Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Dmitry Bogdanov | 4391 | 41.83% | 6 | 5.26% |
Christoph Hellwig | 2215 | 21.10% | 19 | 16.67% |
Nicholas Bellinger | 1452 | 13.83% | 27 | 23.68% |
Roland Dreier | 1189 | 11.33% | 14 | 12.28% |
Hannes Reinecke | 256 | 2.44% | 6 | 5.26% |
Andy Grover | 186 | 1.77% | 7 | 6.14% |
Michael Christie | 143 | 1.36% | 4 | 3.51% |
Konstantin Shelekhin | 136 | 1.30% | 3 | 2.63% |
David Disseldorp | 116 | 1.11% | 5 | 4.39% |
Sergey Samoylenko | 86 | 0.82% | 2 | 1.75% |
Bart Van Assche | 85 | 0.81% | 3 | 2.63% |
Paolo Bonzini | 65 | 0.62% | 3 | 2.63% |
Sagi Grimberg | 63 | 0.60% | 3 | 2.63% |
Jamie Pocas | 41 | 0.39% | 1 | 0.88% |
Andy Shevchenko | 33 | 0.31% | 3 | 2.63% |
Anastasia Kovaleva | 27 | 0.26% | 1 | 0.88% |
Paul Gortmaker | 3 | 0.03% | 1 | 0.88% |
Roman Bolshakov | 3 | 0.03% | 1 | 0.88% |
Tang Wenji | 2 | 0.02% | 1 | 0.88% |
Thomas Gleixner | 2 | 0.02% | 1 | 0.88% |
Jörn Engel | 1 | 0.01% | 1 | 0.88% |
Sebastian Herbszt | 1 | 0.01% | 1 | 0.88% |
Christophe Vu-Brugier | 1 | 0.01% | 1 | 0.88% |
Total | 10497 | 114 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * SCSI Primary Commands (SPC) parsing and emulation. * * (c) Copyright 2002-2013 Datera, Inc. * * Nicholas A. Bellinger <nab@kernel.org> */ #include <linux/kernel.h> #include <linux/module.h> #include <asm/unaligned.h> #include <scsi/scsi_proto.h> #include <scsi/scsi_common.h> #include <scsi/scsi_tcq.h> #include <target/target_core_base.h> #include <target/target_core_backend.h> #include <target/target_core_fabric.h> #include "target_core_internal.h" #include "target_core_alua.h" #include "target_core_pr.h" #include "target_core_ua.h" #include "target_core_xcopy.h" static void spc_fill_alua_data(struct se_lun *lun, unsigned char *buf) { struct t10_alua_tg_pt_gp *tg_pt_gp; /* * Set SCCS for MAINTENANCE_IN + REPORT_TARGET_PORT_GROUPS. */ buf[5] = 0x80; /* * Set TPGS field for explicit and/or implicit ALUA access type * and opteration. * * See spc4r17 section 6.4.2 Table 135 */ rcu_read_lock(); tg_pt_gp = rcu_dereference(lun->lun_tg_pt_gp); if (tg_pt_gp) buf[5] |= tg_pt_gp->tg_pt_gp_alua_access_type; rcu_read_unlock(); } static u16 spc_find_scsi_transport_vd(int proto_id) { switch (proto_id) { case SCSI_PROTOCOL_FCP: return SCSI_VERSION_DESCRIPTOR_FCP4; case SCSI_PROTOCOL_ISCSI: return SCSI_VERSION_DESCRIPTOR_ISCSI; case SCSI_PROTOCOL_SAS: return SCSI_VERSION_DESCRIPTOR_SAS3; case SCSI_PROTOCOL_SBP: return SCSI_VERSION_DESCRIPTOR_SBP3; case SCSI_PROTOCOL_SRP: return SCSI_VERSION_DESCRIPTOR_SRP; default: pr_warn("Cannot find VERSION DESCRIPTOR value for unknown SCSI" " transport PROTOCOL IDENTIFIER %#x\n", proto_id); return 0; } } sense_reason_t spc_emulate_inquiry_std(struct se_cmd *cmd, unsigned char *buf) { struct se_lun *lun = cmd->se_lun; struct se_portal_group *tpg = lun->lun_tpg; struct se_device *dev = cmd->se_dev; struct se_session *sess = cmd->se_sess; /* Set RMB (removable media) for tape devices */ if (dev->transport->get_device_type(dev) == TYPE_TAPE) buf[1] = 0x80; buf[2] = 0x06; /* SPC-4 */ /* * NORMACA and HISUP = 0, RESPONSE DATA FORMAT = 2 * * SPC4 says: * A RESPONSE DATA FORMAT field set to 2h indicates that the * standard INQUIRY data is in the format defined in this * standard. Response data format values less than 2h are * obsolete. Response data format values greater than 2h are * reserved. */ buf[3] = 2; /* * Enable SCCS and TPGS fields for Emulated ALUA */ spc_fill_alua_data(lun, buf); /* * Set Third-Party Copy (3PC) bit to indicate support for EXTENDED_COPY */ if (dev->dev_attrib.emulate_3pc) buf[5] |= 0x8; /* * Set Protection (PROTECT) bit when DIF has been enabled on the * device, and the fabric supports VERIFY + PASS. Also report * PROTECT=1 if sess_prot_type has been configured to allow T10-PI * to unprotected devices. */ if (sess->sup_prot_ops & (TARGET_PROT_DIN_PASS | TARGET_PROT_DOUT_PASS)) { if (dev->dev_attrib.pi_prot_type || cmd->se_sess->sess_prot_type) buf[5] |= 0x1; } /* * Set MULTIP bit to indicate presence of multiple SCSI target ports */ if (dev->export_count > 1) buf[6] |= 0x10; buf[7] = 0x2; /* CmdQue=1 */ /* * ASCII data fields described as being left-aligned shall have any * unused bytes at the end of the field (i.e., highest offset) and the * unused bytes shall be filled with ASCII space characters (20h). */ memset(&buf[8], 0x20, INQUIRY_VENDOR_LEN + INQUIRY_MODEL_LEN + INQUIRY_REVISION_LEN); memcpy(&buf[8], dev->t10_wwn.vendor, strnlen(dev->t10_wwn.vendor, INQUIRY_VENDOR_LEN)); memcpy(&buf[16], dev->t10_wwn.model, strnlen(dev->t10_wwn.model, INQUIRY_MODEL_LEN)); memcpy(&buf[32], dev->t10_wwn.revision, strnlen(dev->t10_wwn.revision, INQUIRY_REVISION_LEN)); /* * Set the VERSION DESCRIPTOR fields */ put_unaligned_be16(SCSI_VERSION_DESCRIPTOR_SAM5, &buf[58]); put_unaligned_be16(spc_find_scsi_transport_vd(tpg->proto_id), &buf[60]); put_unaligned_be16(SCSI_VERSION_DESCRIPTOR_SPC4, &buf[62]); if (cmd->se_dev->transport->get_device_type(dev) == TYPE_DISK) put_unaligned_be16(SCSI_VERSION_DESCRIPTOR_SBC3, &buf[64]); buf[4] = 91; /* Set additional length to 91 */ return 0; } EXPORT_SYMBOL(spc_emulate_inquiry_std); /* unit serial number */ static sense_reason_t spc_emulate_evpd_80(struct se_cmd *cmd, unsigned char *buf) { struct se_device *dev = cmd->se_dev; u16 len; if (dev->dev_flags & DF_EMULATED_VPD_UNIT_SERIAL) { len = sprintf(&buf[4], "%s", dev->t10_wwn.unit_serial); len++; /* Extra Byte for NULL Terminator */ buf[3] = len; } return 0; } /* * Generate NAA IEEE Registered Extended designator */ void spc_gen_naa_6h_vendor_specific(struct se_device *dev, unsigned char *buf) { unsigned char *p = &dev->t10_wwn.unit_serial[0]; u32 company_id = dev->t10_wwn.company_id; int cnt, off = 0; bool next = true; /* * Start NAA IEEE Registered Extended Identifier/Designator */ buf[off] = 0x6 << 4; /* IEEE COMPANY_ID */ buf[off++] |= (company_id >> 20) & 0xf; buf[off++] = (company_id >> 12) & 0xff; buf[off++] = (company_id >> 4) & 0xff; buf[off] = (company_id & 0xf) << 4; /* * Generate up to 36 bits of VENDOR SPECIFIC IDENTIFIER starting on * byte 3 bit 3-0 for NAA IEEE Registered Extended DESIGNATOR field * format, followed by 64 bits of VENDOR SPECIFIC IDENTIFIER EXTENSION * to complete the payload. These are based from VPD=0x80 PRODUCT SERIAL * NUMBER set via vpd_unit_serial in target_core_configfs.c to ensure * per device uniqeness. */ for (cnt = off + 13; *p && off < cnt; p++) { int val = hex_to_bin(*p); if (val < 0) continue; if (next) { next = false; buf[off++] |= val; } else { next = true; buf[off] = val << 4; } } } /* * Device identification VPD, for a complete list of * DESIGNATOR TYPEs see spc4r17 Table 459. */ sense_reason_t spc_emulate_evpd_83(struct se_cmd *cmd, unsigned char *buf) { struct se_device *dev = cmd->se_dev; struct se_lun *lun = cmd->se_lun; struct se_portal_group *tpg = NULL; struct t10_alua_lu_gp_member *lu_gp_mem; struct t10_alua_tg_pt_gp *tg_pt_gp; unsigned char *prod = &dev->t10_wwn.model[0]; u32 off = 0; u16 len = 0, id_len; off = 4; /* * NAA IEEE Registered Extended Assigned designator format, see * spc4r17 section 7.7.3.6.5 * * We depend upon a target_core_mod/ConfigFS provided * /sys/kernel/config/target/core/$HBA/$DEV/wwn/vpd_unit_serial * value in order to return the NAA id. */ if (!