mem_dirmap_desc *desc, u64 offs, size_t len, void *buf) { struct intel_spi *ispi = spi_controller_get_devdata(desc->mem->spi->controller); const struct intel_spi_mem_op *iop = desc->priv; struct spi_mem_op op = desc->info.op_tmpl; int ret; /* Fill in the gaps */ op.addr.val = offs; op.data.nbytes = len; op.data.buf.in = buf; ret = iop->exec_op(ispi, desc->mem, iop, &op); return ret ? ret : len; } static ssize_t intel_spi_dirmap_write(struct spi_mem_dirmap_desc *desc, u64 offs, size_t len, const void *buf) { struct intel_spi *ispi = spi_controller_get_devdata(desc->mem->spi->controller); const struct intel_spi_mem_op *iop = desc->priv; struct spi_mem_op op = desc->info.op_tmpl; int ret; op.addr.val = offs; op.data.nbytes = len; op.data.buf.out = buf; ret = iop->exec_op(ispi, desc->mem, iop, &op); return ret ? ret : len; } static const struct spi_controller_mem_ops intel_spi_mem_ops = { .adjust_op_size = intel_spi_adjust_op_size, .supports_op = intel_spi_supports_mem_op, .exec_op = intel_spi_exec_mem_op, .get_name = intel_spi_get_name, .dirmap_create = intel_spi_dirmap_create, .dirmap_read = intel_spi_dirmap_read, .dirmap_write = intel_spi_dirmap_write, }; #define INTEL_SPI_OP_ADDR(__nbytes) \ { \ .nbytes = __nbytes, \ } #define INTEL_SPI_OP_NO_DATA \ { \ .dir = SPI_MEM_NO_DATA, \ } #define INTEL_SPI_OP_DATA_IN(__buswidth) \ { \ .dir = SPI_MEM_DATA_IN, \ .buswidth = __buswidth, \ } #define INTEL_SPI_OP_DATA_OUT(__buswidth) \ { \ .dir = SPI_MEM_DATA_OUT, \ .buswidth = __buswidth, \ } #define INTEL_SPI_MEM_OP(__cmd, __addr, __data, __exec_op) \ { \ .mem_op = { \ .cmd = __cmd, \ .addr = __addr, \ .data = __data, \ }, \ .exec_op = __exec_op, \ } #define INTEL_SPI_MEM_OP_REPL(__cmd, __addr, __data, __exec_op, __repl) \ { \ .mem_op = { \ .cmd = __cmd, \ .addr = __addr, \ .data = __data, \ }, \ .exec_op = __exec_op, \ .replacement_op = __repl, \ } /* * The controller handles pretty much everything internally based on the * SFDP data but we want to make sure we only support the operations * actually possible. Only check buswidth and transfer direction, the * core validates data. */ #define INTEL_SPI_GENERIC_OPS \ /* Status register operations */ \ INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_RDID, 1), \ SPI_MEM_OP_NO_ADDR, \ INTEL_SPI_OP_DATA_IN(1), \ intel_spi_read_reg, \ HSFSTS_CTL_FCYCLE_RDID), \ INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_RDSR, 1), \ SPI_MEM_OP_NO_ADDR, \ INTEL_SPI_OP_DATA_IN(1), \ intel_spi_read_reg, \ HSFSTS_CTL_FCYCLE_RDSR), \ INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_WRSR, 1), \ SPI_MEM_OP_NO_ADDR, \ INTEL_SPI_OP_DATA_OUT(1), \ intel_spi_write_reg, \ HSFSTS_CTL_FCYCLE_WRSR), \ INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_RDSFDP, 1), \ INTEL_SPI_OP_ADDR(3), \ INTEL_SPI_OP_DATA_IN(1), \ intel_spi_read_reg, \ HSFSTS_CTL_FCYCLE_RDSFDP), \ /* Normal read */ \ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1), \ INTEL_SPI_OP_ADDR(3), \ INTEL_SPI_OP_DATA_IN(1), \ intel_spi_read), \ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1), \ INTEL_SPI_OP_ADDR(3), \ INTEL_SPI_OP_DATA_IN(2), \ intel_spi_read), \ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1), \ INTEL_SPI_OP_ADDR(3), \ INTEL_SPI_OP_DATA_IN(4), \ intel_spi_read), \ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1), \ INTEL_SPI_OP_ADDR(4), \ INTEL_SPI_OP_DATA_IN(1), \ intel_spi_read), \ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1), \ INTEL_SPI_OP_ADDR(4), \ INTEL_SPI_OP_DATA_IN(2), \ intel_spi_read), \ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1), \ INTEL_SPI_OP_ADDR(4), \ INTEL_SPI_OP_DATA_IN(4), \ intel_spi_read), \ /* Fast read */ \ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1), \ INTEL_SPI_OP_ADDR(3), \ INTEL_SPI_OP_DATA_IN(1), \ intel_spi_read), \ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1), \ INTEL_SPI_OP_ADDR(3), \ INTEL_SPI_OP_DATA_IN(2), \ intel_spi_read), \ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1), \ INTEL_SPI_OP_ADDR(3), \ INTEL_SPI_OP_DATA_IN(4), \ intel_spi_read), \ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1), \ INTEL_SPI_OP_ADDR(4), \ INTEL_SPI_OP_DATA_IN(1), \ intel_spi_read), \ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1), \ INTEL_SPI_OP_ADDR(4), \ INTEL_SPI_OP_DATA_IN(2), \ intel_spi_read), \ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1), \ INTEL_SPI_OP_ADDR(4), \ INTEL_SPI_OP_DATA_IN(4), \ intel_spi_read), \ /* Read with 4-byte address opcode */ \ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_4B, 1), \ INTEL_SPI_OP_ADDR(4), \ INTEL_SPI_OP_DATA_IN(1), \ intel_spi_read), \ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_4B, 1), \ INTEL_SPI_OP_ADDR(4), \ INTEL_SPI_OP_DATA_IN(2), \ intel_spi_read), \ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_4B, 1), \ INTEL_SPI_OP_ADDR(4), \ INTEL_SPI_OP_DATA_IN(4), \ intel_spi_read), \ /* Fast read with 4-byte address opcode */ \ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST_4B, 1), \ INTEL_SPI_OP_ADDR(4), \ INTEL_SPI_OP_DATA_IN(1), \ intel_spi_read), \ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST_4B, 1), \ INTEL_SPI_OP_ADDR(4), \ INTEL_SPI_OP_DATA_IN(2), \ intel_spi_read), \ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST_4B, 1), \ INTEL_SPI_OP_ADDR(4), \ INTEL_SPI_OP_DATA_IN(4), \ intel_spi_read), \ /* Write operations */ \ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_PP, 1), \ INTEL_SPI_OP_ADDR(3), \ INTEL_SPI_OP_DATA_OUT(1), \ intel_spi_write), \ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_PP, 1), \ INTEL_SPI_OP_ADDR(4), \ INTEL_SPI_OP_DATA_OUT(1), \ intel_spi_write), \ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_PP_4B, 1), \ INTEL_SPI_OP_ADDR(4), \ INTEL_SPI_OP_DATA_OUT(1), \ intel_spi_write), \ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WREN, 1), \ SPI_MEM_OP_NO_ADDR, \ SPI_MEM_OP_NO_DATA, \ intel_spi_write_reg), \ INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRDI, 1), \ SPI_MEM_OP_NO_ADDR, \ SPI_MEM_OP_NO_DATA, \ intel_spi_write_reg), \ /* Erase operations */ \ INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_BE_4K, 1), \ INTEL_SPI_OP_ADDR(3), \ SPI_MEM_OP_NO_DATA, \ intel_spi_erase, \ HSFSTS_CTL_FCYCLE_ERASE), \ INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_BE_4K, 