Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ranjit Waghmode | 3001 | 58.33% | 1 | 3.12% |
Amit Kumar Mahapatra | 1475 | 28.67% | 8 | 25.00% |
Naga Sureshkumar Relli | 396 | 7.70% | 2 | 6.25% |
Quanyang Wang | 196 | 3.81% | 8 | 25.00% |
Dinghao Liu | 29 | 0.56% | 1 | 3.12% |
Johan Hovold | 13 | 0.25% | 1 | 3.12% |
Jiasheng Jiang | 9 | 0.17% | 1 | 3.12% |
Wolfram Sang | 6 | 0.12% | 2 | 6.25% |
Herve Codina via Alsa-devel | 5 | 0.10% | 1 | 3.12% |
ruanjinjie | 4 | 0.08% | 1 | 3.12% |
Olof Johansson | 3 | 0.06% | 1 | 3.12% |
Thomas Gleixner | 2 | 0.04% | 1 | 3.12% |
Yue haibing | 2 | 0.04% | 1 | 3.12% |
Uwe Kleine-König | 2 | 0.04% | 1 | 3.12% |
Rob Herring | 1 | 0.02% | 1 | 3.12% |
Dan Carpenter | 1 | 0.02% | 1 | 3.12% |
Total | 5145 | 32 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Xilinx Zynq UltraScale+ MPSoC Quad-SPI (QSPI) controller driver * (master mode only) * * Copyright (C) 2009 - 2015 Xilinx, Inc. */ #include <linux/clk.h> #include <linux/delay.h> #include <linux/dma-mapping.h> #include <linux/dmaengine.h> #include <linux/firmware/xlnx-zynqmp.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/spi/spi.h> #include <linux/spinlock.h> #include <linux/workqueue.h> #include <linux/spi/spi-mem.h> /* Generic QSPI register offsets */ #define GQSPI_CONFIG_OFST 0x00000100 #define GQSPI_ISR_OFST 0x00000104 #define GQSPI_IDR_OFST 0x0000010C #define GQSPI_IER_OFST 0x00000108 #define GQSPI_IMASK_OFST 0x00000110 #define GQSPI_EN_OFST 0x00000114 #define GQSPI_TXD_OFST 0x0000011C #define GQSPI_RXD_OFST 0x00000120 #define GQSPI_TX_THRESHOLD_OFST 0x00000128 #define GQSPI_RX_THRESHOLD_OFST 0x0000012C #define IOU_TAPDLY_BYPASS_OFST 0x0000003C #define GQSPI_LPBK_DLY_ADJ_OFST 0x00000138 #define GQSPI_GEN_FIFO_OFST 0x00000140 #define GQSPI_SEL_OFST 0x00000144 #define GQSPI_GF_THRESHOLD_OFST 0x00000150 #define GQSPI_FIFO_CTRL_OFST 0x0000014C #define GQSPI_QSPIDMA_DST_CTRL_OFST 0x0000080C #define GQSPI_QSPIDMA_DST_SIZE_OFST 0x00000804 #define GQSPI_QSPIDMA_DST_STS_OFST 0x00000808 #define GQSPI_QSPIDMA_DST_I_STS_OFST 0x00000814 #define GQSPI_QSPIDMA_DST_I_EN_OFST 0x00000818 #define GQSPI_QSPIDMA_DST_I_DIS_OFST 0x0000081C #define GQSPI_QSPIDMA_DST_I_MASK_OFST 0x00000820 #define GQSPI_QSPIDMA_DST_ADDR_OFST 0x00000800 #define GQSPI_QSPIDMA_DST_ADDR_MSB_OFST 0x00000828 #define GQSPI_DATA_DLY_ADJ_OFST 0x000001F8 /* GQSPI register bit masks */ #define GQSPI_SEL_MASK 0x00000001 #define GQSPI_EN_MASK 0x00000001 #define GQSPI_LPBK_DLY_ADJ_USE_LPBK_MASK 0x00000020 #define GQSPI_ISR_WR_TO_CLR_MASK 0x00000002 #define GQSPI_IDR_ALL_MASK 0x00000FBE #define GQSPI_CFG_MODE_EN_MASK 0xC0000000 #define GQSPI_CFG_GEN_FIFO_START_MODE_MASK 0x20000000 #define GQSPI_CFG_ENDIAN_MASK 0x04000000 #define GQSPI_CFG_EN_POLL_TO_MASK 0x00100000 #define GQSPI_CFG_WP_HOLD_MASK 0x00080000 #define GQSPI_CFG_BAUD_RATE_DIV_MASK 0x00000038 #define GQSPI_CFG_CLK_PHA_MASK 0x00000004 #define GQSPI_CFG_CLK_POL_MASK 0x00000002 #define GQSPI_CFG_START_GEN_FIFO_MASK 0x10000000 #define GQSPI_GENFIFO_IMM_DATA_MASK 0x000000FF #define GQSPI_GENFIFO_DATA_XFER 0x00000100 #define GQSPI_GENFIFO_EXP 0x00000200 #define GQSPI_GENFIFO_MODE_SPI 0x00000400 #define GQSPI_GENFIFO_MODE_DUALSPI 0x00000800 #define GQSPI_GENFIFO_MODE_QUADSPI 0x00000C00 #define GQSPI_GENFIFO_MODE_MASK 0x00000C00 #define GQSPI_GENFIFO_CS_LOWER 0x00001000 #define GQSPI_GENFIFO_CS_UPPER 0x00002000 #define GQSPI_GENFIFO_BUS_LOWER 0x00004000 #define GQSPI_GENFIFO_BUS_UPPER 0x00008000 #define GQSPI_GENFIFO_BUS_BOTH 0x0000C000 #define GQSPI_GENFIFO_BUS_MASK 0x0000C000 #define GQSPI_GENFIFO_TX 0x00010000 #define GQSPI_GENFIFO_RX 0x00020000 #define GQSPI_GENFIFO_STRIPE 0x00040000 #define GQSPI_GENFIFO_POLL 0x00080000 #define GQSPI_GENFIFO_EXP_START 0x00000100 #define GQSPI_FIFO_CTRL_RST_RX_FIFO_MASK 0x00000004 #define GQSPI_FIFO_CTRL_RST_TX_FIFO_MASK 0x00000002 #define GQSPI_FIFO_CTRL_RST_GEN_FIFO_MASK 0x00000001 #define GQSPI_ISR_RXEMPTY_MASK 0x00000800 #define GQSPI_ISR_GENFIFOFULL_MASK 0x00000400 #define GQSPI_ISR_GENFIFONOT_FULL_MASK 0x00000200 #define GQSPI_ISR_TXEMPTY_MASK 0x00000100 #define GQSPI_ISR_GENFIFOEMPTY_MASK 0x00000080 #define GQSPI_ISR_RXFULL_MASK 0x00000020 #define GQSPI_ISR_RXNEMPTY_MASK 0x00000010 #define GQSPI_ISR_TXFULL_MASK 0x00000008 #define GQSPI_ISR_TXNOT_FULL_MASK 0x00000004 #define GQSPI_ISR_POLL_TIME_EXPIRE_MASK 0x00000002 #define GQSPI_IER_TXNOT_FULL_MASK 0x00000004 #define GQSPI_IER_RXEMPTY_MASK 0x00000800 #define GQSPI_IER_POLL_TIME_EXPIRE_MASK 0x00000002 #define GQSPI_IER_RXNEMPTY_MASK 0x00000010 #define GQSPI_IER_GENFIFOEMPTY_MASK 0x00000080 #define GQSPI_IER_TXEMPTY_MASK 0x00000100 #define GQSPI_QSPIDMA_DST_INTR_ALL_MASK 0x000000FE #define GQSPI_QSPIDMA_DST_STS_WTC 0x0000E000 #define GQSPI_CFG_MODE_EN_DMA_MASK 0x80000000 #define GQSPI_ISR_IDR_MASK 0x00000994 #define GQSPI_QSPIDMA_DST_I_EN_DONE_MASK 0x00000002 #define GQSPI_QSPIDMA_DST_I_STS_DONE_MASK 0x00000002 #define GQSPI_IRQ_MASK 0x00000980 #define GQSPI_CFG_BAUD_RATE_DIV_SHIFT 3 #define GQSPI_GENFIFO_CS_SETUP 0x4 #define GQSPI_GENFIFO_CS_HOLD 0x3 #define GQSPI_TXD_DEPTH 64 #define GQSPI_RX_FIFO_THRESHOLD 32 #define GQSPI_RX_FIFO_FILL (GQSPI_RX_FIFO_THRESHOLD * 4) #define GQSPI_TX_FIFO_THRESHOLD_RESET_VAL 32 #define GQSPI_TX_FIFO_FILL (GQSPI_TXD_DEPTH -\ GQSPI_TX_FIFO_THRESHOLD_RESET_VAL) #define GQSPI_GEN_FIFO_THRESHOLD_RESET_VAL 0X10 #define GQSPI_QSPIDMA_DST_CTRL_RESET_VAL 0x803FFA00 #define GQSPI_SELECT_FLASH_CS_LOWER 0x1 #define GQSPI_SELECT_FLASH_CS_UPPER 0x2 #define GQSPI_SELECT_FLASH_CS_BOTH 0x3 #define GQSPI_SELECT_FLASH_BUS_LOWER 0x1 #define GQSPI_SELECT_FLASH_BUS_UPPER 0x2 #define GQSPI_SELECT_FLASH_BUS_BOTH 0x3 #define GQSPI_BAUD_DIV_MAX 7 /* Baud rate divisor maximum */ #define GQSPI_BAUD_DIV_SHIFT 2 /* Baud rate divisor shift */ #define GQSPI_SELECT_MODE_SPI 0x1 #define GQSPI_SELECT_MODE_DUALSPI 0x2 #define GQSPI_SELECT_MODE_QUADSPI 0x4 #define GQSPI_DMA_UNALIGN 0x3 #define GQSPI_DEFAULT_NUM_CS 1 /* Default number of chip selects */ #define GQSPI_MAX_NUM_CS 2 /* Maximum number of chip selects */ #define GQSPI_USE_DATA_DLY 0x1 #define GQSPI_USE_DATA_DLY_SHIFT 31 #define GQSPI_DATA_DLY_ADJ_VALUE 0x2 #define GQSPI_DATA_DLY_ADJ_SHIFT 28 #define GQSPI_LPBK_DLY_ADJ_DLY_1 0x1 #define GQSPI_LPBK_DLY_ADJ_DLY_1_SHIFT 0x3 #define TAP_DLY_BYPASS_LQSPI_RX_VALUE 0x1 #define TAP_DLY_BYPASS_LQSPI_RX_SHIFT 0x2 /* set to differentiate versal from zynqmp, 1=versal, 0=zynqmp */ #define QSPI_QUIRK_HAS_TAPDELAY BIT(0) #define GQSPI_FREQ_37_5MHZ 37500000 #define GQSPI_FREQ_40MHZ 40000000 #define GQSPI_FREQ_100MHZ 100000000 #define GQSPI_FREQ_150MHZ 150000000 #define SPI_AUTOSUSPEND_TIMEOUT 3000 enum mode_type {GQSPI_MODE_IO, GQSPI_MODE_DMA}; /** * struct qspi_platform_data - zynqmp qspi platform data structure * @quirks: Flags is used to identify the platform */ struct qspi_platform_data { u32 quirks; }; /** * struct zynqmp_qspi - Defines qspi driver instance * @ctlr: Pointer to the spi controller information * @regs: Virtual address of the QSPI controller registers * @refclk: Pointer to the peripheral clock * @pclk: Pointer to the APB clock * @irq: IRQ number * @dev: Pointer to struct device * @txbuf: Pointer to the TX buffer * @rxbuf: Pointer to the RX buffer * @bytes_to_transfer: Number of bytes left to transfer * @bytes_to_receive: Number of bytes left to receive * @genfifocs: Used for chip select * @genfifobus: Used to select the upper or lower bus * @dma_rx_bytes: Remaining bytes to receive by DMA mode * @dma_addr: DMA address after mapping the kernel buffer * @genfifoentry: Used for storing the genfifoentry instruction. * @mode: Defines the mode in which QSPI is operating * @data_completion: completion structure * @op_lock: Operational lock * @speed_hz: Current SPI bus clock speed in hz * @has_tapdelay: Used for tapdelay register available in qspi */ struct zynqmp_qspi { struct spi_controller *ctlr; void __iomem *regs; struct clk *refclk; struct clk *pclk; int irq; struct device *dev; const void *txbuf; void *rxbuf; int bytes_to_transfer; int bytes_to_receive; u32 genfifocs; u32 genfifobus; u32 dma_rx_bytes; dma_addr_t dma_addr; u32 genfifoentry; enum mode_type mode; struct completion data_completion; struct mutex op_lock; u32 speed_hz; bool has_tapdelay; }; /** * zynqmp_gqspi_read - For GQSPI controller read operation * @xqspi: Pointer to the zynqmp_qspi structure * @offset: Offset from where to read * Return: Value at the offset */ static u32 zynqmp_gqspi_read(struct zynqmp_qspi *xqspi, u32 offset) { return readl_relaxed(xqspi->regs + offset); } /** * zynqmp_gqspi_write - For GQSPI controller write operation * @xqspi: Pointer to the zynqmp_qspi structure * @offset: Offset where to write * @val: Value to be written */ static inline void zynqmp_gqspi_write(struct zynqmp_qspi *xqspi, u32 offset, u32 val) { writel_relaxed(val, (xqspi->regs + offset)); } /** * zynqmp_gqspi_selectslave - For selection of slave device * @instanceptr: Pointer to the zynqmp_qspi structure * @slavecs: For chip select * @slavebus: To check which bus is selected- upper or lower */ static void zynqmp_gqspi_selectslave(struct zynqmp_qspi *instanceptr, u8 slavecs, u8 slavebus) { /* * Bus and CS lines selected here will be updated in the instance and * used for subsequent GENFIFO entries during transfer. */ /* Choose slave select line */ switch (slavecs) { case GQSPI_SELECT_FLASH_CS_BOTH: instanceptr->genfifocs = GQSPI_GENFIFO_CS_LOWER | GQSPI_GENFIFO_CS_UPPER; break; case GQSPI_SELECT_FLASH_CS_UPPER: instanceptr->genfifocs = GQSPI_GENFIFO_CS_UPPER; break; case GQSPI_SELECT_FLASH_CS_LOWER: instanceptr->genfifocs = GQSPI_GENFIFO_CS_LOWER; break; default: dev_warn(instanceptr->dev, "Invalid slave select\n"); } /* Choose the bus */ switch (slavebus) { case GQSPI_SELECT_FLASH_BUS_BOTH: instanceptr->genfifobus = GQSPI_GENFIFO_BUS_LOWER | GQSPI_GENFIFO_BUS_UPPER; break; case GQSPI_SELECT_FLASH_BUS_UPPER: instanceptr->genfifobus = GQSPI_GENFIFO_BUS_UPPER; break; case GQSPI_SELECT_FLASH_BUS_LOWER: instanceptr->genfifobus = GQSPI_GENFIFO_BUS_LOWER; break; default: dev_warn(instanceptr->dev, "Invalid slave bus\n"); } } /** * zynqmp_qspi_set_tapdelay: To configure qspi tap delays * @xqspi: Pointer to the zynqmp_qspi structure * @baudrateval: Buadrate to