(dev->dev_flags & DF_EMULATED_VPD_UNIT_SERIAL)) goto check_t10_vend_desc; /* CODE SET == Binary */ buf[off++] = 0x1; /* Set ASSOCIATION == addressed logical unit: 0)b */ buf[off] = 0x00; /* Identifier/Designator type == NAA identifier */ buf[off++] |= 0x3; off++; /* Identifier/Designator length */ buf[off++] = 0x10; /* NAA IEEE Registered Extended designator */ spc_gen_naa_6h_vendor_specific(dev, &buf[off]); len = 20; off = (len + 4); check_t10_vend_desc: /* * T10 Vendor Identifier Page, see spc4r17 section 7.7.3.4 */ id_len = 8; /* For Vendor field */ if (dev->dev_flags & DF_EMULATED_VPD_UNIT_SERIAL) id_len += sprintf(&buf[off+12], "%s:%s", prod, &dev->t10_wwn.unit_serial[0]); buf[off] = 0x2; /* ASCII */ buf[off+1] = 0x1; /* T10 Vendor ID */ buf[off+2] = 0x0; /* left align Vendor ID and pad with spaces */ memset(&buf[off+4], 0x20, INQUIRY_VENDOR_LEN); memcpy(&buf[off+4], dev->t10_wwn.vendor, strnlen(dev->t10_wwn.vendor, INQUIRY_VENDOR_LEN)); /* Extra Byte for NULL Terminator */ id_len++; /* Identifier Length */ buf[off+3] = id_len; /* Header size for Designation descriptor */ len += (id_len + 4); off += (id_len + 4); if (1) { struct t10_alua_lu_gp *lu_gp; u32 padding, scsi_name_len, scsi_target_len; u16 lu_gp_id = 0; u16 tg_pt_gp_id = 0; u16 tpgt; tpg = lun->lun_tpg; /* * Relative target port identifer, see spc4r17 * section 7.7.3.7 * * Get the PROTOCOL IDENTIFIER as defined by spc4r17 * section 7.5.1 Table 362 */ buf[off] = tpg->proto_id << 4; buf[off++] |= 0x1; /* CODE SET == Binary */ buf[off] = 0x80; /* Set PIV=1 */ /* Set ASSOCIATION == target port: 01b */ buf[off] |= 0x10; /* DESIGNATOR TYPE == Relative target port identifer */ buf[off++] |= 0x4; off++; /* Skip over Reserved */ buf[off++] = 4; /* DESIGNATOR LENGTH */ /* Skip over Obsolete field in RTPI payload * in Table 472 */ off += 2; put_unaligned_be16(lun->lun_tpg->tpg_rtpi, &buf[off]); off += 2; len += 8; /* Header size + Designation descriptor */ /* * Target port group identifier, see spc4r17 * section 7.7.3.8 * * Get the PROTOCOL IDENTIFIER as defined by spc4r17 * section 7.5.1 Table 362 */ rcu_read_lock(); tg_pt_gp = rcu_dereference(lun->lun_tg_pt_gp); if (!tg_pt_gp) { rcu_read_unlock(); goto check_lu_gp; } tg_pt_gp_id = tg_pt_gp->tg_pt_gp_id; rcu_read_unlock(); buf[off] = tpg->proto_id << 4; buf[off++] |= 0x1; /* CODE SET == Binary */ buf[off] = 0x80; /* Set PIV=1 */ /* Set ASSOCIATION == target port: 01b */ buf[off] |= 0x10; /* DESIGNATOR TYPE == Target port group identifier */ buf[off++] |= 0x5; off++; /* Skip over Reserved */ buf[off++] = 4; /* DESIGNATOR LENGTH */ off += 2; /* Skip over Reserved Field */ put_unaligned_be16(tg_pt_gp_id, &buf[off]); off += 2; len += 8; /* Header size + Designation descriptor */ /* * Logical Unit Group identifier, see spc4r17 * section 7.7.3.8 */ check_lu_gp: lu_gp_mem = dev->dev_alua_lu_gp_mem; if (!lu_gp_mem) goto check_scsi_name; spin_lock(&lu_gp_mem->lu_gp_mem_lock); lu_gp = lu_gp_mem->lu_gp; if (!lu_gp) { spin_unlock(&lu_gp_mem->lu_gp_mem_lock); goto check_scsi_name; } lu_gp_id = lu_gp->lu_gp_id; spin_unlock(&lu_gp_mem->lu_gp_mem_lock); buf[off++] |= 0x1; /* CODE SET == Binary */ /* DESIGNATOR TYPE == Logical Unit Group identifier */ buf[off++] |= 0x6; off++; /* Skip over Reserved */ buf[off++] = 4; /* DESIGNATOR LENGTH */ off += 2; /* Skip over Reserved Field */ put_unaligned_be16(lu_gp_id, &buf[off]); off += 2; len += 8; /* Header size + Designation descriptor */ /* * SCSI name string designator, see spc4r17 * section 7.7.3.11 * * Get the PROTOCOL IDENTIFIER as defined by spc4r17 * section 7.5.1 Table 362 */ check_scsi_name: buf[off] = tpg->proto_id << 4; buf[off++] |= 0x3; /* CODE SET == UTF-8 */ buf[off] = 0x80; /* Set PIV=1 */ /* Set ASSOCIATION == target port: 01b */ buf[off] |= 0x10; /* DESIGNATOR TYPE == SCSI name string */ buf[off++] |= 0x8; off += 2; /* Skip over Reserved and length */ /* * SCSI name string identifer containing, $FABRIC_MOD * dependent information. For LIO-Target and iSCSI * Target Port, this means "<iSCSI name>,t,0x<TPGT> in * UTF-8 encoding. */ tpgt = tpg->se_tpg_tfo->tpg_get_tag(tpg); scsi_name_len = sprintf(&buf[off], "%s,t,0x%04x", tpg->se_tpg_tfo->tpg_get_wwn(tpg), tpgt); scsi_name_len += 1 /* Include NULL terminator */; /* * The null-terminated, null-padded (see 4.4.2) SCSI * NAME STRING field contains a UTF-8 format string. * The number of bytes in the SCSI NAME STRING field * (i.e., the value in the DESIGNATOR LENGTH field) * shall be no larger than 256 and shall be a multiple * of four. */ padding = ((-scsi_name_len) & 3); if (padding) scsi_name_len += padding; if (scsi_name_len > 256) scsi_name_len = 256; buf[off-1] = scsi_name_len; off += scsi_name_len; /* Header size + Designation descriptor */ len += (scsi_name_len + 4); /* * Target device designator */ buf[off] = tpg->proto_id << 4; buf[off++] |= 0x3; /* CODE SET == UTF-8 */ buf[off] = 0x80; /* Set PIV=1 */ /* Set ASSOCIATION == target device: 10b */ buf[off] |= 0x20; /* DESIGNATOR TYPE == SCSI name string */ buf[off++] |= 0x8; off += 2; /* Skip over Reserved and length */ /* * SCSI name string identifer containing, $FABRIC_MOD * dependent information. For LIO-Target and iSCSI * Target Port, this means "<iSCSI name>" in * UTF-8 encoding. */ scsi_target_len = sprintf(&buf[off], "%s", tpg->se_tpg_tfo->tpg_get_wwn(tpg)); scsi_target_len += 1 /* Include NULL terminator */; /* * The null-terminated, null-padded (see 4.4.2) SCSI * NAME STRING field contains a UTF-8 format string. * The number of bytes in the SCSI NAME STRING field * (i.e., the value in the DESIGNATOR LENGTH field) * shall be no larger than 256 and shall be a multiple * of four. */ padding = ((-scsi_target_len) & 3); if (padding) scsi_target_len += padding; if (scsi_target_len > 256) scsi_target_len = 256; buf[off-1] = scsi_target_len; off += scsi_target_len; /* Header size + Designation descriptor */ len += (scsi_target_len + 4); } put_unaligned_be16(len, &buf[2]); /* Page Length for VPD 0x83 */ return 0; } EXPORT_SYMBOL(spc_emulate_evpd_83); /* Extended INQUIRY Data VPD Page */ static sense_reason_t spc_emulate_evpd_86(struct se_cmd *cmd, unsigned char *buf) { struct se_device *dev = cmd->se_dev; struct se_session *sess = cmd->se_sess; buf[3] = 0x3c; /* * Set GRD_CHK + REF_CHK for TYPE1 protection, or GRD_CHK * only for TYPE3 protection. */ if (sess->sup_prot_ops & (TARGET_PROT_DIN_PASS | TARGET_PROT_DOUT_PASS)) { if (dev->dev_attrib.pi_prot_type == TARGET_DIF_TYPE1_PROT || cmd->se_sess->sess_prot_type == TARGET_DIF_TYPE1_PROT) buf[4] = 0x5; else if (dev->dev_attrib.pi_prot_type == TARGET_DIF_TYPE3_PROT || cmd->se_sess->sess_prot_type == TARGET_DIF_TYPE3_PROT) buf[4] = 0x4; } /* logical unit supports type 1 and type 3 protection */ if ((dev->transport->get_device_type(dev) == TYPE_DISK) && (sess->sup_prot_ops & (TARGET_PROT_DIN_PASS | TARGET_PROT_DOUT_PASS)) && (dev->dev_attrib.pi_prot_type || cmd->se_sess->sess_prot_type)) { buf[4] |= (0x3 << 3); } /* Set HEADSUP, ORDSUP, SIMPSUP */ buf[5] = 0x07; /* If WriteCache emulation is enabled, set V_SUP */ if (target_check_wce(dev)) buf[6] = 0x01; /* If an LBA map is present set R_SUP */ spin_lock(&cmd->se_dev->t10_alua.lba_map_lock); if (!list_empty(&dev->t10_alua.lba_map_list)) buf[8] = 0x10; spin_unlock(&cmd->se_dev->t10_alua.lba_map_lock); return 0; } /* Block Limits VPD page */ static sense_reason_t spc_emulate_evpd_b0(struct se_cmd *cmd, unsigned char *buf) { struct se_device *dev = cmd->se_dev; u32 mtl = 0; int have_tp = 0, opt, min; u32 io_max_blocks; /* * Following spc3r22 section 6.5.3 Block Limits VPD page, when * emulate_tpu=1 or emulate_tpws=1 we will be expect a * different page length for Thin Provisioning. */ if (dev->dev_attrib.emulate_tpu || dev->dev_attrib.emulate_tpws) have_tp = 1; buf[0] = dev->transport->get_device_type(dev); buf[3] = have_tp ? 