Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Dmitry Eremin-Solenikov | 3294 | 65.15% | 4 | 19.05% |
Jishnu Prakash | 1443 | 28.54% | 2 | 9.52% |
Björn Andersson | 167 | 3.30% | 1 | 4.76% |
Siddartha Mohanadoss | 63 | 1.25% | 1 | 4.76% |
Matthias Kaehlcke | 23 | 0.45% | 1 | 4.76% |
Daniel Lezcano | 21 | 0.42% | 3 | 14.29% |
Linus Walleij | 17 | 0.34% | 2 | 9.52% |
Colin Ian King | 14 | 0.28% | 1 | 4.76% |
Nuno Sá | 4 | 0.08% | 1 | 4.76% |
Johan Hovold | 4 | 0.08% | 1 | 4.76% |
Yang Yingliang | 2 | 0.04% | 1 | 4.76% |
Akinobu Mita | 2 | 0.04% | 1 | 4.76% |
Andy Shevchenko | 1 | 0.02% | 1 | 4.76% |
Manivannan Sadhasivam | 1 | 0.02% | 1 | 4.76% |
Total | 5056 | 21 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2020 Linaro Limited * * Based on original driver: * Copyright (c) 2012-2020, The Linux Foundation. All rights reserved. * * Copyright (c) 2022 Qualcomm Innovation Center, Inc. All rights reserved. */ #include <linux/bitfield.h> #include <linux/iio/adc/qcom-vadc-common.h> #include <linux/iio/consumer.h> #include <linux/interrupt.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/regmap.h> #include <linux/thermal.h> #include <asm/unaligned.h> #include "../thermal_hwmon.h" /* * Thermal monitoring block consists of 8 (ADC_TM5_NUM_CHANNELS) channels. Each * channel is programmed to use one of ADC channels for voltage comparison. * Voltages are programmed using ADC codes, so we have to convert temp to * voltage and then to ADC code value. * * Configuration of TM channels must match configuration of corresponding ADC * channels. */ #define ADC5_MAX_CHANNEL 0xc0 #define ADC_TM5_NUM_CHANNELS 8 #define ADC_TM5_STATUS_LOW 0x0a #define ADC_TM5_STATUS_HIGH 0x0b #define ADC_TM5_NUM_BTM 0x0f #define ADC_TM5_ADC_DIG_PARAM 0x42 #define ADC_TM5_FAST_AVG_CTL (ADC_TM5_ADC_DIG_PARAM + 1) #define ADC_TM5_FAST_AVG_EN BIT(7) #define ADC_TM5_MEAS_INTERVAL_CTL (ADC_TM5_ADC_DIG_PARAM + 2) #define ADC_TM5_TIMER1 3 /* 3.9ms */ #define ADC_TM5_MEAS_INTERVAL_CTL2 (ADC_TM5_ADC_DIG_PARAM + 3) #define ADC_TM5_MEAS_INTERVAL_CTL2_MASK 0xf0 #define ADC_TM5_TIMER2 10 /* 1 second */ #define ADC_TM5_MEAS_INTERVAL_CTL3_MASK 0xf #define ADC_TM5_TIMER3 4 /* 4 second */ #define ADC_TM_EN_CTL1 0x46 #define ADC_TM_EN BIT(7) #define ADC_TM_CONV_REQ 0x47 #define ADC_TM_CONV_REQ_EN BIT(7) #define ADC_TM5_M_CHAN_BASE 0x60 #define ADC_TM5_M_ADC_CH_SEL_CTL(n) (ADC_TM5_M_CHAN_BASE + ((n) * 8) + 0) #define ADC_TM5_M_LOW_THR0(n) (ADC_TM5_M_CHAN_BASE + ((n) * 8) + 1) #define ADC_TM5_M_LOW_THR1(n) (ADC_TM5_M_CHAN_BASE + ((n) * 8) + 2) #define ADC_TM5_M_HIGH_THR0(n) (ADC_TM5_M_CHAN_BASE + ((n) * 8) + 3) #define ADC_TM5_M_HIGH_THR1(n) (ADC_TM5_M_CHAN_BASE + ((n) * 8) + 4) #define ADC_TM5_M_MEAS_INTERVAL_CTL(n) (ADC_TM5_M_CHAN_BASE + ((n) * 8) + 5) #define ADC_TM5_M_CTL(n) (ADC_TM5_M_CHAN_BASE + ((n) * 8) + 6) #define ADC_TM5_M_CTL_HW_SETTLE_DELAY_MASK 0xf #define ADC_TM5_M_CTL_CAL_SEL_MASK 0x30 #define ADC_TM5_M_CTL_CAL_VAL 0x40 #define ADC_TM5_M_EN(n) (ADC_TM5_M_CHAN_BASE + ((n) * 8) + 7) #define ADC_TM5_M_MEAS_EN BIT(7) #define ADC_TM5_M_HIGH_THR_INT_EN BIT(1) #define ADC_TM5_M_LOW_THR_INT_EN BIT(0) #define ADC_TM_GEN2_STATUS1 0x08 #define ADC_TM_GEN2_STATUS_LOW_SET 0x09 #define ADC_TM_GEN2_STATUS_LOW_CLR 0x0a #define ADC_TM_GEN2_STATUS_HIGH_SET 0x0b #define ADC_TM_GEN2_STATUS_HIGH_CLR 0x0c #define ADC_TM_GEN2_CFG_HS_SET 0x0d #define ADC_TM_GEN2_CFG_HS_FLAG BIT(0) #define ADC_TM_GEN2_CFG_HS_CLR 0x0e #define ADC_TM_GEN2_SID 0x40 #define ADC_TM_GEN2_CH_CTL 0x41 #define