configure */ static void zynqmp_qspi_set_tapdelay(struct zynqmp_qspi *xqspi, u32 baudrateval) { u32 tapdlybypass = 0, lpbkdlyadj = 0, datadlyadj = 0, clk_rate; u32 reqhz = 0; clk_rate = clk_get_rate(xqspi->refclk); reqhz = (clk_rate / (GQSPI_BAUD_DIV_SHIFT << baudrateval)); if (!xqspi->has_tapdelay) { if (reqhz <= GQSPI_FREQ_40MHZ) { zynqmp_pm_set_tapdelay_bypass(PM_TAPDELAY_QSPI, PM_TAPDELAY_BYPASS_ENABLE); } else if (reqhz <= GQSPI_FREQ_100MHZ) { zynqmp_pm_set_tapdelay_bypass(PM_TAPDELAY_QSPI, PM_TAPDELAY_BYPASS_ENABLE); lpbkdlyadj |= (GQSPI_LPBK_DLY_ADJ_USE_LPBK_MASK); datadlyadj |= ((GQSPI_USE_DATA_DLY << GQSPI_USE_DATA_DLY_SHIFT) | (GQSPI_DATA_DLY_ADJ_VALUE << GQSPI_DATA_DLY_ADJ_SHIFT)); } else if (reqhz <= GQSPI_FREQ_150MHZ) { lpbkdlyadj |= GQSPI_LPBK_DLY_ADJ_USE_LPBK_MASK; } } else { if (reqhz <= GQSPI_FREQ_37_5MHZ) { tapdlybypass |= (TAP_DLY_BYPASS_LQSPI_RX_VALUE << TAP_DLY_BYPASS_LQSPI_RX_SHIFT); } else if (reqhz <= GQSPI_FREQ_100MHZ) { tapdlybypass |= (TAP_DLY_BYPASS_LQSPI_RX_VALUE << TAP_DLY_BYPASS_LQSPI_RX_SHIFT); lpbkdlyadj |= (GQSPI_LPBK_DLY_ADJ_USE_LPBK_MASK); datadlyadj |= (GQSPI_USE_DATA_DLY << GQSPI_USE_DATA_DLY_SHIFT); } else if (reqhz <= GQSPI_FREQ_150MHZ) { lpbkdlyadj |= (GQSPI_LPBK_DLY_ADJ_USE_LPBK_MASK | (GQSPI_LPBK_DLY_ADJ_DLY_1 << GQSPI_LPBK_DLY_ADJ_DLY_1_SHIFT)); } zynqmp_gqspi_write(xqspi, IOU_TAPDLY_BYPASS_OFST, tapdlybypass); } zynqmp_gqspi_write(xqspi, GQSPI_LPBK_DLY_ADJ_OFST, lpbkdlyadj); zynqmp_gqspi_write(xqspi, GQSPI_DATA_DLY_ADJ_OFST, datadlyadj); } /** * zynqmp_qspi_init_hw - Initialize the hardware * @xqspi: Pointer to the zynqmp_qspi structure * * The default settings of the QSPI controller's configurable parameters on * reset are * - Master mode * - TX threshold set to 1 * - RX threshold set to 1 * - Flash memory interface mode enabled * This function performs the following actions * - Disable and clear all the interrupts * - Enable manual slave select * - Enable manual start * - Deselect all the chip select lines * - Set the little endian mode of TX FIFO * - Set clock phase * - Set clock polarity and * - Enable the QSPI controller */ static void zynqmp_qspi_init_hw(struct zynqmp_qspi *xqspi) { u32 config_reg, baud_rate_val = 0; ulong clk_rate; /* Select the GQSPI mode */ zynqmp_gqspi_write(xqspi, GQSPI_SEL_OFST, GQSPI_SEL_MASK); /* Clear and disable interrupts */ zynqmp_gqspi_write(xqspi, GQSPI_ISR_OFST, zynqmp_gqspi_read(xqspi, GQSPI_ISR_OFST) | GQSPI_ISR_WR_TO_CLR_MASK); /* Clear the DMA STS */ zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_I_STS_OFST, zynqmp_gqspi_read(xqspi, GQSPI_QSPIDMA_DST_I_STS_OFST)); zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_STS_OFST, zynqmp_gqspi_read(xqspi, GQSPI_QSPIDMA_DST_STS_OFST) | GQSPI_QSPIDMA_DST_STS_WTC); zynqmp_gqspi_write(xqspi, GQSPI_IDR_OFST, GQSPI_IDR_ALL_MASK); zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_I_DIS_OFST, GQSPI_QSPIDMA_DST_INTR_ALL_MASK); /* Disable the GQSPI */ zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, 0x0); config_reg = zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST); config_reg &= ~GQSPI_CFG_MODE_EN_MASK; /* Manual start */ config_reg |= GQSPI_CFG_GEN_FIFO_START_MODE_MASK; /* Little endian by default */ config_reg &= ~GQSPI_CFG_ENDIAN_MASK; /* Disable poll time out */ config_reg &= ~GQSPI_CFG_EN_POLL_TO_MASK; /* Set hold bit */ config_reg |= GQSPI_CFG_WP_HOLD_MASK; /* Clear pre-scalar by default */ config_reg &= ~GQSPI_CFG_BAUD_RATE_DIV_MASK; /* Set CPHA */ if (xqspi->ctlr->mode_bits & SPI_CPHA) config_reg |= GQSPI_CFG_CLK_PHA_MASK; else config_reg &= ~GQSPI_CFG_CLK_PHA_MASK; /* Set CPOL */ if (xqspi->ctlr->mode_bits & SPI_CPOL) config_reg |= GQSPI_CFG_CLK_POL_MASK; else config_reg &= ~GQSPI_CFG_CLK_POL_MASK; /* Set the clock frequency */ clk_rate = clk_get_rate(xqspi->refclk); while ((baud_rate_val < GQSPI_BAUD_DIV_MAX) && (clk_rate / (GQSPI_BAUD_DIV_SHIFT << baud_rate_val)) > xqspi->speed_hz) baud_rate_val++; config_reg &= ~GQSPI_CFG_BAUD_RATE_DIV_MASK; config_reg |= (baud_rate_val << GQSPI_CFG_BAUD_RATE_DIV_SHIFT); zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, config_reg); /* Set the tapdelay for clock frequency */ zynqmp_qspi_set_tapdelay(xqspi, baud_rate_val); /* Clear the TX and RX FIFO */ zynqmp_gqspi_write(xqspi, GQSPI_FIFO_CTRL_OFST, GQSPI_FIFO_CTRL_RST_RX_FIFO_MASK | GQSPI_FIFO_CTRL_RST_TX_FIFO_MASK | GQSPI_FIFO_CTRL_RST_GEN_FIFO_MASK); /* Reset thresholds */ zynqmp_gqspi_write(xqspi, GQSPI_TX_THRESHOLD_OFST, GQSPI_TX_FIFO_THRESHOLD_RESET_VAL); zynqmp_gqspi_write(xqspi, GQSPI_RX_THRESHOLD_OFST, GQSPI_RX_FIFO_THRESHOLD); zynqmp_gqspi_write(xqspi, GQSPI_GF_THRESHOLD_OFST, GQSPI_GEN_FIFO_THRESHOLD_RESET_VAL); zynqmp_gqspi_selectslave(xqspi, GQSPI_SELECT_FLASH_CS_LOWER, GQSPI_SELECT_FLASH_BUS_LOWER); /* Initialize DMA */ zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_CTRL_OFST, GQSPI_QSPIDMA_DST_CTRL_RESET_VAL); /* Enable the GQSPI */ zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, GQSPI_EN_MASK); } /** * zynqmp_qspi_copy_read_data - Copy data to RX buffer * @xqspi: Pointer to the zynqmp_qspi structure * @data: The variable