1), \ INTEL_SPI_OP_ADDR(4), \ SPI_MEM_OP_NO_DATA, \ intel_spi_erase, \ HSFSTS_CTL_FCYCLE_ERASE), \ INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_BE_4K_4B, 1), \ INTEL_SPI_OP_ADDR(4), \ SPI_MEM_OP_NO_DATA, \ intel_spi_erase, \ HSFSTS_CTL_FCYCLE_ERASE) \ static const struct intel_spi_mem_op generic_mem_ops[] = { INTEL_SPI_GENERIC_OPS, { }, }; static const struct intel_spi_mem_op erase_64k_mem_ops[] = { INTEL_SPI_GENERIC_OPS, /* 64k sector erase operations */ INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_SE, 1), INTEL_SPI_OP_ADDR(3), SPI_MEM_OP_NO_DATA, intel_spi_erase, HSFSTS_CTL_FCYCLE_ERASE_64K), INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_SE, 1), INTEL_SPI_OP_ADDR(4), SPI_MEM_OP_NO_DATA, intel_spi_erase, HSFSTS_CTL_FCYCLE_ERASE_64K), INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_SE_4B, 1), INTEL_SPI_OP_ADDR(4), SPI_MEM_OP_NO_DATA, intel_spi_erase, HSFSTS_CTL_FCYCLE_ERASE_64K), { }, }; static int intel_spi_init(struct intel_spi *ispi) { u32 opmenu0, opmenu1, lvscc, uvscc, val; bool erase_64k = false; int i; switch (ispi->info->type) { case INTEL_SPI_BYT: ispi->sregs = ispi->base + BYT_SSFSTS_CTL; ispi->pregs = ispi->base + BYT_PR; ispi->nregions = BYT_FREG_NUM; ispi->pr_num = BYT_PR_NUM; ispi->swseq_reg = true; break; case INTEL_SPI_LPT: ispi->sregs = ispi->base + LPT_SSFSTS_CTL; ispi->pregs = ispi->base + LPT_PR; ispi->nregions = LPT_FREG_NUM; ispi->pr_num = LPT_PR_NUM; ispi->swseq_reg = true; break; case INTEL_SPI_BXT: ispi->sregs = ispi->base + BXT_SSFSTS_CTL; ispi->pregs = ispi->base + BXT_PR; ispi->nregions = BXT_FREG_NUM; ispi->pr_num = BXT_PR_NUM; erase_64k = true; break; case INTEL_SPI_CNL: ispi->sregs = NULL; ispi->pregs = ispi->base + CNL_PR; ispi->nregions = CNL_FREG_NUM; ispi->pr_num = CNL_PR_NUM; erase_64k = true; break; default: return -EINVAL; } /* Try to disable write protection if user asked to do so */ if (writeable && !intel_spi_set_writeable(ispi)) { dev_warn(ispi->dev, "can't disable chip write protection\n"); writeable = false; } /* Disable #SMI generation from HW sequencer */ val = readl(ispi->base + HSFSTS_CTL); val &= ~HSFSTS_CTL_FSMIE; writel(val, ispi->base + HSFSTS_CTL); /* * Determine whether erase operation should use HW or SW sequencer. * * The HW sequencer has a predefined list of opcodes, with only the * erase opcode being programmable in LVSCC and UVSCC registers. * If these registers don't contain a valid erase opcode, erase * cannot be done using HW sequencer. */ lvscc = readl(ispi->base + LVSCC); uvscc = readl(ispi->base + UVSCC); if (!(lvscc & ERASE_OPCODE_MASK) || !(uvscc & ERASE_OPCODE_MASK)) ispi->swseq_erase = true; /* SPI controller on Intel BXT supports 64K erase opcode */ if (ispi->info->type == INTEL_SPI_BXT && !ispi->swseq_erase) if (!(lvscc & ERASE_64K_OPCODE_MASK) || !(uvscc & ERASE_64K_OPCODE_MASK)) erase_64k = false; if (!ispi->sregs && (ispi->swseq_reg || ispi->swseq_erase)) { dev_err(ispi->dev, "software sequencer not supported, but required\n"); return -EINVAL; } /* * Some controllers can only do basic operations using hardware * sequencer. All other operations are supposed to be carried out * using software sequencer. */ if (ispi->swseq_reg) { /* Disable #SMI generation from SW sequencer */ val = readl(ispi->sregs + SSFSTS_CTL); val &= ~SSFSTS_CTL_FSMIE; writel(val, ispi->sregs + SSFSTS_CTL); } /* Check controller's lock status */ val = readl(ispi->base + HSFSTS_CTL); ispi->locked = !!