ADC_TM_GEN2_TM_CH_SEL GENMASK(7, 5) #define ADC_TM_GEN2_MEAS_INT_SEL GENMASK(3, 2) #define ADC_TM_GEN2_ADC_DIG_PARAM 0x42 #define ADC_TM_GEN2_CTL_CAL_SEL GENMASK(5, 4) #define ADC_TM_GEN2_CTL_DEC_RATIO_MASK GENMASK(3, 2) #define ADC_TM_GEN2_FAST_AVG_CTL 0x43 #define ADC_TM_GEN2_FAST_AVG_EN BIT(7) #define ADC_TM_GEN2_ADC_CH_SEL_CTL 0x44 #define ADC_TM_GEN2_DELAY_CTL 0x45 #define ADC_TM_GEN2_HW_SETTLE_DELAY GENMASK(3, 0) #define ADC_TM_GEN2_EN_CTL1 0x46 #define ADC_TM_GEN2_EN BIT(7) #define ADC_TM_GEN2_CONV_REQ 0x47 #define ADC_TM_GEN2_CONV_REQ_EN BIT(7) #define ADC_TM_GEN2_LOW_THR0 0x49 #define ADC_TM_GEN2_LOW_THR1 0x4a #define ADC_TM_GEN2_HIGH_THR0 0x4b #define ADC_TM_GEN2_HIGH_THR1 0x4c #define ADC_TM_GEN2_LOWER_MASK(n) ((n) & GENMASK(7, 0)) #define ADC_TM_GEN2_UPPER_MASK(n) (((n) & GENMASK(15, 8)) >> 8) #define ADC_TM_GEN2_MEAS_IRQ_EN 0x4d #define ADC_TM_GEN2_MEAS_EN BIT(7) #define ADC_TM5_GEN2_HIGH_THR_INT_EN BIT(1) #define ADC_TM5_GEN2_LOW_THR_INT_EN BIT(0) #define ADC_TM_GEN2_MEAS_INT_LSB 0x50 #define ADC_TM_GEN2_MEAS_INT_MSB 0x51 #define ADC_TM_GEN2_MEAS_INT_MODE 0x52 #define ADC_TM_GEN2_Mn_DATA0(n) ((n * 2) + 0xa0) #define ADC_TM_GEN2_Mn_DATA1(n) ((n * 2) + 0xa1) #define ADC_TM_GEN2_DATA_SHIFT 8 enum adc5_timer_select { ADC5_TIMER_SEL_1 = 0, ADC5_TIMER_SEL_2, ADC5_TIMER_SEL_3, ADC5_TIMER_SEL_NONE, }; enum adc5_gen { ADC_TM5, ADC_TM_HC, ADC_TM5_GEN2, ADC_TM5_MAX }; enum adc_tm5_cal_method { ADC_TM5_NO_CAL = 0, ADC_TM5_RATIOMETRIC_CAL, ADC_TM5_ABSOLUTE_CAL }; enum adc_tm_gen2_time_select { MEAS_INT_50MS = 0, MEAS_INT_100MS, MEAS_INT_1S, MEAS_INT_SET, MEAS_INT_NONE, }; struct adc_tm5_chip; struct adc_tm5_channel; struct adc_tm5_data { const u32 full_scale_code_volt; unsigned int *decimation; unsigned int *hw_settle; int (*disable_channel)(struct adc_tm5_channel *channel); int (*configure)(struct adc_tm5_channel *channel, int low, int high); irqreturn_t (*isr)(int irq, void *data); int (*init)(struct adc_tm5_chip *chip); char *irq_name; int gen; }; /** * struct adc_tm5_channel - ADC Thermal Monitoring channel data. * @channel: channel number. * @adc_channel: corresponding ADC channel number. * @cal_method: calibration method. * @prescale: channel scaling performed on the input signal. * @hw_settle_time: the time between AMUX being configured and the * start of conversion. * @decimation: sampling rate supported for the channel. * @avg_samples: ability to provide single result from the ADC * that is an average of multiple measurements. * @high_thr_en: channel upper voltage threshold enable state. * @low_thr_en: channel lower voltage threshold enable state. * @meas_en: recurring measurement enable state * @iio: IIO channel instance used by this channel. * @chip: ADC TM chip instance. * @tzd: thermal zone device used by this channel. */ struct adc_tm5_channel { unsigned int channel; unsigned int adc_channel; enum adc_tm5_cal_method cal_method; unsigned int prescale; unsigned int hw_settle_time; unsigned int decimation; /* For Gen2 ADC_TM */ unsigned int avg_samples; /* For Gen2 ADC_TM */ bool high_thr_en; /* For Gen2 ADC_TM */ bool low_thr_en; /* For Gen2 ADC_TM */ bool meas_en; /* For Gen2 ADC_TM */ struct iio_channel *iio; struct adc_tm5_chip *chip; struct thermal_zone_device *tzd; }; /** * struct adc_tm5_chip - ADC Thermal Monitoring properties * @regmap: SPMI ADC5 Thermal Monitoring peripheral register map field. * @dev: SPMI ADC5 device. * @data: software configuration data. * @channels: array of ADC TM channel data. * @nchannels: amount