where data is stored * @size: Number of bytes to be copied from data to RX buffer */ static void zynqmp_qspi_copy_read_data(struct zynqmp_qspi *xqspi, ulong data, u8 size) { memcpy(xqspi->rxbuf, &data, size); xqspi->rxbuf += size; xqspi->bytes_to_receive -= size; } /** * zynqmp_qspi_chipselect - Select or deselect the chip select line * @qspi: Pointer to the spi_device structure * @is_high: Select(0) or deselect (1) the chip select line */ static void zynqmp_qspi_chipselect(struct spi_device *qspi, bool is_high) { struct zynqmp_qspi *xqspi = spi_master_get_devdata(qspi->master); ulong timeout; u32 genfifoentry = 0, statusreg; genfifoentry |= GQSPI_GENFIFO_MODE_SPI; if (!is_high) { if (!spi_get_chipselect(qspi, 0)) { xqspi->genfifobus = GQSPI_GENFIFO_BUS_LOWER; xqspi->genfifocs = GQSPI_GENFIFO_CS_LOWER; } else { xqspi->genfifobus = GQSPI_GENFIFO_BUS_UPPER; xqspi->genfifocs = GQSPI_GENFIFO_CS_UPPER; } genfifoentry |= xqspi->genfifobus; genfifoentry |= xqspi->genfifocs; genfifoentry |= GQSPI_GENFIFO_CS_SETUP; } else { genfifoentry |= GQSPI_GENFIFO_CS_HOLD; } zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST, genfifoentry); /* Manually start the generic FIFO command */ zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST) | GQSPI_CFG_START_GEN_FIFO_MASK); timeout = jiffies + msecs_to_jiffies(1000); /* Wait until the generic FIFO command is empty */ do { statusreg = zynqmp_gqspi_read(xqspi, GQSPI_ISR_OFST); if ((statusreg & GQSPI_ISR_GENFIFOEMPTY_MASK) && (statusreg & GQSPI_ISR_TXEMPTY_MASK)) break; cpu_relax(); } while (!time_after_eq(jiffies, timeout)); if (time_after_eq(jiffies, timeout)) dev_err(xqspi->dev, "Chip select timed out\n"); } /** * zynqmp_qspi_selectspimode - Selects SPI mode - x1 or x2 or x4. * @xqspi: xqspi is a pointer to the GQSPI instance * @spimode: spimode - SPI or DUAL or QUAD. * Return: Mask to set desired SPI mode in GENFIFO entry. */ static inline u32 zynqmp_qspi_selectspimode(struct zynqmp_qspi *xqspi, u8 spimode) { u32 mask = 0; switch (spimode) { case GQSPI_SELECT_MODE_DUALSPI: mask = GQSPI_GENFIFO_MODE_DUALSPI; break; case GQSPI_SELECT_MODE_QUADSPI: mask = GQSPI_GENFIFO_MODE_QUADSPI; break; case GQSPI_SELECT_MODE_SPI: mask = GQSPI_GENFIFO_MODE_SPI; break; default: dev_warn(xqspi->dev, "Invalid SPI mode\n"); } return mask; } /** * zynqmp_qspi_config_op - Configure QSPI controller for specified * transfer * @xqspi: Pointer to the zynqmp_qspi structure * @qspi: Pointer to the spi_device structure * * Sets the operational mode of QSPI controller for the next QSPI transfer and * sets the requested clock frequency. * * Return: Always 0 * * Note: * If the requested frequency is not an exact match with what can be * obtained using the pre-scalar value, the driver sets the clock * frequency which is lower than the requested frequency (maximum lower) * for the transfer. * * If the requested frequency is higher or lower than that is supported * by the QSPI controller the driver will set the highest or lowest * frequency supported by controller. */ static int zynqmp_qspi_config_op(struct zynqmp_qspi *xqspi, struct spi_device *qspi) { ulong clk_rate; u32 config_reg, req_speed_hz, baud_rate_val = 0; req_speed_hz = qspi->max_speed_hz; if (xqspi->speed_hz != req_speed_hz) { xqspi->speed_hz = req_speed_hz; /* Set the clock frequency */ /* If req_speed_hz == 0, default to lowest speed */ clk_rate = clk_get_rate(xqspi->refclk); while ((baud_rate_val < GQSPI_BAUD_DIV_MAX) && (clk_rate / (GQSPI_BAUD_DIV_SHIFT << baud_rate_val)) > req_speed_hz) baud_rate_val++; config_reg = zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST); config_reg &= ~GQSPI_CFG_BAUD_RATE_DIV_MASK; config_reg |= (baud_rate_val << GQSPI_CFG_BAUD_RATE_DIV_SHIFT); zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, config_reg); zynqmp_qspi_set_tapdelay(xqspi, baud_rate_val); } return 0; } /** * zynqmp_qspi_setup_op - Configure the QSPI controller * @qspi: Pointer to the spi_device structure * * Sets the operational mode of QSPI controller for the next QSPI transfer, * baud rate and divisor value to setup the requested qspi clock. * * Return: 0 on success; error value otherwise. */ static int zynqmp_qspi_setup_op(struct spi_device *qspi) { struct spi_controller *ctlr = qspi->master; struct zynqmp_qspi *xqspi = spi_controller_get_devdata(ctlr); if (ctlr->busy) return -EBUSY; zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, GQSPI_EN_MASK); return 0; } /** * zynqmp_qspi_filltxfifo - Fills the TX FIFO as long as there is room in * the FIFO or the bytes required to be * transmitted. * @xqspi: Pointer to the zynqmp_qspi structure * @size: Number of bytes to be copied from TX buffer to TX FIFO */ static void zynqmp_qspi_filltxfifo(struct zynqmp_qspi *xqspi, int size) { u32 count = 0, intermediate; while ((xqspi->bytes_to_transfer > 0) && (count < size) && (xqspi->txbuf)) { if (xqspi->bytes_to_transfer >= 4) { memcpy(&intermediate, xqspi->txbuf, 4); xqspi->txbuf += 4; xqspi->bytes_to_transfer -= 4; count += 4; } else { memcpy(&intermediate, xqspi->txbuf, xqspi->bytes_to_transfer); xqspi->txbuf += xqspi->bytes_to_transfer; xqspi->bytes_to_transfer = 0; count += xqspi->bytes_to_transfer; } zynqmp_gqspi_write(xqspi, GQSPI_TXD_OFST, intermediate); } } /** * zynqmp_qspi_readrxfifo - Fills the RX FIFO as long as there is room in * the FIFO. * @xqspi: Pointer to the zynqmp_qspi structure * @size: Number of bytes to be copied from RX buffer to RX FIFO */ static void zynqmp_qspi_readrxfifo(struct zynqmp_qspi *xqspi, u32 size) { ulong data; int count = 0; while ((count < size) && (xqspi->bytes_to_receive > 0)) { if (xqspi->bytes_to_receive >= 4) { (*(u32 *)xqspi->rxbuf) = zynqmp_gqspi_read(xqspi, GQSPI_RXD_OFST); xqspi->rxbuf += 4; xqspi->bytes_to_receive -= 4; count += 4; } else { data = zynqmp_gqspi_read(xqspi, GQSPI_RXD_OFST); count += xqspi->bytes_to_receive; zynqmp_qspi_copy_read_data(xqspi, data, xqspi->bytes_to_receive); xqspi->bytes_to_receive = 0; } } } /** * zynqmp_qspi_fillgenfifo - Fills the GENFIFO. * @xqspi: Pointer to the zynqmp_qspi structure * @nbits: Transfer/Receive buswidth. * @genfifoentry: Variable in which GENFIFO mask is saved */ static void zynqmp_qspi_fillgenfifo(struct zynqmp_qspi *xqspi, u8 nbits, u32 genfifoentry) { u32 transfer_len = 0; if (xqspi->txbuf) { genfifoentry &= ~GQSPI_GENFIFO_RX; genfifoentry |= GQSPI_GENFIFO_DATA_XFER; genfifoentry |= GQSPI_GENFIFO_TX; transfer_len = xqspi->bytes_to_transfer; } else if (xqspi->rxbuf) { genfifoentry &= ~GQSPI_GENFIFO_TX; genfifoentry |= GQSPI_GENFIFO_DATA_XFER; genfifoentry |= GQSPI_GENFIFO_RX; if (xqspi->mode == GQSPI_MODE_DMA) transfer_len = xqspi->dma_rx_bytes; else transfer_len = xqspi->bytes_to_receive; } else { /* Sending dummy circles here */ genfifoentry &= ~(GQSPI_GENFIFO_TX | GQSPI_GENFIFO_RX); genfifoentry |= GQSPI_GENFIFO_DATA_XFER; transfer_len = xqspi->bytes_to_transfer; } genfifoentry |= zynqmp_qspi_selectspimode(xqspi, nbits); xqspi->genfifoentry = genfifoentry; if ((transfer_len) < GQSPI_GENFIFO_IMM_DATA_MASK) { genfifoentry &= ~GQSPI_GENFIFO_IMM_DATA_MASK; genfifoentry |= transfer_len; zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST, genfifoentry); } else { int tempcount = transfer_len; u32 exponent = 8; /* 2^8 = 256 */ u8 imm_data = tempcount & 0xFF; tempcount &= ~(tempcount & 0xFF); /* Immediate entry */ if (tempcount != 0) { /* Exponent entries */ genfifoentry |= GQSPI_GENFIFO_EXP; while (tempcount != 0) { if (tempcount & GQSPI_GENFIFO_EXP_START) { genfifoentry &= ~GQSPI_GENFIFO_IMM_DATA_MASK; genfifoentry |= exponent; zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST, genfifoentry); } tempcount = tempcount >> 1; exponent++; } } if (imm_data != 0) { genfifoentry &= ~GQSPI_GENFIFO_EXP; genfifoentry &= ~GQSPI_GENFIFO_IMM_DATA_MASK; genfifoentry |= (u8)(imm_data & 0xFF); zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST, genfifoentry); } } if (xqspi->mode == GQSPI_MODE_IO && xqspi->rxbuf) { /* Dummy generic FIFO entry */ zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST, 0x0); } } /** * zynqmp_process_dma_irq - Handler for DMA done interrupt of QSPI * controller * @xqspi: zynqmp_qspi instance pointer * * This function handles DMA interrupt only. */ static void zynqmp_process_dma_irq(struct zynqmp_qspi *xqspi) { u32 config_reg, genfifoentry; dma_unmap_single(xqspi->dev, xqspi->dma_addr, xqspi->dma_rx_bytes, DMA_FROM_DEVICE); xqspi->rxbuf += xqspi->dma_rx_bytes; xqspi->bytes_to_receive -= xqspi->dma_rx_bytes; xqspi->dma_rx_bytes = 0; /* Disabling the DMA interrupts */ zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_I_DIS_OFST, GQSPI_QSPIDMA_DST_I_EN_DONE_MASK); if (xqspi->bytes_to_receive > 0) { /* Switch to IO mode,for remaining bytes to receive */ config_reg = zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST); config_reg &= ~GQSPI_CFG_MODE_EN_MASK; zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, config_reg); /* Initiate the transfer of remaining bytes */ genfifoentry = xqspi->genfifoentry; genfifoentry |= xqspi->bytes_to_receive; zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST, genfifoentry); /* Dummy generic FIFO entry */ zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST, 0x0); /* Manual start */ zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, (zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST) | GQSPI_CFG_START_GEN_FIFO_MASK)); /* Enable the RX interrupts for IO mode */ zynqmp_gqspi_write(xqspi, GQSPI_IER_OFST, GQSPI_IER_GENFIFOEMPTY_MASK | GQSPI_IER_RXNEMPTY_MASK | GQSPI_IER_RXEMPTY_MASK); } } /** * zynqmp_qspi_irq - Interrupt service routine of the QSPI controller * @irq: IRQ number * @dev_id: Pointer to the xqspi structure * * This function handles TX empty only. * On TX empty interrupt this function reads the received data from RX FIFO * and fills the TX FIFO if there is any data remaining to be transferred. * * Return: IRQ_HANDLED when interrupt is handled * IRQ_NONE otherwise. */ static irqreturn_t zynqmp_qspi_irq(int irq, void *dev_id) { struct zynqmp_qspi *xqspi = (struct zynqmp_qspi *)dev_id; irqreturn_t ret = IRQ_NONE; u32 status, mask, dma_status = 0; status = zynqmp_gqspi_read(xqspi, GQSPI_ISR_OFST); zynqmp_gqspi_write(xqspi, GQSPI_ISR_OFST, status); mask = (status & ~(zynqmp_gqspi_read(xqspi, GQSPI_IMASK_OFST))); /* Read and clear DMA status */ if (xqspi->mode == GQSPI_MODE_DMA) { dma_status = zynqmp_gqspi_read(xqspi, GQSPI_QSPIDMA_DST_I_STS_OFST); zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_I_STS_OFST, dma_status); } if (mask & GQSPI_ISR_TXNOT_FULL_MASK) { zynqmp_qspi_filltxfifo(xqspi, GQSPI_TX_FIFO_FILL); ret = IRQ_HANDLED; } if (dma_status & GQSPI_QSPIDMA_DST_I_STS_DONE_MASK) { zynqmp_process_dma_irq(xqspi); ret = IRQ_HANDLED; } else if (!