0x3c : 0x10; /* Set WSNZ to 1 */ buf[4] = 0x01; /* * Set MAXIMUM COMPARE AND WRITE LENGTH */ if (dev->dev_attrib.emulate_caw) buf[5] = 0x01; /* * Set OPTIMAL TRANSFER LENGTH GRANULARITY */ if (dev->transport->get_io_min && (min = dev->transport->get_io_min(dev))) put_unaligned_be16(min / dev->dev_attrib.block_size, &buf[6]); else put_unaligned_be16(1, &buf[6]); /* * Set MAXIMUM TRANSFER LENGTH * * XXX: Currently assumes single PAGE_SIZE per scatterlist for fabrics * enforcing maximum HW scatter-gather-list entry limit */ if (cmd->se_tfo->max_data_sg_nents) { mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE) / dev->dev_attrib.block_size; } io_max_blocks = mult_frac(dev->dev_attrib.hw_max_sectors, dev->dev_attrib.hw_block_size, dev->dev_attrib.block_size); put_unaligned_be32(min_not_zero(mtl, io_max_blocks), &buf[8]); /* * Set OPTIMAL TRANSFER LENGTH */ if (dev->transport->get_io_opt && (opt = dev->transport->get_io_opt(dev))) put_unaligned_be32(opt / dev->dev_attrib.block_size, &buf[12]); else put_unaligned_be32(dev->dev_attrib.optimal_sectors, &buf[12]); /* * Exit now if we don't support TP. */ if (!have_tp) goto max_write_same; /* * Set MAXIMUM UNMAP LBA COUNT */ put_unaligned_be32(dev->dev_attrib.max_unmap_lba_count, &buf[20]); /* * Set MAXIMUM UNMAP BLOCK DESCRIPTOR COUNT */ put_unaligned_be32(dev->dev_attrib.max_unmap_block_desc_count, &buf[24]); /* * Set OPTIMAL UNMAP GRANULARITY */ put_unaligned_be32(dev->dev_attrib.unmap_granularity, &buf[28]); /* * UNMAP GRANULARITY ALIGNMENT */ put_unaligned_be32(dev->dev_attrib.unmap_granularity_alignment, &buf[32]); if (dev->dev_attrib.unmap_granularity_alignment != 0) buf[32] |= 0x80; /* Set the UGAVALID bit */ /* * MAXIMUM WRITE SAME LENGTH */ max_write_same: put_unaligned_be64(dev->dev_attrib.max_write_same_len, &buf[36]); return 0; } /* Block Device Characteristics VPD page */ static sense_reason_t spc_emulate_evpd_b1(struct se_cmd *cmd, unsigned char *buf) { struct se_device *dev = cmd->se_dev; buf[0] = dev->transport->get_device_type(dev); buf[3] = 0x3c; buf[5] = dev->dev_attrib.is_nonrot ? 1 : 0; return 0; } /* Thin Provisioning VPD */ static sense_reason_t spc_emulate_evpd_b2(struct se_cmd *cmd, unsigned char *buf) { struct se_device *dev = cmd->se_dev; /* * From spc3r22 section 6.5.4 Thin Provisioning VPD page: * * The PAGE LENGTH field is defined in SPC-4. If the DP bit is set to * zero, then the page length shall be set to 0004h. If the DP bit * is set to one, then the page length shall be set to the value * defined in table 162. */ buf[0] = dev->transport->get_device_type(dev); /* * Set Hardcoded length mentioned above for DP=0 */ put_unaligned_be16(0x0004, &buf[2]); /* * The THRESHOLD EXPONENT field indicates the threshold set size in * LBAs as a power of 2 (i.e., the threshold set size is equal to * 2(threshold exponent)). * * Note that this is currently set to 0x00 as mkp says it will be * changing again. We can enable this once it has settled in T10 * and is actually used by Linux/SCSI ML code. */ buf[4] = 0x00; /* * A TPU bit set to one indicates that the device server supports * the UNMAP command (see 5.25). A TPU bit set to zero indicates * that the device server does not support the UNMAP command. */ if (dev->dev_attrib.emulate_tpu != 0) buf[5] = 0x80; /* * A TPWS bit set to one indicates that the device server supports * the use of the WRITE SAME (16) command (see 5.42) to unmap LBAs. * A TPWS bit set to zero indicates that the device server does not * support the use of the WRITE SAME (16) command to unmap LBAs. */ if (dev->dev_attrib.emulate_tpws != 0) buf[5] |= 0x40 | 0x20; /* * The unmap_zeroes_data set means that the underlying device supports * REQ_OP_DISCARD and has the discard_zeroes_data bit set. This * satisfies the SBC requirements for LBPRZ, meaning that a subsequent * read will return zeroes after an UNMAP or WRITE SAME (16) to an LBA * See sbc4r36 6.6.4. */ if (((dev->dev_attrib.emulate_tpu != 0) || (dev->dev_attrib.emulate_tpws != 0)) && (dev->dev_attrib.unmap_zeroes_data != 0)) buf[5] |= 0x04; return 0; } /* Referrals VPD page */ static sense_reason_t spc_emulate_evpd_b3(struct se_cmd *cmd, unsigned char *buf) { struct se_device *dev = cmd->se_dev; buf[0] = dev->transport->get_device_type(dev); buf[3] = 0x0c; put_unaligned_be32(dev->t10_alua.lba_map_segment_size, &buf[8]); put_unaligned_be32(dev->t10_alua.lba_map_segment_multiplier, &buf[12]); return 0; } static sense_reason_t spc_emulate_evpd_00(struct se_cmd *cmd, unsigned char *buf); static struct { uint8_t page; sense_reason_t (*emulate)(struct se_cmd *, unsigned char *); } evpd_handlers[] = { { .page = 0x00, .emulate = spc_emulate_evpd_00 }, { .page = 0x80, .emulate = spc_emulate_evpd_80 }, { .page = 0x83, .emulate = spc_emulate_evpd_83 }, { .page = 0x86, .emulate = spc_emulate_evpd_86 }, { .page = 0xb0, .emulate = spc_emulate_evpd_b0 }, { .page = 0xb1, .emulate = spc_emulate_evpd_b1 }, { .page = 0xb2, .emulate = spc_emulate_evpd_b2 }, { .page = 0xb3, .emulate = spc_emulate_evpd_b3 }, }; /* supported vital product data pages */ static sense_reason_t spc_emulate_evpd_00(struct se_cmd *cmd, unsigned char *buf) { int p; /* * Only report the INQUIRY EVPD=1 pages after a valid NAA * Registered Extended LUN WWN has been set via ConfigFS * during device creation/restart. */ if (cmd->se_dev->dev_flags & DF_EMULATED_VPD_UNIT_SERIAL) { buf[3] = ARRAY_SIZE(evpd_handlers); for (p = 0; p < ARRAY_SIZE(evpd_handlers); ++p) buf[p + 4] = evpd_handlers[p].page; } return 0; } static sense_reason_t spc_emulate_inquiry(struct se_cmd *cmd) { struct se_device *dev = cmd->se_dev; unsigned char *rbuf; unsigned char *cdb = cmd->t_task_cdb; unsigned char *buf; sense_reason_t ret; int p; int len = 0; buf = kzalloc(SE_INQUIRY_BUF, GFP_KERNEL); if (!buf) { pr_err("Unable to allocate response buffer for INQUIRY\n"); return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; } buf[0] = dev->transport->get_device_type(dev); if (!(cdb[1] & 0x1)) { if (cdb[2]) { pr_err("INQUIRY with EVPD==0 but PAGE CODE=%02x\n", cdb[2]); ret = TCM_INVALID_CDB_FIELD; goto out; } ret = spc_emulate_inquiry_std(cmd, buf); len = buf[4] + 5; goto out; } for (p = 0; p < ARRAY_SIZE(evpd_handlers); ++p) { if (cdb[2] == evpd_handlers[p].page) { buf[1] = cdb[2]; ret = evpd_handlers[p].emulate(cmd, buf); len = get_unaligned_be16(&buf[2]) + 4; goto out; } } pr_debug("Unknown VPD Code: 0x%02x\n", cdb[2]); ret = TCM_INVALID_CDB_FIELD; out: rbuf = transport_kmap_data_sg(cmd); if (rbuf) { memcpy(rbuf, buf, min_t(u32, SE_INQUIRY_BUF, cmd->data_length)); transport_kunmap_data_sg(cmd); } kfree(buf); if (!ret) target_complete_cmd_with_length(cmd, SAM_STAT_GOOD, len); return ret; } static int spc_modesense_rwrecovery(struct se_cmd *cmd, u8 pc, u8 *p) { p[0] = 0x01; p[1] = 0x0a; /* No changeable values for now */ if (pc == 1) goto out; out: return 12; } static int spc_modesense_control(struct se_cmd *cmd, u8 pc, u8 *p) { struct se_device *dev = cmd->se_dev; struct se_session *sess = cmd->se_sess; p[0] = 0x0a; p[1] = 0x0a; /* No changeable values for now */ if (pc == 1) goto out; /* GLTSD: No implicit save of log parameters */ p[2] = (1 << 1); if (target_sense_desc_format(dev)) /* D_SENSE: Descriptor format sense data for 64bit sectors */ p[2] |= (1 << 2); /* * From spc4r23, 7.4.7 Control mode page * * The QUEUE ALGORITHM MODIFIER field (see table 368) specifies * restrictions on the algorithm used for reordering commands * having the SIMPLE task attribute (see SAM-4). * * Table 368 -- QUEUE ALGORITHM MODIFIER field * Code Description * 0h Restricted reordering * 1h Unrestricted reordering allowed * 2h to 7h Reserved * 8h to Fh Vendor specific * * A value of zero in the QUEUE ALGORITHM MODIFIER field specifies that * the device server shall order the processing sequence of commands * having the SIMPLE task attribute such that data integrity is maintained * for that I_T nexus (i.e., if the transmission of new SCSI transport protocol * requests is halted at any time, the final value of all data observable * on the medium shall be the same as if all the commands had been processed * with the ORDERED task attribute). * * A value of one in the QUEUE ALGORITHM MODIFIER field specifies that the * device server may reorder the processing sequence of commands having the * SIMPLE task attribute in any manner. Any data integrity exposures related to * command sequence order shall be explicitly handled by the application client * through the selection of appropriate ommands and task attributes. */ p[3] = (dev->dev_attrib.emulate_rest_reord == 1) ? 