of channels defined/allocated * @decimation: sampling rate supported for the channel. * Applies to all channels, used only on Gen1 ADC_TM. * @avg_samples: ability to provide single result from the ADC * that is an average of multiple measurements. Applies to all * channels, used only on Gen1 ADC_TM. * @base: base address of TM registers. * @adc_mutex_lock: ADC_TM mutex lock, used only on Gen2 ADC_TM. * It is used to ensure only one ADC channel configuration * is done at a time using the shared set of configuration * registers. */ struct adc_tm5_chip { struct regmap *regmap; struct device *dev; const struct adc_tm5_data *data; struct adc_tm5_channel *channels; unsigned int nchannels; unsigned int decimation; unsigned int avg_samples; u16 base; struct mutex adc_mutex_lock; }; static int adc_tm5_read(struct adc_tm5_chip *adc_tm, u16 offset, u8 *data, int len) { return regmap_bulk_read(adc_tm->regmap, adc_tm->base + offset, data, len); } static int adc_tm5_write(struct adc_tm5_chip *adc_tm, u16 offset, u8 *data, int len) { return regmap_bulk_write(adc_tm->regmap, adc_tm->base + offset, data, len); } static int adc_tm5_reg_update(struct adc_tm5_chip *adc_tm, u16 offset, u8 mask, u8 val) { return regmap_write_bits(adc_tm->regmap, adc_tm->base + offset, mask, val); } static irqreturn_t adc_tm5_isr(int irq, void *data) { struct adc_tm5_chip *chip = data; u8 status_low, status_high, ctl; int ret, i; ret = adc_tm5_read(chip, ADC_TM5_STATUS_LOW, &status_low, sizeof(status_low)); if (unlikely(ret)) { dev_err(chip->dev, "read status low failed: %d\n", ret); return IRQ_HANDLED; } ret = adc_tm5_read(chip, ADC_TM5_STATUS_HIGH, &status_high, sizeof(status_high)); if (unlikely(ret)) { dev_err(chip->dev, "read status high failed: %d\n", ret); return IRQ_HANDLED; } for (i = 0; i < chip->nchannels; i++) { bool upper_set = false, lower_set = false; unsigned int ch = chip->channels[i].channel; /* No TZD, we warned at the boot time */ if (!chip->channels[i].tzd) continue; ret = adc_tm5_read(chip, ADC_TM5_M_EN(ch), &ctl, sizeof(ctl)); if (unlikely(ret)) { dev_err(chip->dev, "ctl read failed: %d, channel %d\n", ret, i); continue; } if (!(ctl & ADC_TM5_M_MEAS_EN)) continue; lower_set = (status_low & BIT(ch)) && (ctl & ADC_TM5_M_LOW_THR_INT_EN); upper_set = (status_high & BIT(ch)) && (ctl & ADC_TM5_M_HIGH_THR_INT_EN); if (upper_set || lower_set) thermal_zone_device_update(chip->channels[i].tzd, THERMAL_EVENT_UNSPECIFIED); } return IRQ_HANDLED; } static irqreturn_t adc_tm5_gen2_isr(int irq, void *data) { struct adc_tm5_chip *chip = data; u8 status_low, status_high; int ret, i; ret = adc_tm5_read(chip, ADC_TM_GEN2_STATUS_LOW_CLR, &status_low, sizeof(status_low)); if (ret) { dev_err(chip->dev, "read status_low failed: %d\n", ret); return IRQ_HANDLED; } ret = adc_tm5_read(chip, ADC_TM_GEN2_STATUS_HIGH_CLR, &status_high, sizeof(status_high)); if (ret) { dev_err(chip->dev, "read status_high failed: %d\n", ret); return IRQ_HANDLED; } ret = adc_tm5_write(chip, ADC_TM_GEN2_STATUS_LOW_CLR, &status_low, sizeof(status_low)); if (ret < 0) { dev_err(chip->dev, "clear status low failed with %d\n", ret); return IRQ_HANDLED; } ret = adc_tm5_write(chip, ADC_TM_GEN2_STATUS_HIGH_CLR, &status_high, sizeof(status_high)); if (ret < 0) { dev_err(chip->dev, "clear status high failed with %d\n", ret); return IRQ_HANDLED; } for (i = 0; i < chip->nchannels; i++) { bool upper_set = false, lower_set = false; unsigned int ch = chip->channels[i].channel; /* No TZD, we warned at the boot time */ if (!chip->channels[i].tzd) continue; if (!chip->channels[i].meas_en) continue; lower_set = (status_low & BIT(ch)) && (chip->channels[i].low_thr_en); upper_set = (status_high & BIT(ch)) && (chip->channels[i].high_thr_en); if (upper_set || lower_set) thermal_zone_device_update(chip->channels[i].tzd, THERMAL_EVENT_UNSPECIFIED); } return IRQ_HANDLED; } static int adc_tm5_get_temp(struct thermal_zone_device *tz, int *temp) { struct adc_tm5_channel *channel = thermal_zone_device_priv(tz); int ret; if (!channel || !channel->iio) return -EINVAL; ret = iio_read_channel_processed(channel->iio, temp); if (ret < 0) return ret; if (ret != IIO_VAL_INT) return -EINVAL; return 0; } static int adc_tm5_disable_channel(struct adc_tm5_channel *channel) { struct adc_tm5_chip *chip = channel->chip; unsigned int reg = ADC_TM5_M_EN(channel->channel); return adc_tm5_reg_update(chip, reg, ADC_TM5_M_MEAS_EN | ADC_TM5_M_HIGH_THR_INT_EN | ADC_TM5_M_LOW_THR_INT_EN, 0); } #define ADC_TM_GEN2_POLL_DELAY_MIN_US 100 #define ADC_TM_GEN2_POLL_DELAY_MAX_US 110 #define ADC_TM_GEN2_POLL_RETRY_COUNT 3 static int32_t adc_tm5_gen2_conv_req(struct adc_tm5_chip *chip) { int ret; u8 data; unsigned int count; data = ADC_TM_GEN2_EN; ret = adc_tm5_write(chip, ADC_TM_GEN2_EN_CTL1, &data, 1); if (ret < 0) { dev_err(chip->dev, "adc-tm enable failed with %d\n", ret); return ret; } data = ADC_TM_GEN2_CFG_HS_FLAG; ret = adc_tm5_write(chip, ADC_TM_GEN2_CFG_HS_SET, &data, 1); if (ret < 0) { dev_err(chip->dev, "adc-tm handshake failed with %d\n", ret); return ret; } data = ADC_TM_GEN2_CONV_REQ_EN; ret = adc_tm5_write(chip, ADC_TM_GEN2_CONV_REQ, &data, 1); if (ret < 0) { dev_err(chip->dev, "adc-tm request conversion failed with %d\n", ret); return ret; } /* * SW sets a handshake bit and waits for PBS to clear it * before the next conversion request can be queued. */ for (count = 0; count < ADC_TM_GEN2_POLL_RETRY_COUNT; count++) { ret = adc_tm5_read(chip, ADC_TM_GEN2_CFG_HS_SET, &data, sizeof(data)); if (ret < 0) { dev_err(chip->dev, "adc-tm read failed with %d\n", ret); return ret; } if (!(data & ADC_TM_GEN2_CFG_HS_FLAG)) return ret; usleep_range(ADC_TM_GEN2_POLL_DELAY_MIN_US, ADC_TM_GEN2_POLL_DELAY_MAX_US); } dev_err(chip->dev, "adc-tm conversion request handshake timed out\n"); return -ETIMEDOUT; } static int adc_tm5_gen2_disable_channel(struct adc_tm5_channel *channel) { struct adc_tm5_chip *chip = channel->chip; int ret; u8 val; mutex_lock(&chip->adc_mutex_lock); channel->meas_en = false; channel->high_thr_en = false; channel->low_thr_en = false; ret = adc_tm5_read(chip, ADC_TM_GEN2_CH_CTL, &val, sizeof(val)); if (ret < 0) { dev_err(chip->dev, "adc-tm block read failed with %d\n", ret); goto disable_fail; } val &= ~ADC_TM_GEN2_TM_CH_SEL; val |= FIELD_PREP(ADC_TM_GEN2_TM_CH_SEL, channel->channel); ret = adc_tm5_write(chip, ADC_TM_GEN2_CH_CTL, &val, 1); if (ret < 0) { dev_err(chip->dev, "adc-tm channel disable failed with %d\n", ret); goto disable_fail; } val = 0; ret = adc_tm5_write(chip, ADC_TM_GEN2_MEAS_IRQ_EN, &val, 1); if (ret < 0) { dev_err(chip->dev, "adc-tm interrupt disable failed with %d\n", ret); goto disable_fail; } ret = adc_tm5_gen2_conv_req(channel->chip); if (ret < 0) dev_err(chip->dev, "adc-tm channel configure failed with %d\n", ret); disable_fail: mutex_unlock(&chip->adc_mutex_lock); return ret; } static int adc_tm5_enable(struct adc_tm5_chip *chip) { int ret; u8 data; data = ADC_TM_EN; ret = adc_tm5_write(chip, ADC_TM_EN_CTL1, &data, sizeof(data)); if (ret < 