(mask & GQSPI_IER_RXEMPTY_MASK) && (mask & GQSPI_IER_GENFIFOEMPTY_MASK)) { zynqmp_qspi_readrxfifo(xqspi, GQSPI_RX_FIFO_FILL); ret = IRQ_HANDLED; } if (xqspi->bytes_to_receive == 0 && xqspi->bytes_to_transfer == 0 && ((status & GQSPI_IRQ_MASK) == GQSPI_IRQ_MASK)) { zynqmp_gqspi_write(xqspi, GQSPI_IDR_OFST, GQSPI_ISR_IDR_MASK); complete(&xqspi->data_completion); ret = IRQ_HANDLED; } return ret; } /** * zynqmp_qspi_setuprxdma - This function sets up the RX DMA operation * @xqspi: xqspi is a pointer to the GQSPI instance. * * Return: 0 on success; error value otherwise. */ static int zynqmp_qspi_setuprxdma(struct zynqmp_qspi *xqspi) { u32 rx_bytes, rx_rem, config_reg; dma_addr_t addr; u64 dma_align = (u64)(uintptr_t)xqspi->rxbuf; if (xqspi->bytes_to_receive < 8 || ((dma_align & GQSPI_DMA_UNALIGN) != 0x0)) { /* Setting to IO mode */ config_reg = zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST); config_reg &= ~GQSPI_CFG_MODE_EN_MASK; zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, config_reg); xqspi->mode = GQSPI_MODE_IO; xqspi->dma_rx_bytes = 0; return 0; } rx_rem = xqspi->bytes_to_receive % 4; rx_bytes = (xqspi->bytes_to_receive - rx_rem); addr = dma_map_single(xqspi->dev, (void *)xqspi->rxbuf, rx_bytes, DMA_FROM_DEVICE); if (dma_mapping_error(xqspi->dev, addr)) { dev_err(xqspi->dev, "ERR:rxdma:memory not mapped\n"); return -ENOMEM; } xqspi->dma_rx_bytes = rx_bytes; xqspi->dma_addr = addr; zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_ADDR_OFST, (u32)(addr & 0xffffffff)); addr = ((addr >> 16) >> 16); zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_ADDR_MSB_OFST, ((u32)addr) & 0xfff); /* Enabling the DMA mode */ config_reg = zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST); config_reg &= ~GQSPI_CFG_MODE_EN_MASK; config_reg |= GQSPI_CFG_MODE_EN_DMA_MASK; zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, config_reg); /* Switch to DMA mode */ xqspi->mode = GQSPI_MODE_DMA; /* Write the number of bytes to transfer */ zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_SIZE_OFST, rx_bytes); return 0; } /** * zynqmp_qspi_write_op - This function sets up the GENFIFO entries, * TX FIFO, and fills the TX FIFO with as many * bytes as possible. * @xqspi: Pointer to the GQSPI instance. * @tx_nbits: Transfer buswidth. * @genfifoentry: Variable in which GENFIFO mask is returned * to calling function */ static void zynqmp_qspi_write_op(struct zynqmp_qspi *xqspi, u8 tx_nbits, u32 genfifoentry) { u32 config_reg; zynqmp_qspi_fillgenfifo(xqspi, tx_nbits, genfifoentry); zynqmp_qspi_filltxfifo(xqspi, GQSPI_TXD_DEPTH); if (xqspi->mode == GQSPI_MODE_DMA) { config_reg = zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST); config_reg &= ~GQSPI_CFG_MODE_EN_MASK; zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, config_reg); xqspi->mode = GQSPI_MODE_IO; } } /** * zynqmp_qspi_read_op - This function sets up the GENFIFO entries and * RX DMA operation. * @xqspi: xqspi is a pointer to the GQSPI instance. * @rx_nbits: Receive buswidth. * @genfifoentry: genfifoentry is pointer to the variable in which * GENFIFO mask is returned to calling function * * Return: 0 on success; error value otherwise. */ static int zynqmp_qspi_read_op(struct zynqmp_qspi *xqspi, u8 rx_nbits, u32 genfifoentry) { int ret; ret = zynqmp_qspi_setuprxdma(xqspi); if (ret) return ret; zynqmp_qspi_fillgenfifo(xqspi, rx_nbits, genfifoentry); return 0; } /** * zynqmp_qspi_suspend - Suspend method for the QSPI driver * @dev: Address of the platform_device structure * * This function stops the QSPI driver queue and disables the QSPI controller * * Return: Always 0 */ static int __maybe_unused zynqmp_qspi_suspend(struct device *dev) { struct zynqmp_qspi *xqspi = dev_get_drvdata(dev); struct spi_controller *ctlr = xqspi->ctlr; int ret; ret = spi_controller_suspend(ctlr); if (ret) return ret; zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, 0x0); return 0; } /** * zynqmp_qspi_resume - Resume method for the QSPI driver * @dev: Address of the platform_device structure * * The function starts the QSPI driver queue and initializes the QSPI * controller * * Return: 0 on success; error value otherwise */ static int __maybe_unused zynqmp_qspi_resume(struct device *dev) { struct zynqmp_qspi *xqspi = dev_get_drvdata(dev); struct spi_controller *ctlr = xqspi->ctlr; zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, GQSPI_EN_MASK); spi_controller_resume(ctlr); return 0; } /** * zynqmp_runtime_suspend - Runtime suspend method for the SPI driver * @dev: Address of the platform_device structure * * This function disables the clocks * * Return: Always 0 */ static int __maybe_unused zynqmp_runtime_suspend(struct device *dev) { struct zynqmp_qspi *xqspi = dev_get_drvdata(dev); clk_disable_unprepare(xqspi->refclk); clk_disable_unprepare(xqspi->pclk); return 0; } /** * zynqmp_runtime_resume - Runtime resume method for the SPI driver * @dev: Address of the platform_device structure * * This function enables the clocks * * Return: 0 on success and error value on error */ static int __maybe_unused zynqmp_runtime_resume(struct device *dev) { struct zynqmp_qspi *xqspi = dev_get_drvdata(dev); int ret; ret = clk_prepare_enable(xqspi->pclk); if (ret) { dev_err(dev, "Cannot enable APB clock.