0x00 : 0x10; /* * From spc4r17, section 7.4.6 Control mode Page * * Unit Attention interlocks control (UN_INTLCK_CTRL) to code 00b * * 00b: The logical unit shall clear any unit attention condition * reported in the same I_T_L_Q nexus transaction as a CHECK CONDITION * status and shall not establish a unit attention condition when a com- * mand is completed with BUSY, TASK SET FULL, or RESERVATION CONFLICT * status. * * 10b: The logical unit shall not clear any unit attention condition * reported in the same I_T_L_Q nexus transaction as a CHECK CONDITION * status and shall not establish a unit attention condition when * a command is completed with BUSY, TASK SET FULL, or RESERVATION * CONFLICT status. * * 11b a The logical unit shall not clear any unit attention condition * reported in the same I_T_L_Q nexus transaction as a CHECK CONDITION * status and shall establish a unit attention condition for the * initiator port associated with the I_T nexus on which the BUSY, * TASK SET FULL, or RESERVATION CONFLICT status is being returned. * Depending on the status, the additional sense code shall be set to * PREVIOUS BUSY STATUS, PREVIOUS TASK SET FULL STATUS, or PREVIOUS * RESERVATION CONFLICT STATUS. Until it is cleared by a REQUEST SENSE * command, a unit attention condition shall be established only once * for a BUSY, TASK SET FULL, or RESERVATION CONFLICT status regardless * to the number of commands completed with one of those status codes. */ switch (dev->dev_attrib.emulate_ua_intlck_ctrl) { case TARGET_UA_INTLCK_CTRL_ESTABLISH_UA: p[4] = 0x30; break; case TARGET_UA_INTLCK_CTRL_NO_CLEAR: p[4] = 0x20; break; default: /* TARGET_UA_INTLCK_CTRL_CLEAR */ p[4] = 0x00; break; } /* * From spc4r17, section 7.4.6 Control mode Page * * Task Aborted Status (TAS) bit set to zero. * * A task aborted status (TAS) bit set to zero specifies that aborted * tasks shall be terminated by the device server without any response * to the application client. A TAS bit set to one specifies that tasks * aborted by the actions of an I_T nexus other than the I_T nexus on * which the command was received shall be completed with TASK ABORTED * status (see SAM-4). */ p[5] = (dev->dev_attrib.emulate_tas) ? 0x40 : 0x00; /* * From spc4r30, section 7.5.7 Control mode page * * Application Tag Owner (ATO) bit set to one. * * If the ATO bit is set to one the device server shall not modify the * LOGICAL BLOCK APPLICATION TAG field and, depending on the protection * type, shall not modify the contents of the LOGICAL BLOCK REFERENCE * TAG field. */ if (sess->sup_prot_ops & (TARGET_PROT_DIN_PASS | TARGET_PROT_DOUT_PASS)) { if (dev->dev_attrib.pi_prot_type || sess->sess_prot_type) p[5] |= 0x80; } p[8] = 0xff; p[9] = 0xff; p[11] = 30; out: return 12; } static int spc_modesense_caching(struct se_cmd *cmd, u8 pc, u8 *p) { struct se_device *dev = cmd->se_dev; p[0] = 0x08; p[1] = 0x12; /* No changeable values for now */ if (pc == 1) goto out; if (target_check_wce(dev)) p[2] = 0x04; /* Write Cache Enable */ p[12] = 0x20; /* Disabled Read Ahead */ out: return 20; } static int spc_modesense_informational_exceptions(struct se_cmd *cmd, u8 pc, unsigned char *p) { p[0] = 0x1c; p[1] = 0x0a; /* No changeable values for now */ if (pc == 1) goto out; out: return 12; } static struct { uint8_t page; uint8_t subpage; int (*emulate)(struct se_cmd *, u8, unsigned char *); } modesense_handlers[] = { { .page = 0x01, .subpage = 0x00, .emulate = spc_modesense_rwrecovery }, { .page = 0x08, .subpage = 0x00, .emulate = spc_modesense_caching }, { .page = 0x0a, .subpage = 0x00, .emulate = spc_modesense_control }, { .page = 0x1c, .subpage = 0x00, .emulate = spc_modesense_informational_exceptions }, }; static void spc_modesense_write_protect(unsigned char *buf, int type) { /* * I believe that the WP bit (bit 7) in the mode header is the same for * all device types.. */ switch (type) { case TYPE_DISK: case TYPE_TAPE: default: buf[0] |= 0x80; /* WP bit */ break; } } static void spc_modesense_dpofua(unsigned char *buf, int type) { switch (type) { case TYPE_DISK: buf[0] |= 0x10; /* DPOFUA bit */ break; default: break; } } static int spc_modesense_blockdesc(unsigned char *buf, u64 blocks, u32 block_size) { *buf++ = 8; put_unaligned_be32(min(blocks, 0xffffffffull), buf); buf += 4; put_unaligned_be32(block_size, buf); return 9; } static int spc_modesense_long_blockdesc(unsigned char *buf, u64 blocks, u32 block_size) { if (blocks <= 0xffffffff) return spc_modesense_blockdesc(buf + 3, blocks, block_size) + 3; *buf++ = 1; /* LONGLBA */ buf += 2; *buf++ = 16; put_unaligned_be64(blocks, buf); buf += 12; put_unaligned_be32(block_size, buf); return 17; } static sense_reason_t spc_emulate_modesense(struct se_cmd *cmd) { struct se_device *dev = cmd->se_dev; char *cdb = cmd->t_task_cdb; unsigned char buf[SE_MODE_PAGE_BUF], *rbuf; int type = dev->transport->get_device_type(dev); int ten = (cmd->t_task_cdb[0] == MODE_SENSE_10); bool dbd = !!(cdb[1] & 0x08); bool llba = ten ? !!(cdb[1] & 0x10) : false; u8 pc = cdb[2] >> 6; u8 page = cdb[2] & 0x3f; u8 subpage = cdb[3]; int length = 0; int ret; int i; memset(buf, 0, SE_MODE_PAGE_BUF); /* * Skip over MODE DATA LENGTH + MEDIUM TYPE fields to byte 3 for * MODE_SENSE_10 and byte 2 for MODE_SENSE (6). */ length = ten ? 3 : 2; /* DEVICE-SPECIFIC PARAMETER */ if (cmd->se_lun->lun_access_ro || target_lun_is_rdonly(cmd)) spc_modesense_write_protect(&buf[length], type); /* * SBC only allows us to enable FUA and DPO together. Fortunately * DPO is explicitly specified as a hint, so a noop is a perfectly * valid implementation. */ if (target_check_fua(dev)) spc_modesense_dpofua(&buf[length], type); ++length; /* BLOCK DESCRIPTOR */ /* * For now we only include a block descriptor for disk (SBC) * devices; other command sets use a slightly different format. */ if (!dbd && type == TYPE_DISK) { u64 blocks = dev->transport->get_blocks(dev); u32 block_size = dev->dev_attrib.block_size; if (ten) { if (llba) { length += spc_modesense_long_blockdesc(&buf[length], blocks, block_size); } else { length += 3; length += spc_modesense_blockdesc(&buf[length], blocks, block_size); } } else { length += spc_modesense_blockdesc(&buf[length], blocks, block_size); } } else { if (ten) length += 4; else length += 1; } if (page == 0x3f) { if (subpage != 0x00 && subpage != 0xff) { pr_warn("MODE_SENSE: Invalid subpage code: 0x%02x\n", subpage); return TCM_INVALID_CDB_FIELD; } for (i = 0; i < ARRAY_SIZE(modesense_handlers); ++i) { /* * Tricky way to say all subpage 00h for * subpage==0, all subpages for subpage==0xff * (and we just checked above that those are * the only two possibilities). */ if ((modesense_handlers[i].subpage & ~subpage) == 0) { ret = modesense_handlers[i].emulate(cmd, pc, &buf[length]); if (!ten && length + ret >= 255) break; length += ret; } } goto set_length; } for (i = 0; i < ARRAY_SIZE(modesense_handlers); ++i) if (modesense_handlers[i].page == page && modesense_handlers[i].subpage == subpage) { length += modesense_handlers[i].emulate(cmd, pc, &buf[length]); goto set_length; } /* * We don't intend to implement: * - obsolete page 03h "format parameters" (checked by Solaris) */ if (page != 0x03) pr_err("MODE SENSE: unimplemented page/subpage: 0x%02x/0x%02x\n", page, subpage); return TCM_UNKNOWN_MODE_PAGE; set_length: if (ten) put_unaligned_be16(length - 2, buf); else buf[0] = length - 1; rbuf = transport_kmap_data_sg(cmd); if (rbuf) { memcpy(rbuf, buf, min_t(u32, SE_MODE_PAGE_BUF, cmd->data_length)); transport_kunmap_data_sg(cmd); } target_complete_cmd_with_length(cmd, SAM_STAT_GOOD, length); return 0; } static sense_reason_t spc_emulate_modeselect(struct se_cmd *cmd) { char *cdb = cmd->t_task_cdb; bool ten = cdb[0] == MODE_SELECT_10; int off = ten ? 8 : 4; bool pf = !!