(val & HSFSTS_CTL_FLOCKDN); if (ispi->locked && ispi->sregs) { /* * BIOS programs allowed opcodes and then locks down the * register. So read back what opcodes it decided to support. * That's the set we are going to support as well. */ opmenu0 = readl(ispi->sregs + OPMENU0); opmenu1 = readl(ispi->sregs + OPMENU1); if (opmenu0 && opmenu1) { for (i = 0; i < ARRAY_SIZE(ispi->opcodes) / 2; i++) { ispi->opcodes[i] = opmenu0 >> i * 8; ispi->opcodes[i + 4] = opmenu1 >> i * 8; } } } if (erase_64k) { dev_dbg(ispi->dev, "Using erase_64k memory operations"); ispi->mem_ops = erase_64k_mem_ops; } else { dev_dbg(ispi->dev, "Using generic memory operations"); ispi->mem_ops = generic_mem_ops; } intel_spi_dump_regs(ispi); return 0; } static bool intel_spi_is_protected(const struct intel_spi *ispi, unsigned int base, unsigned int limit) { int i; for (i = 0; i < ispi->pr_num; i++) { u32 pr_base, pr_limit, pr_value; pr_value = readl(ispi->pregs + PR(i)); if (!(pr_value & (PR_WPE | PR_RPE))) continue; pr_limit = (pr_value & PR_LIMIT_MASK) >> PR_LIMIT_SHIFT; pr_base = pr_value & PR_BASE_MASK; if (pr_base >= base && pr_limit <= limit) return true; } return false; } /* * There will be a single partition holding all enabled flash regions. We * call this "BIOS". */ static void intel_spi_fill_partition(struct intel_spi *ispi, struct mtd_partition *part) { u64 end; int i; memset(part, 0, sizeof(*part)); /* Start from the mandatory descriptor region */ part->size = 4096; part->name = "BIOS"; /* * Now try to find where this partition ends based on the flash * region registers. */ for (i = 1; i < ispi->nregions; i++) { u32 region, base, limit; region = readl(ispi->base + FREG(i)); base = region & FREG_BASE_MASK; limit = (region & FREG_LIMIT_MASK) >> FREG_LIMIT_SHIFT; if (base >= limit || limit == 0) continue; /* * If any of the regions have protection bits set, make the * whole partition read-only to be on the safe side. * * Also if the user did not ask the chip to be writeable * mask the bit too. */ if (!writeable || intel_spi_is_protected(ispi, base, limit)) part->mask_flags |= MTD_WRITEABLE; end = (limit << 12) + 4096; if (end > part->size) part->size = end; } } static int intel_spi_read_desc(struct intel_spi *ispi) { struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 0), SPI_MEM_OP_ADDR(3, 0, 0), SPI_MEM_OP_NO_DUMMY, SPI_MEM_OP_DATA_IN(0, NULL, 0)); u32 buf[2], nc, fcba, flcomp; ssize_t ret; op.addr.val = 0x10; op.data.buf.in = buf; op.data.nbytes = sizeof(buf); ret = intel_spi_read(ispi, NULL, NULL, &op); if (ret) { dev_warn(ispi->dev, "failed to read descriptor\n"); return ret; } dev_dbg(ispi->dev, "FLVALSIG=0x%08x\n", buf[0]); dev_dbg(ispi->dev, "FLMAP0=0x%08x\n", buf[1]); if (buf[0] != FLVALSIG_MAGIC) { dev_warn(ispi->dev, "descriptor signature not valid\n"); return -ENODEV; } fcba = (buf[1] & FLMAP0_FCBA_MASK) << 4; dev_dbg(ispi->dev, "FCBA=%#x\n", fcba); op.addr.val = fcba; op.data.buf.in = &flcomp; op.data.nbytes = sizeof(flcomp); ret = intel_spi_read(ispi, NULL, NULL, &op); if (ret) { dev_warn(ispi->dev, "failed to read FLCOMP\n"); return -ENODEV; } dev_dbg(ispi->dev, "FLCOMP=0x%08x\n", flcomp); switch (flcomp & FLCOMP_C0DEN_MASK) { case FLCOMP_C0DEN_512K: ispi->chip0_size = SZ_512K; break; case FLCOMP_C0DEN_1M: ispi->chip0_size = SZ_1M; break; case FLCOMP_C0DEN_2M: ispi->chip0_size = SZ_2M; break; case FLCOMP_C0DEN_4M: ispi->chip0_size = SZ_4M; break; case FLCOMP_C0DEN_8M: ispi->chip0_size = SZ_8M; break; case FLCOMP_C0DEN_16M: ispi->chip0_size = SZ_16M; break; case FLCOMP_C0DEN_32M: ispi->chip0_size = SZ_32M; break; case FLCOMP_C0DEN_64M: ispi->chip0_size = SZ_64M; break; default: return -EINVAL; } dev_dbg(ispi->dev, "chip0 size %zd KB\n", ispi->chip0_size / SZ_1K); nc = (buf[1] & FLMAP0_NC_MASK) >> FLMAP0_NC_SHIFT; if (!nc) ispi->host->num_chipselect = 1; else if (nc == 1) ispi->host->num_chipselect = 2; else return -EINVAL; dev_dbg(ispi->dev, "%u flash components found\n", ispi->host->num_chipselect); return 0; } static int intel_spi_populate_chip(struct intel_spi *ispi) { struct flash_platform_data *pdata; struct spi_board_info chip; int ret; pdata = devm_kzalloc(ispi->dev, sizeof(*pdata), GFP_KERNEL); if (!pdata) return -ENOMEM; pdata->nr_parts = 1; pdata->parts = devm_kcalloc(ispi->dev, pdata->nr_parts, sizeof(*pdata->parts), GFP_KERNEL); if (!pdata->parts) return -ENOMEM; intel_spi_fill_partition(ispi, pdata->parts); memset(&chip, 0, sizeof(chip)); snprintf(chip.modalias, 8, "spi-nor"); chip.platform_data = pdata; if (!spi_new_device(ispi->host, &chip)) return -ENODEV; ret = intel_spi_read_desc(ispi); if (ret) return ret; /* Add the second chip if present */ if (ispi->host->num_chipselect < 2) return 0; chip.platform_data = NULL; chip.chip_select = 1; if (!spi_new_device(ispi->host, &chip)) return -ENODEV; return 0; } /** * intel_spi_probe() - Probe the Intel SPI flash controller * @dev: Pointer to the parent device * @mem: MMIO resource * @info: Platform specific information * * Probes Intel SPI flash controller and creates the flash chip device. * Returns %0 on success and negative errno in case of failure. */ int intel_spi_probe(struct device *dev, struct resource *mem, const struct intel_spi_boardinfo *info) { struct spi_controller *host; struct intel_spi *ispi; int ret; host = devm_spi_alloc_host(dev, sizeof(*ispi)); if (!host) return -ENOMEM; host->mem_ops = &intel_spi_mem_ops; ispi = spi_controller_get_devdata(host); ispi->base = devm_ioremap_resource(dev, mem); if (IS_ERR(ispi->base)) return PTR_ERR(ispi->base); ispi->dev = dev; ispi->host = host; ispi->info = info; ret = intel_spi_init(ispi); if (ret) return ret; ret = devm_spi_register_controller(dev, host); if (ret) return ret; return intel_spi_populate_chip(ispi); } EXPORT_SYMBOL_GPL(intel_spi_probe); MODULE_DESCRIPTION("Intel PCH/PCU SPI flash core driver"); MODULE_AUTHOR("Mika Westerberg <mika.westerberg@linux.intel.com>"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1