\n"); return ret; } ret = clk_prepare_enable(xqspi->refclk); if (ret) { dev_err(dev, "Cannot enable device clock.\n"); clk_disable_unprepare(xqspi->pclk); return ret; } return 0; } /** * zynqmp_qspi_exec_op() - Initiates the QSPI transfer * @mem: The SPI memory * @op: The memory operation to execute * * Executes a memory operation. * * This function first selects the chip and starts the memory operation. * * Return: 0 in case of success, a negative error code otherwise. */ static int zynqmp_qspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op) { struct zynqmp_qspi *xqspi = spi_controller_get_devdata (mem->spi->master); int err = 0, i; u32 genfifoentry = 0; u16 opcode = op->cmd.opcode; u64 opaddr; dev_dbg(xqspi->dev, "cmd:%#x mode:%d.%d.%d.%d\n", op->cmd.opcode, op->cmd.buswidth, op->addr.buswidth, op->dummy.buswidth, op->data.buswidth); mutex_lock(&xqspi->op_lock); zynqmp_qspi_config_op(xqspi, mem->spi); zynqmp_qspi_chipselect(mem->spi, false); genfifoentry |= xqspi->genfifocs; genfifoentry |= xqspi->genfifobus; if (op->cmd.opcode) { reinit_completion(&xqspi->data_completion); xqspi->txbuf = &opcode; xqspi->rxbuf = NULL; xqspi->bytes_to_transfer = op->cmd.nbytes; xqspi->bytes_to_receive = 0; zynqmp_qspi_write_op(xqspi, op->cmd.buswidth, genfifoentry); zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST) | GQSPI_CFG_START_GEN_FIFO_MASK); zynqmp_gqspi_write(xqspi, GQSPI_IER_OFST, GQSPI_IER_GENFIFOEMPTY_MASK | GQSPI_IER_TXNOT_FULL_MASK); if (!wait_for_completion_timeout (&xqspi->data_completion, msecs_to_jiffies(1000))) { err = -ETIMEDOUT; goto return_err; } } if (op->addr.nbytes) { xqspi->txbuf = &opaddr; for (i = 0; i < op->addr.nbytes; i++) { *(((u8 *)xqspi->txbuf) + i) = op->addr.val >> (8 * (op->addr.nbytes - i - 1)); } reinit_completion(&xqspi->data_completion); xqspi->rxbuf = NULL; xqspi->bytes_to_transfer = op->addr.nbytes; xqspi->bytes_to_receive = 0; zynqmp_qspi_write_op(xqspi, op->addr.buswidth, genfifoentry); zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST) | GQSPI_CFG_START_GEN_FIFO_MASK); zynqmp_gqspi_write(xqspi, GQSPI_IER_OFST, GQSPI_IER_TXEMPTY_MASK | GQSPI_IER_GENFIFOEMPTY_MASK | GQSPI_IER_TXNOT_FULL_MASK); if (!wait_for_completion_timeout (&xqspi->data_completion, msecs_to_jiffies(1000))) { err = -ETIMEDOUT; goto return_err; } } if (op->dummy.nbytes) { xqspi->txbuf = NULL; xqspi->rxbuf = NULL; /* * xqspi->bytes_to_transfer here represents the dummy circles * which need to be sent. */ xqspi->bytes_to_transfer = op->dummy.nbytes * 8 / op->dummy.buswidth; xqspi->bytes_to_receive = 0; /* * Using op->data.buswidth instead of op->dummy.buswidth here because * we need to use it to configure the correct SPI mode. */ zynqmp_qspi_write_op(xqspi, op->data.buswidth, genfifoentry); zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST) | GQSPI_CFG_START_GEN_FIFO_MASK); } if (op->data.nbytes) { reinit_completion(&xqspi->data_completion); if (op->data.dir == SPI_MEM_DATA_OUT) { xqspi->txbuf = (u8 *)op->data.buf.out; xqspi->rxbuf = NULL; xqspi->bytes_to_transfer = op->data.nbytes; xqspi->bytes_to_receive = 0; zynqmp_qspi_write_op(xqspi, op->data.buswidth, genfifoentry); zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, zynqmp_gqspi_read (xqspi, GQSPI_CONFIG_OFST) | GQSPI_CFG_START_GEN_FIFO_MASK); zynqmp_gqspi_write(xqspi, GQSPI_IER_OFST, GQSPI_IER_TXEMPTY_MASK | GQSPI_IER_GENFIFOEMPTY_MASK | GQSPI_IER_TXNOT_FULL_MASK); } else { xqspi->txbuf = NULL; xqspi->rxbuf = (u8 *)op->data.buf.in; xqspi->bytes_to_receive = op->data.nbytes; xqspi->bytes_to_transfer = 0; err = zynqmp_qspi_read_op(xqspi, op->data.buswidth, genfifoentry); if (err) goto return_err; zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, zynqmp_gqspi_read (xqspi, GQSPI_CONFIG_OFST) | GQSPI_CFG_START_GEN_FIFO_MASK); if (xqspi->mode == GQSPI_MODE_DMA) { zynqmp_gqspi_write (xqspi, GQSPI_QSPIDMA_DST_I_EN_OFST, GQSPI_QSPIDMA_DST_I_EN_DONE_MASK); } else { zynqmp_gqspi_write(xqspi, GQSPI_IER_OFST, GQSPI_IER_GENFIFOEMPTY_MASK | GQSPI_IER_RXNEMPTY_MASK | GQSPI_IER_RXEMPTY_MASK); } } if (!wait_for_completion_timeout (&xqspi->data_completion, msecs_to_jiffies(1000))) err = -ETIMEDOUT; } return_err: zynqmp_qspi_chipselect(mem->spi, true); mutex_unlock(&xqspi->op_lock); return err; } static const struct dev_pm_ops zynqmp_qspi_dev_pm_ops = { SET_RUNTIME_PM_OPS(zynqmp_runtime_suspend, zynqmp_runtime_resume, NULL) SET_SYSTEM_SLEEP_PM_OPS(zynqmp_qspi_suspend, zynqmp_qspi_resume) }; static