(cdb[1] & 0x10); u8 page, subpage; unsigned char *buf; unsigned char tbuf[SE_MODE_PAGE_BUF]; int length; sense_reason_t ret = 0; int i; if (!cmd->data_length) { target_complete_cmd(cmd, SAM_STAT_GOOD); return 0; } if (cmd->data_length < off + 2) return TCM_PARAMETER_LIST_LENGTH_ERROR; buf = transport_kmap_data_sg(cmd); if (!buf) return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; if (!pf) { ret = TCM_INVALID_CDB_FIELD; goto out; } page = buf[off] & 0x3f; subpage = buf[off] & 0x40 ? buf[off + 1] : 0; for (i = 0; i < ARRAY_SIZE(modesense_handlers); ++i) if (modesense_handlers[i].page == page && modesense_handlers[i].subpage == subpage) { memset(tbuf, 0, SE_MODE_PAGE_BUF); length = modesense_handlers[i].emulate(cmd, 0, tbuf); goto check_contents; } ret = TCM_UNKNOWN_MODE_PAGE; goto out; check_contents: if (cmd->data_length < off + length) { ret = TCM_PARAMETER_LIST_LENGTH_ERROR; goto out; } if (memcmp(buf + off, tbuf, length)) ret = TCM_INVALID_PARAMETER_LIST; out: transport_kunmap_data_sg(cmd); if (!ret) target_complete_cmd(cmd, SAM_STAT_GOOD); return ret; } static sense_reason_t spc_emulate_request_sense(struct se_cmd *cmd) { unsigned char *cdb = cmd->t_task_cdb; unsigned char *rbuf; u8 ua_asc = 0, ua_ascq = 0; unsigned char buf[SE_SENSE_BUF]; bool desc_format = target_sense_desc_format(cmd->se_dev); memset(buf, 0, SE_SENSE_BUF); if (cdb[1] & 0x01) { pr_err("REQUEST_SENSE description emulation not" " supported\n"); return TCM_INVALID_CDB_FIELD; } rbuf = transport_kmap_data_sg(cmd); if (!rbuf) return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; if (!core_scsi3_ua_clear_for_request_sense(cmd, &ua_asc, &ua_ascq)) scsi_build_sense_buffer(desc_format, buf, UNIT_ATTENTION, ua_asc, ua_ascq); else scsi_build_sense_buffer(desc_format, buf, NO_SENSE, 0x0, 0x0); memcpy(rbuf, buf, min_t(u32, sizeof(buf), cmd->data_length)); transport_kunmap_data_sg(cmd); target_complete_cmd(cmd, SAM_STAT_GOOD); return 0; } sense_reason_t spc_emulate_report_luns(struct se_cmd *cmd) { struct se_dev_entry *deve; struct se_session *sess = cmd->se_sess; struct se_node_acl *nacl; struct scsi_lun slun; unsigned char *buf; u32 lun_count = 0, offset = 8; __be32 len; buf = transport_kmap_data_sg(cmd); if (cmd->data_length && !buf) return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; /* * If no struct se_session pointer is present, this struct se_cmd is * coming via a target_core_mod PASSTHROUGH op, and not through * a $FABRIC_MOD. In that case, report LUN=0 only. */ if (!sess) goto done; nacl = sess->se_node_acl; rcu_read_lock(); hlist_for_each_entry_rcu(deve, &nacl->lun_entry_hlist, link) { /* * We determine the correct LUN LIST LENGTH even once we * have reached the initial allocation length. * See SPC2-R20 7.19. */ lun_count++; if (offset >= cmd->data_length) continue; int_to_scsilun(deve->mapped_lun, &slun); memcpy(buf + offset, &slun, min(8u, cmd->data_length - offset)); offset += 8; } rcu_read_unlock(); /* * See SPC3 r07, page 159. */ done: /* * If no LUNs are accessible, report virtual LUN 0. */ if (lun_count == 0) { int_to_scsilun(0, &slun); if (cmd->data_length > 8) memcpy(buf + offset, &slun, min(8u, cmd->data_length - offset)); lun_count = 1; } if (buf) { len = cpu_to_be32(lun_count * 8); memcpy(buf, &len, min_t(int, sizeof len, cmd->data_length)); transport_kunmap_data_sg(cmd); } target_complete_cmd_with_length(cmd, SAM_STAT_GOOD, 8 + lun_count * 8); return 0; } EXPORT_SYMBOL(spc_emulate_report_luns); static sense_reason_t spc_emulate_testunitready(struct se_cmd *cmd) { target_complete_cmd(cmd, SAM_STAT_GOOD); return 0; } static void set_dpofua_usage_bits(u8 *usage_bits, struct se_device *dev) { if (!target_check_fua(dev)) usage_bits[1] &= ~0x18; else usage_bits[1] |= 0x18; } static void set_dpofua_usage_bits32(u8 *usage_bits, struct se_device *dev) { if (!target_check_fua(dev)) usage_bits[10] &= ~0x18; else usage_bits[10] |= 0x18; } static struct target_opcode_descriptor tcm_opcode_read6 = { .support = SCSI_SUPPORT_FULL, .opcode = READ_6, .cdb_size = 6, .usage_bits = {READ_6, 0x1f, 0xff, 0xff, 0xff, SCSI_CONTROL_MASK}, }; static struct target_opcode_descriptor tcm_opcode_read10 = { .support = SCSI_SUPPORT_FULL, .opcode = READ_10, .cdb_size = 10, .usage_bits = {READ_10, 0xf8, 0xff, 0xff, 0xff, 0xff, SCSI_GROUP_NUMBER_MASK, 0xff, 0xff, SCSI_CONTROL_MASK}, .update_usage_bits = set_dpofua_usage_bits, }; static struct target_opcode_descriptor tcm_opcode_read12 = { .support = SCSI_SUPPORT_FULL, .opcode = READ_12, .cdb_size = 12, .usage_bits = {READ_12, 0xf8, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, SCSI_GROUP_NUMBER_MASK, SCSI_CONTROL_MASK}, .update_usage_bits = set_dpofua_usage_bits, }; static struct target_opcode_descriptor tcm_opcode_read16 = { .support = SCSI_SUPPORT_FULL, .opcode = READ_16, .cdb_size = 16, .usage_bits = {READ_16, 0xf8, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, SCSI_GROUP_NUMBER_MASK, SCSI_CONTROL_MASK}, .update_usage_bits = set_dpofua_usage_bits, }; static struct target_opcode_descriptor tcm_opcode_write6 = { .support = SCSI_SUPPORT_FULL, .opcode = WRITE_6, .cdb_size = 6, .usage_bits = {WRITE_6, 0x1f, 0xff, 0xff, 0xff, SCSI_CONTROL_MASK}, }; static struct target_opcode_descriptor tcm_opcode_write10 = { .support = SCSI_SUPPORT_FULL, .opcode = WRITE_10, .cdb_size = 10, .usage_bits = {WRITE_10, 0xf8, 0xff, 0xff, 0xff, 0xff, SCSI_GROUP_NUMBER_MASK, 0xff, 0xff, SCSI_CONTROL_MASK}, .update_usage_bits = set_dpofua_usage_bits, }; static struct target_opcode_descriptor tcm_opcode_write_verify10 = { .support = SCSI_SUPPORT_FULL, .opcode = WRITE_VERIFY, .cdb_size = 10, .usage_bits = {WRITE_VERIFY, 0xf0, 0xff, 0xff, 0xff, 0xff, SCSI_GROUP_NUMBER_MASK, 0xff, 0xff, SCSI_CONTROL_MASK}, .update_usage_bits = set_dpofua_usage_bits, }; static struct target_opcode_descriptor tcm_opcode_write12 = { .support = SCSI_SUPPORT_FULL, .opcode = WRITE_12, .cdb_size = 12, .usage_bits = {WRITE_12, 0xf8, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, SCSI_GROUP_NUMBER_MASK, SCSI_CONTROL_MASK}, .update_usage_bits = set_dpofua_usage_bits, }; static struct target_opcode_descriptor tcm_opcode_write16 = { .support = SCSI_SUPPORT_FULL, .opcode = WRITE_16, .cdb_size = 16, .usage_bits = {WRITE_16, 0xf8, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, SCSI_GROUP_NUMBER_MASK, SCSI_CONTROL_MASK}, .update_usage_bits = set_dpofua_usage_bits, }; static struct target_opcode_descriptor tcm_opcode_write_verify16 = { .support = SCSI_SUPPORT_FULL, .opcode = WRITE_VERIFY_16, .cdb_size = 16, .usage_bits = {WRITE_VERIFY_16, 0xf0, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, SCSI_GROUP_NUMBER_MASK, SCSI_CONTROL_MASK}, .update_usage_bits = set_dpofua_usage_bits, }; static bool tcm_is_ws_enabled(struct target_opcode_descriptor *descr, struct se_cmd *cmd) { struct exec_cmd_ops *ops = cmd->protocol_data; struct se_device *dev = cmd->se_dev; return (dev->dev_attrib.emulate_tpws && !!ops->execute_unmap) || !!ops->execute_write_same; } static struct target_opcode_descriptor tcm_opcode_write_same32 = { .support = SCSI_SUPPORT_FULL, .serv_action_valid = 1, .opcode = VARIABLE_LENGTH_CMD, .service_action = WRITE_SAME_32, .cdb_size = 32, .usage_bits = {VARIABLE_LENGTH_CMD, SCSI_CONTROL_MASK, 0x00, 0x00, 0x00, 0x00, SCSI_GROUP_NUMBER_MASK, 0x18, 0x00, WRITE_SAME_32, 0xe8, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff}, .enabled = tcm_is_ws_enabled, .update_usage_bits = set_dpofua_usage_bits32, }; static bool tcm_is_caw_enabled(struct target_opcode_descriptor *descr, struct se_cmd *cmd) { struct se_device *dev = cmd->se_dev; return dev->dev_attrib.emulate_caw; } static struct target_opcode_descriptor tcm_opcode_compare_write = { .support = SCSI_SUPPORT_FULL, .opcode = COMPARE_AND_WRITE, .cdb_size = 16, .usage_bits = {COMPARE_AND_WRITE, 0x18, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0xff, SCSI_GROUP_NUMBER_MASK, SCSI_CONTROL_MASK}, .enabled = tcm_is_caw_enabled, .update_usage_bits = set_dpofua_usage_bits, }; static struct target_opcode_descriptor tcm_opcode_read_capacity = { .support = SCSI_SUPPORT_FULL, .opcode = READ_CAPACITY, .cdb_size = 10, .usage_bits = {READ_CAPACITY, 0x00, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x01, SCSI_CONTROL_MASK}, }; static struct target_opcode_descriptor tcm_opcode_read_capacity16 = { .support = SCSI_SUPPORT_FULL, .serv_action_valid = 1, .opcode = SERVICE_ACTION_IN_16, .service_action = SAI_READ_CAPACITY_16, .cdb_size = 16, .usage_bits = {SERVICE_ACTION_IN_16, SAI_READ_CAPACITY_16, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0x00, SCSI_CONTROL_MASK}, }; static bool tcm_is_rep_ref_enabled(struct target_opcode_descriptor *descr, struct se_cmd *cmd) { struct se_device *dev = cmd->se_dev; spin_lock(&dev->t10_alua.lba_map_lock); if (list_empty(&dev->t10_alua.lba_map_list)) { spin_unlock(&dev->t10_alua.lba_map_lock); return false; } spin_unlock(&dev->t10_alua.lba_map_lock); return true; } static struct target_opcode_descriptor tcm_opcode_read_report_refferals = { .support = SCSI_SUPPORT_FULL, .serv_action_valid = 1, .opcode = SERVICE_ACTION_IN_16, .service_action = SAI_REPORT_REFERRALS, .cdb_size = 16, .usage_bits = {SERVICE_ACTION_IN_16, SAI_REPORT_REFERRALS, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0x00, SCSI_CONTROL_MASK}, .enabled = tcm_is_rep_ref_enabled, }; static struct target_opcode_descriptor tcm_opcode_sync_cache = { .support = SCSI_SUPPORT_FULL, .opcode = SYNCHRONIZE_CACHE, .cdb_size = 10, .usage_bits = {SYNCHRONIZE_CACHE, 0x02, 0xff, 0xff, 0xff, 0xff, SCSI_GROUP_NUMBER_MASK, 0xff, 0xff, SCSI_CONTROL_MASK}, }; static struct target_opcode_descriptor tcm_opcode_sync_cache16 = { .support = SCSI_SUPPORT_FULL, .opcode = SYNCHRONIZE_CACHE_16, .cdb_size = 16, .usage_bits = {SYNCHRONIZE_CACHE_16, 0x02, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, SCSI_GROUP_NUMBER_MASK, SCSI_CONTROL_MASK}, }; static bool tcm_is_unmap_enabled(struct target_opcode_descriptor *descr, struct se_cmd *cmd) { struct exec_cmd_ops *ops = cmd->protocol_data; struct se_device *dev = cmd->se_dev; return ops->execute_unmap && dev->dev_attrib.emulate_tpu; } static struct target_opcode_descriptor tcm_opcode_unmap = { .support = SCSI_SUPPORT_FULL, .opcode = UNMAP, .cdb_size = 10, .usage_bits = {UNMAP, 0x00, 0x00, 0x00, 0x00, 0x00, SCSI_GROUP_NUMBER_MASK, 0xff, 0xff, SCSI_CONTROL_MASK}, .enabled = tcm_is_unmap_enabled, }; static struct target_opcode_descriptor tcm_opcode_write_same = { .support = SCSI_SUPPORT_FULL, .opcode = WRITE_SAME, .cdb_size = 10, .usage_bits = {WRITE_SAME, 0xe8, 0xff, 0xff, 0xff, 0xff, SCSI_GROUP_NUMBER_MASK, 0xff, 0xff, SCSI_CONTROL_MASK}, .enabled = tcm_is_ws_enabled, }; static struct target_opcode_descriptor tcm_opcode_write_same16 = { .support = SCSI_SUPPORT_FULL, .opcode = WRITE_SAME_16, .cdb_size = 16, .usage_bits = {WRITE_SAME_16, 0xe8, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, SCSI_GROUP_NUMBER_MASK, SCSI_CONTROL_MASK}, .enabled = tcm_is_ws_enabled, }; static struct target_opcode_descriptor tcm_opcode_verify = { .support = SCSI_SUPPORT_FULL, .opcode = VERIFY, .cdb_size = 10, .usage_bits = {VERIFY, 0x00, 0xff, 0xff, 0xff, 0xff, SCSI_GROUP_NUMBER_MASK, 0xff, 0xff, SCSI_CONTROL_MASK}, }; static struct target_opcode_descriptor tcm_opcode_verify16 = { .support = SCSI_SUPPORT_FULL, .opcode = VERIFY_16, .cdb_size = 16, .usage_bits = {VERIFY_16, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, SCSI_GROUP_NUMBER_MASK, SCSI_CONTROL_MASK}, }; static struct target_opcode_descriptor tcm_opcode_start_stop = { .support = SCSI_SUPPORT_FULL, .opcode = START_STOP, .cdb_size = 6, .usage_bits = {START_STOP, 0x01, 0x00, 0x00, 0x01, SCSI_CONTROL_MASK}, }; static struct target_opcode_descriptor tcm_opcode_mode_select = { .support = SCSI_SUPPORT_FULL, .opcode = MODE_SELECT, .cdb_size = 6, .usage_bits = {MODE_SELECT, 0x10, 0x00, 0x00, 0xff, SCSI_CONTROL_MASK}, }; static struct target_opcode_descriptor tcm_opcode_mode_select10 = { .support = SCSI_SUPPORT_FULL, .opcode = MODE_SELECT_10, .cdb_size = 10, .usage_bits = {MODE_SELECT_10, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, SCSI_CONTROL_MASK}, }; static struct target_opcode_descriptor tcm_opcode_mode_sense = { .support = SCSI_SUPPORT_FULL, .opcode = MODE_SENSE, .cdb_size = 6, .usage_bits = {MODE_SENSE, 0x08, 0xff, 0xff, 0xff, SCSI_CONTROL_MASK}, }; static struct target_opcode_descriptor tcm_opcode_mode_sense10 = { .support = SCSI_SUPPORT_FULL, .opcode = MODE_SENSE_10, .cdb_size = 10, .usage_bits = {MODE_SENSE_10, 0x18, 0xff, 0xff, 0x00, 0x00, 0x00, 0xff, 0xff, SCSI_CONTROL_MASK}, }; static struct target_opcode_descriptor tcm_opcode_pri_read_keys = { .support = SCSI_SUPPORT_FULL, .serv_action_valid = 1, .opcode = PERSISTENT_RESERVE_IN, .service_action = PRI_READ_KEYS, .cdb_size = 10, .usage_bits = {PERSISTENT_RESERVE_IN, PRI_READ_KEYS, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, SCSI_CONTROL_MASK}, }; static struct target_opcode_descriptor tcm_opcode_pri_read_resrv = { .support = SCSI_SUPPORT_FULL, .serv_action_valid = 1, .opcode = PERSISTENT_RESERVE_IN, .service_action = PRI_READ_RESERVATION, .cdb_size = 10, .usage_bits = {PERSISTENT_RESERVE_IN, PRI_READ_RESERVATION, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, SCSI_CONTROL_MASK}, }; static bool tcm_is_pr_enabled(struct target_opcode_descriptor *descr, struct se_cmd *cmd) { struct se_device *dev = cmd->se_dev; if (!dev->dev_attrib.emulate_pr) return false; if (!(dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH_PGR)) return true; switch (descr->opcode) { case RESERVE: case RESERVE_10: case RELEASE: case RELEASE_10: /* * The pr_ops which are used by the backend modules don't * support these commands. */ return false; case PERSISTENT_RESERVE_OUT: switch (descr->service_action) { case PRO_REGISTER_AND_MOVE: case PRO_REPLACE_LOST_RESERVATION: /* * The backend modules don't have access to ports and * I_T nexuses so they can't handle these type of * requests. */ return false; } break; case PERSISTENT_RESERVE_IN: if (descr->service_action == PRI_READ_FULL_STATUS) return false; break; } return true; } static struct target_opcode_descriptor tcm_opcode_pri_read_caps = { .support = SCSI_SUPPORT_FULL, .serv_action_valid = 1, .opcode = PERSISTENT_RESERVE_IN, .service_action = PRI_REPORT_CAPABILITIES, .cdb_size = 10, .usage_bits = {PERSISTENT_RESERVE_IN, PRI_REPORT_CAPABILITIES, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, SCSI_CONTROL_MASK}, .enabled = tcm_is_pr_enabled, }; static struct target_opcode_descriptor tcm_opcode_pri_read_full_status = { .support = SCSI_SUPPORT_FULL, .serv_action_valid = 1, .opcode = PERSISTENT_RESERVE_IN, .service_action = PRI_READ_FULL_STATUS, .cdb_size = 10, .usage_bits = {PERSISTENT_RESERVE_IN, PRI_READ_FULL_STATUS, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, SCSI_CONTROL_MASK}, .enabled = tcm_is_pr_enabled, }; static struct target_opcode_descriptor tcm_opcode_pro_register = { .support = SCSI_SUPPORT_FULL, .serv_action_valid = 1, .opcode = PERSISTENT_RESERVE_OUT, .service_action = PRO_REGISTER, .cdb_size = 10, .usage_bits = {PERSISTENT_RESERVE_OUT, PRO_REGISTER, 0xff, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, SCSI_CONTROL_MASK}, .enabled = tcm_is_pr_enabled, }; static struct target_opcode_descriptor tcm_opcode_pro_reserve = { .support = SCSI_SUPPORT_FULL, .serv_action_valid = 1, .opcode = PERSISTENT_RESERVE_OUT, .service_action = PRO_RESERVE, .cdb_size = 10, .usage_bits = {PERSISTENT_RESERVE_OUT, PRO_RESERVE, 0xff, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, SCSI_CONTROL_MASK}, .enabled = tcm_is_pr_enabled, }; static struct target_opcode_descriptor tcm_opcode_pro_release = { .support = SCSI_SUPPORT_FULL, .serv_action_valid = 1, .opcode = PERSISTENT_RESERVE_OUT, .service_action = PRO_RELEASE, .cdb_size = 10, .usage_bits = {PERSISTENT_RESERVE_OUT, PRO_RELEASE, 0xff, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, SCSI_CONTROL_MASK}, .enabled = tcm_is_pr_enabled, }; static struct target_opcode_descriptor tcm_opcode_pro_clear = { .support = SCSI_SUPPORT_FULL, .serv_action_valid = 1, .opcode = PERSISTENT_RESERVE_OUT, .service_action = PRO_CLEAR, .cdb_size = 10, .usage_bits = {PERSISTENT_RESERVE_OUT, PRO_CLEAR, 0xff, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, SCSI_CONTROL_MASK}, .enabled = tcm_is_pr_enabled, }; static struct target_opcode_descriptor tcm_opcode_pro_preempt = { .support = SCSI_SUPPORT_FULL, .serv_action_valid = 1, .opcode = PERSISTENT_RESERVE_OUT, .service_action = PRO_PREEMPT, .cdb_size = 10, .usage_bits = {PERSISTENT_RESERVE_OUT, PRO_PREEMPT, 0xff, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, SCSI_CONTROL_MASK}, .enabled = tcm_is_pr_enabled, }; static struct target_opcode_descriptor tcm_opcode_pro_preempt_abort = { .support = SCSI_SUPPORT_FULL, .serv_action_valid = 