const struct qspi_platform_data versal_qspi_def = { .quirks = QSPI_QUIRK_HAS_TAPDELAY, }; static const struct of_device_id zynqmp_qspi_of_match[] = { { .compatible = "xlnx,zynqmp-qspi-1.0"}, { .compatible = "xlnx,versal-qspi-1.0", .data = &versal_qspi_def }, { /* End of table */ } }; static const struct spi_controller_mem_ops zynqmp_qspi_mem_ops = { .exec_op = zynqmp_qspi_exec_op, }; /** * zynqmp_qspi_probe - Probe method for the QSPI driver * @pdev: Pointer to the platform_device structure * * This function initializes the driver data structures and the hardware. * * Return: 0 on success; error value otherwise */ static int zynqmp_qspi_probe(struct platform_device *pdev) { int ret = 0; struct spi_controller *ctlr; struct zynqmp_qspi *xqspi; struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; u32 num_cs; const struct qspi_platform_data *p_data; ctlr = spi_alloc_master(&pdev->dev, sizeof(*xqspi)); if (!ctlr) return -ENOMEM; xqspi = spi_controller_get_devdata(ctlr); xqspi->dev = dev; xqspi->ctlr = ctlr; platform_set_drvdata(pdev, xqspi); p_data = of_device_get_match_data(&pdev->dev); if (p_data && (p_data->quirks & QSPI_QUIRK_HAS_TAPDELAY)) xqspi->has_tapdelay = true; xqspi->regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(xqspi->regs)) { ret = PTR_ERR(xqspi->regs); goto remove_master; } xqspi->pclk = devm_clk_get(&pdev->dev, "pclk"); if (IS_ERR(xqspi->pclk)) { dev_err(dev, "pclk clock not found.\n"); ret = PTR_ERR(xqspi->pclk); goto remove_master; } xqspi->refclk = devm_clk_get(&pdev->dev, "ref_clk"); if (IS_ERR(xqspi->refclk)) { dev_err(dev, "ref_clk clock not found.\n"); ret = PTR_ERR(xqspi->refclk); goto remove_master; } ret = clk_prepare_enable(xqspi->pclk); if (ret) { dev_err(dev, "Unable to enable APB clock.\n"); goto remove_master; } ret = clk_prepare_enable(xqspi->refclk); if (ret) { dev_err(dev, "Unable to enable device clock.\n"); goto clk_dis_pclk; } init_completion(&xqspi->data_completion); mutex_init(&xqspi->op_lock); pm_runtime_use_autosuspend(&pdev->dev); pm_runtime_set_autosuspend_delay(&pdev->dev, SPI_AUTOSUSPEND_TIMEOUT); pm_runtime_set_active(&pdev->dev); pm_runtime_enable(&pdev->dev); ret = pm_runtime_get_sync(&pdev->dev); if (ret < 0) { dev_err(&pdev->dev, "Failed to pm_runtime_get_sync: %d\n", ret); goto clk_dis_all; } ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_RX_DUAL | SPI_RX_QUAD | SPI_TX_DUAL | SPI_TX_QUAD; ctlr->max_speed_hz = clk_get_rate(xqspi->refclk) / 2; xqspi->speed_hz = ctlr->max_speed_hz; /* QSPI controller initializations */ zynqmp_qspi_init_hw(xqspi); xqspi->irq = platform_get_irq(pdev, 0); if (xqspi->irq < 0) { ret = xqspi->irq; goto clk_dis_all; } ret = devm_request_irq(&pdev->dev, xqspi->irq, zynqmp_qspi_irq, 0, pdev->name, xqspi); if (ret != 0) { ret = -ENXIO; dev_err(dev, "request_irq failed\n"); goto clk_dis_all; } ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(44)); if (ret) goto clk_dis_all; ret = of_property_read_u32(np, "num-cs", &num_cs); if (ret < 0) { ctlr->num_chipselect = GQSPI_DEFAULT_NUM_CS; } else if (num_cs > GQSPI_MAX_NUM_CS) { ret = -EINVAL; dev_err(&pdev->dev, "only %d chip selects are available\n", GQSPI_MAX_NUM_CS); goto clk_dis_all; } else { ctlr->num_chipselect = num_cs; } ctlr->bits_per_word_mask = SPI_BPW_MASK(8); ctlr->mem_ops = &zynqmp_qspi_mem_ops; ctlr->setup = zynqmp_qspi_setup_op; ctlr->bits_per_word_mask = SPI_BPW_MASK(8); ctlr->dev.of_node = np; ctlr->auto_runtime_pm = true; ret = devm_spi_register_controller(&pdev->dev, ctlr); if (ret) { dev_err(&pdev->dev, "spi_register_controller failed\n"); goto clk_dis_all; } pm_runtime_mark_last_busy(&pdev->dev); pm_runtime_put_autosuspend(&pdev->dev); return 0; clk_dis_all: pm_runtime_disable(&pdev->dev); pm_runtime_put_noidle(&pdev->dev); pm_runtime_set_suspended(&pdev->dev); clk_disable_unprepare(xqspi->refclk); clk_dis_pclk: clk_disable_unprepare(xqspi->pclk); remove_master: spi_controller_put(ctlr); return ret; } /** * zynqmp_qspi_remove - Remove method for the QSPI driver * @pdev: Pointer to the platform_device structure * * This function is called if a device is physically removed from the system or * if the driver module is being unloaded. It frees all resources allocated to * the device. * * Return: 0 Always */ static void zynqmp_qspi_remove(struct platform_device *pdev) { struct zynqmp_qspi *xqspi = platform_get_drvdata(pdev); pm_runtime_get_sync(&pdev->dev); zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, 0x0); pm_runtime_disable(&pdev->dev); pm_runtime_put_noidle(&pdev->dev); pm_runtime_set_suspended(&pdev->dev); clk_disable_unprepare(xqspi->refclk); clk_disable_unprepare(xqspi->pclk); } MODULE_DEVICE_TABLE(of, zynqmp_qspi_of_match); static struct platform_driver zynqmp_qspi_driver = { .probe = zynqmp_qspi_probe, .remove_new = zynqmp_qspi_remove, .driver = { .name = "zynqmp-qspi", .of_match_table = zynqmp_qspi_of_match, .pm = &zynqmp_qspi_dev_pm_ops, }, }; module_platform_driver(zynqmp_qspi_driver); MODULE_AUTHOR("Xilinx, Inc."); MODULE_DESCRIPTION("Xilinx Zynqmp QSPI driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1