1, .opcode = PERSISTENT_RESERVE_OUT, .service_action = PRO_PREEMPT_AND_ABORT, .cdb_size = 10, .usage_bits = {PERSISTENT_RESERVE_OUT, PRO_PREEMPT_AND_ABORT, 0xff, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, SCSI_CONTROL_MASK}, .enabled = tcm_is_pr_enabled, }; static struct target_opcode_descriptor tcm_opcode_pro_reg_ign_exist = { .support = SCSI_SUPPORT_FULL, .serv_action_valid = 1, .opcode = PERSISTENT_RESERVE_OUT, .service_action = PRO_REGISTER_AND_IGNORE_EXISTING_KEY, .cdb_size = 10, .usage_bits = { PERSISTENT_RESERVE_OUT, PRO_REGISTER_AND_IGNORE_EXISTING_KEY, 0xff, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, SCSI_CONTROL_MASK}, .enabled = tcm_is_pr_enabled, }; static struct target_opcode_descriptor tcm_opcode_pro_register_move = { .support = SCSI_SUPPORT_FULL, .serv_action_valid = 1, .opcode = PERSISTENT_RESERVE_OUT, .service_action = PRO_REGISTER_AND_MOVE, .cdb_size = 10, .usage_bits = {PERSISTENT_RESERVE_OUT, PRO_REGISTER_AND_MOVE, 0xff, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, SCSI_CONTROL_MASK}, .enabled = tcm_is_pr_enabled, }; static struct target_opcode_descriptor tcm_opcode_release = { .support = SCSI_SUPPORT_FULL, .opcode = RELEASE, .cdb_size = 6, .usage_bits = {RELEASE, 0x00, 0x00, 0x00, 0x00, SCSI_CONTROL_MASK}, .enabled = tcm_is_pr_enabled, }; static struct target_opcode_descriptor tcm_opcode_release10 = { .support = SCSI_SUPPORT_FULL, .opcode = RELEASE_10, .cdb_size = 10, .usage_bits = {RELEASE_10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, SCSI_CONTROL_MASK}, .enabled = tcm_is_pr_enabled, }; static struct target_opcode_descriptor tcm_opcode_reserve = { .support = SCSI_SUPPORT_FULL, .opcode = RESERVE, .cdb_size = 6, .usage_bits = {RESERVE, 0x00, 0x00, 0x00, 0x00, SCSI_CONTROL_MASK}, .enabled = tcm_is_pr_enabled, }; static struct target_opcode_descriptor tcm_opcode_reserve10 = { .support = SCSI_SUPPORT_FULL, .opcode = RESERVE_10, .cdb_size = 10, .usage_bits = {RESERVE_10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, SCSI_CONTROL_MASK}, .enabled = tcm_is_pr_enabled, }; static struct target_opcode_descriptor tcm_opcode_request_sense = { .support = SCSI_SUPPORT_FULL, .opcode = REQUEST_SENSE, .cdb_size = 6, .usage_bits = {REQUEST_SENSE, 0x00, 0x00, 0x00, 0xff, SCSI_CONTROL_MASK}, }; static struct target_opcode_descriptor tcm_opcode_inquiry = { .support = SCSI_SUPPORT_FULL, .opcode = INQUIRY, .cdb_size = 6, .usage_bits = {INQUIRY, 0x01, 0xff, 0xff, 0xff, SCSI_CONTROL_MASK}, }; static bool tcm_is_3pc_enabled(struct target_opcode_descriptor *descr, struct se_cmd *cmd) { struct se_device *dev = cmd->se_dev; return dev->dev_attrib.emulate_3pc; } static struct target_opcode_descriptor tcm_opcode_extended_copy_lid1 = { .support = SCSI_SUPPORT_FULL, .serv_action_valid = 1, .opcode = EXTENDED_COPY, .cdb_size = 16, .usage_bits = {EXTENDED_COPY, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0x00, SCSI_CONTROL_MASK}, .enabled = tcm_is_3pc_enabled, }; static struct target_opcode_descriptor tcm_opcode_rcv_copy_res_op_params = { .support = SCSI_SUPPORT_FULL, .serv_action_valid = 1, .opcode = RECEIVE_COPY_RESULTS, .service_action = RCR_SA_OPERATING_PARAMETERS, .cdb_size = 16, .usage_bits = {RECEIVE_COPY_RESULTS, RCR_SA_OPERATING_PARAMETERS, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0x00, SCSI_CONTROL_MASK}, .enabled = tcm_is_3pc_enabled, }; static struct target_opcode_descriptor tcm_opcode_report_luns = { .support = SCSI_SUPPORT_FULL, .opcode = REPORT_LUNS, .cdb_size = 12, .usage_bits = {REPORT_LUNS, 0x00, 0xff, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0x00, SCSI_CONTROL_MASK}, }; static struct target_opcode_descriptor tcm_opcode_test_unit_ready = { .support = SCSI_SUPPORT_FULL, .opcode = TEST_UNIT_READY, .cdb_size = 6, .usage_bits = {TEST_UNIT_READY, 0x00, 0x00, 0x00, 0x00, SCSI_CONTROL_MASK}, }; static struct target_opcode_descriptor tcm_opcode_report_target_pgs = { .support = SCSI_SUPPORT_FULL, .serv_action_valid = 1, .opcode = MAINTENANCE_IN, .service_action = MI_REPORT_TARGET_PGS, .cdb_size = 12, .usage_bits = {MAINTENANCE_IN, 0xE0 | MI_REPORT_TARGET_PGS, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0x00, SCSI_CONTROL_MASK}, }; static bool spc_rsoc_enabled(struct target_opcode_descriptor *descr, struct se_cmd *cmd) { struct se_device *dev = cmd->se_dev; return dev->dev_attrib.emulate_rsoc; } static struct target_opcode_descriptor tcm_opcode_report_supp_opcodes = { .support = SCSI_SUPPORT_FULL, .serv_action_valid = 1, .opcode = MAINTENANCE_IN, .service_action = MI_REPORT_SUPPORTED_OPERATION_CODES, .cdb_size = 12, .usage_bits = {MAINTENANCE_IN, MI_REPORT_SUPPORTED_OPERATION_CODES, 0x87, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, SCSI_CONTROL_MASK}, .enabled = spc_rsoc_enabled, }; static bool tcm_is_set_tpg_enabled(struct target_opcode_descriptor *descr, struct se_cmd *cmd) { struct t10_alua_tg_pt_gp *l_tg_pt_gp; struct se_lun *l_lun = cmd->se_lun; rcu_read_lock(); l_tg_pt_gp = rcu_dereference(l_lun->lun_tg_pt_gp); if (!l_tg_pt_gp) { rcu_read_unlock(); return false; } if (!(l_tg_pt_gp->tg_pt_gp_alua_access_type & TPGS_EXPLICIT_ALUA)) { rcu_read_unlock(); return false; } rcu_read_unlock(); return true; } static struct target_opcode_descriptor tcm_opcode_set_tpg = { .support = SCSI_SUPPORT_FULL, .serv_action_valid = 1, .opcode = MAINTENANCE_OUT, .service_action = MO_SET_TARGET_PGS, .cdb_size = 12, .usage_bits = {MAINTENANCE_OUT, MO_SET_TARGET_PGS, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0x00, SCSI_CONTROL_MASK}, .enabled = tcm_is_set_tpg_enabled, }; static struct target_opcode_descriptor *tcm_supported_opcodes[] = { &tcm_opcode_read6, &tcm_opcode_read10, &tcm_opcode_read12, &tcm_opcode_read16, &tcm_opcode_write6, &tcm_opcode_write10, &tcm_opcode_write_verify10, &tcm_opcode_write12, &tcm_opcode_write16, &tcm_opcode_write_verify16, &tcm_opcode_write_same32, &tcm_opcode_compare_write, &tcm_opcode_read_capacity, &tcm_opcode_read_capacity16, &tcm_opcode_read_report_refferals, &tcm_opcode_sync_cache, &tcm_opcode_sync_cache16, &tcm_opcode_unmap, &tcm_opcode_write_same, &tcm_opcode_write_same16, &tcm_opcode_verify, &tcm_opcode_verify16, &tcm_opcode_start_stop, &tcm_opcode_mode_select, &tcm_opcode_mode_select10, &tcm_opcode_mode_sense, &tcm_opcode_mode_sense10, &tcm_opcode_pri_read_keys, &tcm_opcode_pri_read_resrv, &tcm_opcode_pri_read_caps, &tcm_opcode_pri_read_full_status, &tcm_opcode_pro_register, &tcm_opcode_pro_reserve, &tcm_opcode_pro_release, &tcm_opcode_pro_clear, &tcm_opcode_pro_preempt, &tcm_opcode_pro_preempt_abort, &tcm_opcode_pro_reg_ign_exist, &tcm_opcode_pro_register_move, &tcm_opcode_release, &tcm_opcode_release10, &tcm_opcode_reserve, &tcm_opcode_reserve10, &tcm_opcode_request_sense, &tcm_opcode_inquiry, &tcm_opcode_extended_copy_lid1, &tcm_opcode_rcv_copy_res_op_params, &tcm_opcode_report_luns, &tcm_opcode_test_unit_ready, &tcm_opcode_report_target_pgs, &tcm_opcode_report_supp_opcodes, &tcm_opcode_set_tpg, }; static int spc_rsoc_encode_command_timeouts_descriptor(unsigned char *buf, u8 ctdp, struct target_opcode_descriptor *descr) { if (!ctdp) return 0; put_unaligned_be16(0xa, buf); buf[3] = descr->specific_timeout; put_unaligned_be32(descr->nominal_timeout, &buf[4]); put_unaligned_be32(descr->recommended_timeout, &buf[8]); return 12; } static int spc_rsoc_encode_command_descriptor(unsigned char *buf, u8 ctdp, struct target_opcode_descriptor *descr) { int td_size = 0; buf[0] = descr->opcode; put_unaligned_be16(descr->service_action, &buf[2]); buf[5] = (ctdp << 1) | descr->serv_action_valid; put_unaligned_be16(descr->cdb_size, &buf[6]); td_size = spc_rsoc_encode_command_timeouts_descriptor(&buf[8], ctdp, descr); return 8 + td_size; } static int spc_rsoc_encode_one_command_descriptor(unsigned char *buf, u8 ctdp, struct target_opcode_descriptor *descr, struct se_device *dev) { int td_size = 0; if (!descr) { buf[1] = (ctdp << 7) | SCSI_SUPPORT_NOT_SUPPORTED; return 2; } buf[1] = (ctdp << 7) | SCSI_SUPPORT_FULL; put_unaligned_be16(descr->cdb_size, &buf[2]); memcpy(&buf[4], descr->usage_bits, descr->cdb_size); if (descr->update_usage_bits) descr->update_usage_bits(&buf[4], dev); td_size = spc_rsoc_encode_command_timeouts_descriptor( &buf[4 + descr->cdb_size], ctdp, descr); return 4 + descr->cdb_size + td_size; } static sense_reason_t spc_rsoc_get_descr(struct se_cmd *cmd, struct target_opcode_descriptor **opcode) { struct target_opcode_descriptor *descr; struct se_session *sess = cmd->se_sess; unsigned char *cdb = cmd->t_task_cdb; u8 opts = cdb[2] & 0x3; u8 requested_opcode; u16 requested_sa; int i; requested_opcode = cdb[3]; requested_sa = ((u16)cdb[4]) << 8 | cdb[5]; *opcode = NULL; if (opts > 3) { pr_debug("TARGET_CORE[%s]: Invalid REPORT SUPPORTED OPERATION CODES" " with unsupported REPORTING OPTIONS %#x for 0x%08llx from %s\n", cmd->se_tfo->fabric_name, opts, cmd->se_lun->unpacked_lun, sess->se_node_acl->initiatorname); return TCM_INVALID_CDB_FIELD; } for (i = 0; i < ARRAY_SIZE(tcm_supported_opcodes); i++) { descr = tcm_supported_opcodes[i]; if (descr->opcode != requested_opcode) continue; switch (opts) { case 0x1: /* * If the REQUESTED OPERATION CODE field specifies an * operation code for which the device server implements * service actions, then the device server shall * terminate the command with CHECK CONDITION status, * with the sense key set to ILLEGAL REQUEST, and the * additional sense code set to INVALID FIELD IN CDB */ if (descr->serv_action_valid) return TCM_INVALID_CDB_FIELD; if (!descr->enabled || descr->enabled(descr, cmd)) *opcode = descr; break; case 0x2: /* * If the REQUESTED OPERATION CODE field specifies an * operation code for which the device server does not * implement service actions, then the device server * shall terminate the command with CHECK CONDITION * status, with the sense key set to ILLEGAL REQUEST, * and the additional sense code set to INVALID FIELD IN CDB. */ if (descr->serv_action_valid && descr->service_action == requested_sa) { if (!descr->enabled || descr->enabled(descr, cmd)) *opcode = descr; } else if (!descr->serv_action_valid) return TCM_INVALID_CDB_FIELD; break; case 0x3: /* * The command support data for the operation code and * service action a specified in the REQUESTED OPERATION * CODE field and REQUESTED SERVICE ACTION field shall * be returned in the one_command parameter data format. */ if (descr->service_action == requested_sa) if (!descr->enabled || descr->enabled(descr, cmd)) *opcode = descr; break; } } return 0; } static sense_reason_t spc_emulate_report_supp_op_codes(struct se_cmd *cmd) { int descr_num = ARRAY_SIZE(tcm_supported_opcodes); struct target_opcode_descriptor *descr = NULL; unsigned char *cdb = cmd->t_task_cdb; u8 rctd = (cdb[2] >> 7) & 0x1; unsigned char *buf = NULL; int response_length = 0; u8 opts = cdb[2] & 0x3; unsigned char *rbuf; sense_reason_t ret = 0; int i; if (!cmd->se_dev->dev_attrib.emulate_rsoc) return TCM_UNSUPPORTED_SCSI_OPCODE; rbuf = transport_kmap_data_sg(cmd); if (cmd->data_length && !rbuf) { ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; goto out; } if (opts == 0) response_length = 4 + (8 + rctd * 12) * descr_num; else { ret = spc_rsoc_get_descr(cmd, &descr); if (ret) goto out; if (descr) response_length = 4 + descr->cdb_size + rctd * 12; else response_length = 2; } buf = kzalloc(response_length, GFP_KERNEL); if (!buf) { ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; goto out; } response_length = 0; if (opts == 0) { response_length += 4; for (i = 0; i < ARRAY_SIZE(tcm_supported_opcodes); i++) { descr = tcm_supported_opcodes[i]; if (descr->enabled && !descr->enabled(descr, cmd)) continue; response_length += spc_rsoc_encode_command_descriptor( &buf[response_length], rctd, descr); } put_unaligned_be32(response_length - 3, buf); } else { response_length = spc_rsoc_encode_one_command_descriptor( &buf[response_length], rctd, descr, cmd->se_dev); } memcpy(rbuf, buf, min_t(u32, response_length, cmd->data_length)); out: kfree(buf); transport_kunmap_data_sg(cmd); if (!ret) target_complete_cmd_with_length(cmd, SAM_STAT_GOOD, response_length); return ret; } sense_reason_t spc_parse_cdb(struct se_cmd *cmd, unsigned int *size) { struct se_device *dev = cmd->se_dev; unsigned char *cdb = cmd->t_task_cdb; switch (cdb[0]) { case RESERVE: case RESERVE_10: case RELEASE: case RELEASE_10: if (!dev->dev_attrib.emulate_pr) return TCM_UNSUPPORTED_SCSI_OPCODE; if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH_PGR) return TCM_UNSUPPORTED_SCSI_OPCODE; break; case PERSISTENT_RESERVE_IN: case PERSISTENT_RESERVE_OUT: if (!dev->dev_attrib.emulate_pr) return TCM_UNSUPPORTED_SCSI_OPCODE; break; } switch (cdb[0]) { case MODE_SELECT: *size = cdb[4]; cmd->execute_cmd = spc_emulate_modeselect; break; case MODE_SELECT_10: *size = get_unaligned_be16(&cdb[7]); cmd->execute_cmd = spc_emulate_modeselect; break; case MODE_SENSE: *size = cdb[4]; cmd->execute_cmd = spc_emulate_modesense; break; case MODE_SENSE_10: *size = get_unaligned_be16(&cdb[7]); cmd->execute_cmd = spc_emulate_modesense; break; case LOG_SELECT: case LOG_SENSE: *size = get_unaligned_be16(&cdb[7]); break; case PERSISTENT_RESERVE_IN: *size = get_unaligned_be16(&cdb[7]); cmd->execute_cmd = target_scsi3_emulate_pr_in; break; case PERSISTENT_RESERVE_OUT: *size = get_unaligned_be32(&cdb[5]); cmd->execute_cmd = target_scsi3_emulate_pr_out; break; case RELEASE: case RELEASE_10: if (cdb[0] == RELEASE_10) *size = get_unaligned_be16(&cdb[7]); else *size = cmd->data_length; cmd->execute_cmd = target_scsi2_reservation_release; break; case RESERVE: case RESERVE_10: /* * The SPC-2 RESERVE does not contain a size in the SCSI CDB. * Assume the passthrough or $FABRIC_MOD will tell us about it. */ if (cdb[0] == RESERVE_10) *size = get_unaligned_be16(&cdb[7]); else *size = cmd->data_length; cmd->execute_cmd = target_scsi2_reservation_reserve; break; case REQUEST_SENSE: *size = cdb[4]; cmd->execute_cmd = spc_emulate_request_sense; break; case INQUIRY: *size = get_unaligned_be16(&cdb[3]); /* * Do implicit HEAD_OF_QUEUE processing for INQUIRY. * See spc4r17 section 5.3 */ cmd->sam_task_attr = TCM_HEAD_TAG; cmd->execute_cmd = spc_emulate_inquiry; break; case SECURITY_PROTOCOL_IN: case SECURITY_PROTOCOL_OUT: *size = get_unaligned_be32(&cdb[6]); break; case EXTENDED_COPY: *size = get_unaligned_be32(&cdb[10]); cmd->execute_cmd = target_do_xcopy; break; case RECEIVE_COPY_RESULTS: *size = get_unaligned_be32(&cdb[10]); cmd->execute_cmd = target_do_receive_copy_results; break; case READ_ATTRIBUTE: case WRITE_ATTRIBUTE: *size = get_unaligned_be32(&cdb[10]); break; case RECEIVE_DIAGNOSTIC: case SEND_DIAGNOSTIC: *size = get_unaligned_be16(&cdb[3]); break; case WRITE_BUFFER: *size = get_unaligned_be24(&cdb[6]); break; case REPORT_LUNS: cmd->execute_cmd = spc_emulate_report_luns; *size = get_unaligned_be32(&cdb[6]); /* * Do implicit HEAD_OF_QUEUE processing for REPORT_LUNS * See spc4r17 section 5.3 */ cmd->sam_task_attr = TCM_HEAD_TAG; break; case TEST_UNIT_READY: cmd->execute_cmd = spc_emulate_testunitready; *size = 0; break; case MAINTENANCE_IN: if (dev->transport->get_device_type(dev) != TYPE_ROM) { /* * MAINTENANCE_IN from SCC-2 * Check for emulated MI_REPORT_TARGET_PGS */ if ((cdb[1] & 0x1f) == MI_REPORT_TARGET_PGS) { cmd->execute_cmd = target_emulate_report_target_port_groups; } if ((cdb[1] & 0x1f) == MI_REPORT_SUPPORTED_OPERATION_CODES) cmd->execute_cmd = spc_emulate_report_supp_op_codes; *size = get_unaligned_be32(&cdb[6]); } else { /* * GPCMD_SEND_KEY from multi media commands */ *size = get_unaligned_be16(&cdb[8]); } break; case MAINTENANCE_OUT: if (dev->transport->get_device_type(dev) != TYPE_ROM) { /* * MAINTENANCE_OUT from SCC-2 * Check for emulated MO_SET_TARGET_PGS. */ if (cdb[1] == MO_SET_TARGET_PGS) { cmd->execute_cmd = target_emulate_set_target_port_groups; } *size = get_unaligned_be32(&cdb[6]); } else { /* * GPCMD_SEND_KEY from multi media commands */ *size = get_unaligned_be16(&cdb[8]); } break; default: return TCM_UNSUPPORTED_SCSI_OPCODE; } return 0; } EXPORT_SYMBOL(spc_parse_cdb);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1