0) { dev_err(chip->dev, "adc-tm enable failed\n"); return ret; } data = ADC_TM_CONV_REQ_EN; ret = adc_tm5_write(chip, ADC_TM_CONV_REQ, &data, sizeof(data)); if (ret < 0) { dev_err(chip->dev, "adc-tm request conversion failed\n"); return ret; } return 0; } static int adc_tm5_configure(struct adc_tm5_channel *channel, int low, int high) { struct adc_tm5_chip *chip = channel->chip; u8 buf[8]; u16 reg = ADC_TM5_M_ADC_CH_SEL_CTL(channel->channel); int ret; ret = adc_tm5_read(chip, reg, buf, sizeof(buf)); if (ret) { dev_err(chip->dev, "channel %d params read failed: %d\n", channel->channel, ret); return ret; } buf[0] = channel->adc_channel; /* High temperature corresponds to low voltage threshold */ if (high != INT_MAX) { u16 adc_code = qcom_adc_tm5_temp_volt_scale(channel->prescale, chip->data->full_scale_code_volt, high); put_unaligned_le16(adc_code, &buf[1]); buf[7] |= ADC_TM5_M_LOW_THR_INT_EN; } else { buf[7] &= ~ADC_TM5_M_LOW_THR_INT_EN; } /* Low temperature corresponds to high voltage threshold */ if (low != -INT_MAX) { u16 adc_code = qcom_adc_tm5_temp_volt_scale(channel->prescale, chip->data->full_scale_code_volt, low); put_unaligned_le16(adc_code, &buf[3]); buf[7] |= ADC_TM5_M_HIGH_THR_INT_EN; } else { buf[7] &= ~ADC_TM5_M_HIGH_THR_INT_EN; } buf[5] = ADC5_TIMER_SEL_2; /* Set calibration select, hw_settle delay */ buf[6] &= ~ADC_TM5_M_CTL_HW_SETTLE_DELAY_MASK; buf[6] |= FIELD_PREP(ADC_TM5_M_CTL_HW_SETTLE_DELAY_MASK, channel->hw_settle_time); buf[6] &= ~ADC_TM5_M_CTL_CAL_SEL_MASK; buf[6] |= FIELD_PREP(ADC_TM5_M_CTL_CAL_SEL_MASK, channel->cal_method); buf[7] |= ADC_TM5_M_MEAS_EN; ret = adc_tm5_write(chip, reg, buf, sizeof(buf)); if (ret) { dev_err(chip->dev, "channel %d params write failed: %d\n", channel->channel, ret); return ret; } return adc_tm5_enable(chip); } static int adc_tm5_gen2_configure(struct adc_tm5_channel *channel, int low, int high) { struct adc_tm5_chip *chip = channel->chip; int ret; u8 buf[14]; u16 adc_code; mutex_lock(&chip->adc_mutex_lock); channel->meas_en = true; ret = adc_tm5_read(chip, ADC_TM_GEN2_SID, buf, sizeof(buf)); if (ret < 0) { dev_err(chip->dev, "adc-tm block read failed with %d\n", ret); goto config_fail; } /* Set SID from virtual channel number */ buf[0] = channel->adc_channel >> 8; /* Set TM channel number used and measurement interval */ buf[1] &= ~ADC_TM_GEN2_TM_CH_SEL; buf[1] |= FIELD_PREP(ADC_TM_GEN2_TM_CH_SEL, channel->channel); buf[1] &= ~ADC_TM_GEN2_MEAS_INT_SEL; buf[1] |= FIELD_PREP(ADC_TM_GEN2_MEAS_INT_SEL, MEAS_INT_1S); buf[2] &= ~ADC_TM_GEN2_CTL_DEC_RATIO_MASK; buf[2] |= FIELD_PREP(ADC_TM_GEN2_CTL_DEC_RATIO_MASK, channel->decimation); buf[2] &= ~ADC_TM_GEN2_CTL_CAL_SEL; buf[2] |= FIELD_PREP(ADC_TM_GEN2_CTL_CAL_SEL, channel->cal_method); buf[3] = channel->avg_samples | ADC_TM_GEN2_FAST_AVG_EN; buf[4] = channel->adc_channel & 0xff; buf[5] = channel->hw_settle_time & ADC_TM_GEN2_HW_SETTLE_DELAY; /* High temperature corresponds to low voltage threshold */ if (high != INT_MAX) { channel->low_thr_en = true; adc_code = qcom_adc_tm5_gen2_temp_res_scale(high); put_unaligned_le16(adc_code, &buf[9]); } else { channel->low_thr_en = false; } /* Low temperature corresponds to high voltage threshold */ if (low != -INT_MAX) { channel->high_thr_en = true; adc_code = qcom_adc_tm5_gen2_temp_res_scale(low); put_unaligned_le16(adc_code, &buf[11]); } else { channel->high_thr_en = false; } buf[13] = ADC_TM_GEN2_MEAS_EN; if (channel->high_thr_en) buf[13] |= ADC_TM5_GEN2_HIGH_THR_INT_EN; if (channel->low_thr_en) buf[13] |= ADC_TM5_GEN2_LOW_THR_INT_EN; ret = adc_tm5_write(chip, ADC_TM_GEN2_SID, buf, sizeof(buf)); if (ret) { dev_err(chip->dev, "channel %d params write failed: %d\n", channel->channel, ret); goto config_fail; } ret = adc_tm5_gen2_conv_req(channel->chip); if (ret < 0) dev_err(chip->dev, "adc-tm channel configure failed with %d\n", ret); config_fail: mutex_unlock(&chip->adc_mutex_lock); return ret; } static int adc_tm5_set_trips(struct thermal_zone_device *tz, int low, int high) { struct adc_tm5_channel *channel = thermal_zone_device_priv(tz); struct adc_tm5_chip *chip; int ret; if (!channel) return -EINVAL; chip = channel->chip; dev_dbg(chip->dev, "%d:low(mdegC):%d, high(mdegC):%d\n", channel->channel, low, high); if (high == INT_MAX && low <= -INT_MAX) ret = chip->data->disable_channel(channel); else ret = chip->data->configure(channel, low, high); return ret; } static const struct thermal_zone_device_ops adc_tm5_thermal_ops = { .get_temp = adc_tm5_get_temp, .set_trips = adc_tm5_set_trips, }; static int adc_tm5_register_tzd(struct adc_tm5_chip *adc_tm) { unsigned int i; struct thermal_zone_device *tzd; for (i = 0; i < adc_tm->nchannels; i++) { adc_tm->channels[i].chip = adc_tm; tzd = devm_thermal_of_zone_register(adc_tm->dev, adc_tm->channels[i].channel, &adc_tm->channels[i], &adc_tm5_thermal_ops); if (IS_ERR(tzd)) { if (PTR_ERR(tzd) == -ENODEV) { dev_dbg(adc_tm->dev, "thermal sensor on channel %d is not used\n", adc_tm->channels[i].channel); continue; } dev_err(adc_tm->dev, "Error registering TZ zone for channel %d: %ld\n", adc_tm->channels[i].channel, PTR_ERR(tzd)); return PTR_ERR(tzd); } adc_tm->channels[i].tzd = tzd; devm_thermal_add_hwmon_sysfs(adc_tm->dev, tzd); } return 0; } static int adc_tm_hc_init(struct adc_tm5_chip *chip) { unsigned int i; u8 buf[2]; int ret; for (i = 0; i < chip->nchannels; i++) { if (chip->channels[i].channel >= ADC_TM5_NUM_CHANNELS) { dev_err(chip->dev, "Invalid channel %d\n", chip->channels[i].channel); return -EINVAL; } } buf[0] = chip->decimation; buf[1] = chip->avg_samples | ADC_TM5_FAST_AVG_EN; ret = adc_tm5_write(chip, ADC_TM5_ADC_DIG_PARAM, buf, sizeof(buf)); if (ret) dev_err(chip->dev, "block write failed: %d\n", ret); return ret; } static int adc_tm5_init(struct adc_tm5_chip *chip) { u8 buf[4], channels_available; int ret; unsigned int i; ret = adc_tm5_read(chip, ADC_TM5_NUM_BTM, &channels_available, sizeof(channels_available)); if (ret) { dev_err(chip->dev, "read failed for BTM channels\n"); return ret; } for (i = 0; i < chip->nchannels; i++) { if (chip->channels[i].channel >= channels_available) { dev_err(chip->dev, "Invalid channel %d\n", chip->channels[i].channel); return -EINVAL; } } buf[0] = chip->decimation; buf[1] = chip->avg_samples | ADC_TM5_FAST_AVG_EN; buf[2] = ADC_TM5_TIMER1; buf[3] = FIELD_PREP(ADC_TM5_MEAS_INTERVAL_CTL2_MASK, ADC_TM5_TIMER2) | FIELD_PREP(ADC_TM5_MEAS_INTERVAL_CTL3_MASK, ADC_TM5_TIMER3); ret = adc_tm5_write(chip, ADC_TM5_ADC_DIG_PARAM, buf, sizeof(buf)); if (ret) { dev_err(chip->dev, "block write failed: %d\n", ret); return ret; } return ret; } static int adc_tm5_gen2_init(struct adc_tm5_chip *chip) { u8 channels_available; int ret; unsigned int i; ret = adc_tm5_read(chip, ADC_TM5_NUM_BTM, &channels_available, sizeof(channels_available)); if (ret) { dev_err(chip->dev, "read failed for BTM channels\n"); return ret; } for (i = 0; i < chip->nchannels; i++) { if (chip->channels[i].channel >= channels_available) { dev_err(chip->dev, "Invalid channel %d\n", chip->channels[i].channel); return -EINVAL; } } mutex_init(&chip->adc_mutex_lock); return ret; } static int adc_tm5_get_dt_channel_data(struct adc_tm5_chip *adc_tm, struct adc_tm5_channel *channel, struct device_node *node) { const char *name = node->name; u32 chan, value, adc_channel, varr[2]; int ret; struct device *dev = adc_tm->dev; struct of_phandle_args args; ret = of_property_read_u32(node, "reg", &chan); if (ret) { dev_err(dev, "%s: invalid channel number %d\n", name, ret); return ret; } if (chan >= ADC_TM5_NUM_CHANNELS) { dev_err(dev, "%s: channel number too big: %d\n", name, chan); return -EINVAL; } channel->channel = chan; /* * We are tied to PMIC's ADC controller, which always use single * argument for channel number. So don't bother parsing * #io-channel-cells, just enforce cell_count = 1. */ ret = of_parse_phandle_with_fixed_args(node, "io-channels", 1, 0, &args); if (ret < 0) { dev_err(dev, "%s: error parsing ADC channel number %d: %d\n", name, chan, ret); return ret; } of_node_put(args.np); if (args.args_count != 1) { dev_err(dev, "%s: invalid args count for ADC channel %d\n", name, chan); return -EINVAL; } adc_channel = args.args[0]; if (adc_tm->data->gen == ADC_TM5_GEN2) adc_channel &= 0xff; if (adc_channel >= ADC5_MAX_CHANNEL) { dev_err(dev, "%s: invalid ADC channel number %d\n", name, chan); return -EINVAL; } channel->adc_channel = args.args[0]; channel->iio = devm_fwnode_iio_channel_get_by_name(adc_tm->dev, of_fwnode_handle(node), NULL); if (IS_ERR(channel->iio)) { ret = PTR_ERR(channel->iio); if (ret != -EPROBE_DEFER) dev_err(dev, "%s: error getting channel: %d\n", name, ret); return ret; } ret = of_property_read_u32_array(node, "qcom,pre-scaling", varr, 2); if (!ret) { ret = qcom_adc5_prescaling_from_dt(varr[0], varr[1]); if (ret < 0) { dev_err(dev, "%s: invalid pre-scaling <%d %d>\n", name, varr[0], varr[1]); return ret; } channel->prescale = ret; } else { /* 1:1 prescale is index 0 */ channel->prescale = 0; } ret = of_property_read_u32(node, "qcom,hw-settle-time-us", &value); if (!ret) { ret = qcom_adc5_hw_settle_time_from_dt(value, adc_tm->data->hw_settle); if (ret < 0) { dev_err(dev, "%s invalid hw-settle-time-us %d us\n", name, value); return ret; } channel->hw_settle_time = ret; } else { channel->hw_settle_time = VADC_DEF_HW_SETTLE_TIME; } if (of_property_read_bool(node, "qcom,ratiometric")) channel->cal_method = ADC_TM5_RATIOMETRIC_CAL; else channel->cal_method = ADC_TM5_ABSOLUTE_CAL; if (adc_tm->data->gen == ADC_TM5_GEN2) { ret = of_property_read_u32(node, "qcom,decimation", &value); if (!ret) { ret = qcom_adc5_decimation_from_dt(value, adc_tm->data->decimation); if (ret < 0) { dev_err(dev, "invalid decimation %d\n", value); return ret; } channel->decimation = ret; } else { channel->decimation = ADC5_DECIMATION_DEFAULT; } ret = of_property_read_u32(node, "qcom,avg-samples", &value); if (!ret) { ret = qcom_adc5_avg_samples_from_dt(value); if (ret < 0) { dev_err(dev, "invalid avg-samples %d\n", value); return ret; } channel->avg_samples = ret; } else { channel->avg_samples = VADC_DEF_AVG_SAMPLES; } } return 0; } static const struct adc_tm5_data adc_tm5_data_pmic = { .full_scale_code_volt = 0x70e4, .decimation = (unsigned int []) { 250, 420, 840 }, .hw_settle = (unsigned int []) { 15, 100, 200, 300, 400, 500, 600, 700, 1000, 2000, 4000, 8000, 16000, 32000, 64000, 128000 }, .disable_channel = adc_tm5_disable_channel, .configure = adc_tm5_configure, .isr = adc_tm5_isr, .init = adc_tm5_init, .irq_name = "pm-adc-tm5", .gen = ADC_TM5, }; static const struct adc_tm5_data adc_tm_hc_data_pmic = { .full_scale_code_volt = 0x70e4, .decimation = (unsigned int []) { 256, 512, 1024 }, .hw_settle = (unsigned int []) { 0, 100, 200, 300, 400, 500, 600, 700, 1000, 2000, 4000, 6000, 8000, 10000 }, .disable_channel = adc_tm5_disable_channel, .configure = adc_tm5_configure, .isr = adc_tm5_isr, .init = adc_tm_hc_init, .irq_name = "pm-adc-tm5", .gen = ADC_TM_HC, }; static const struct adc_tm5_data adc_tm5_gen2_data_pmic = { .full_scale_code_volt = 0x70e4, .decimation = (unsigned int []) { 85, 340, 1360 }, .hw_settle = (unsigned int []) { 15, 100, 200, 300, 400, 500, 600, 700, 1000, 2000, 4000, 8000, 16000, 32000, 64000, 128000 }, .disable_channel = adc_tm5_gen2_disable_channel, .configure = adc_tm5_gen2_configure, .isr = adc_tm5_gen2_isr, .init = adc_tm5_gen2_init, .irq_name = "pm-adc-tm5-gen2", .gen = ADC_TM5_GEN2, }; static int adc_tm5_get_dt_data(struct adc_tm5_chip *adc_tm, struct device_node *node) { struct adc_tm5_channel *channels; struct device_node *child; u32 value; int ret; struct device *dev = adc_tm->dev; adc_tm->nchannels = of_get_available_child_count(node); if (!adc_tm->nchannels) return -EINVAL; adc_tm->channels = devm_kcalloc(dev, adc_tm->nchannels, sizeof(*adc_tm->channels), GFP_KERNEL); if (!adc_tm->channels) return -ENOMEM; channels = adc_tm->channels; adc_tm->data = of_device_get_match_data(dev); if (!adc_tm->data) adc_tm->data = &adc_tm5_data_pmic; ret = of_property_read_u32(node, "qcom,decimation", &value); if (!ret) { ret = qcom_adc5_decimation_from_dt(value, adc_tm->data->decimation); if (ret < 0) { dev_err(dev, "invalid decimation %d\n", value); return ret; } adc_tm->decimation = ret; } else { adc_tm->decimation = ADC5_DECIMATION_DEFAULT; } ret = of_property_read_u32(node, "qcom,avg-samples", &value); if (!ret) { ret = qcom_adc5_avg_samples_from_dt(value); if (ret < 0) { dev_err(dev, "invalid avg-samples %d\n", value); return ret; } adc_tm->avg_samples = ret; } else { adc_tm->avg_samples = VADC_DEF_AVG_SAMPLES; } for_each_available_child_of_node(node, child) { ret = adc_tm5_get_dt_channel_data(adc_tm, channels, child); if (ret) { of_node_put(child); return ret; } channels++; } return 0; } static int adc_tm5_probe(struct platform_device *pdev) { struct device_node *node = pdev->dev.of_node; struct device *dev = &pdev->dev; struct adc_tm5_chip *adc_tm; struct regmap *regmap; int ret, irq; u32 reg; regmap = dev_get_regmap(dev->parent, NULL); if (!regmap) return -ENODEV; ret = of_property_read_u32(node, "reg", ®); if (ret) return ret; adc_tm = devm_kzalloc(&pdev->dev, sizeof(*adc_tm), GFP_KERNEL); if (!adc_tm) return -ENOMEM; adc_tm->regmap = regmap; adc_tm->dev = dev; adc_tm->base = reg; irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; ret = adc_tm5_get_dt_data(adc_tm, node); if (ret) return dev_err_probe(dev, ret, "get dt data failed\n"); ret = adc_tm->data->init(adc_tm); if (ret) { dev_err(dev, "adc-tm init failed\n"); return ret; } ret = adc_tm5_register_tzd(adc_tm); if (ret) { dev_err(dev, "tzd register failed\n"); return ret; } return devm_request_threaded_irq(dev, irq, NULL, adc_tm->data->isr, IRQF_ONESHOT, adc_tm->data->irq_name, adc_tm); } static const struct of_device_id adc_tm5_match_table[] = { { .compatible = "qcom,spmi-adc-tm5", .data = &adc_tm5_data_pmic, }, { .compatible = "qcom,spmi-adc-tm-hc", .data = &adc_tm_hc_data_pmic, }, { .compatible = "qcom,spmi-adc-tm5-gen2", .data = &adc_tm5_gen2_data_pmic, }, { } }; MODULE_DEVICE_TABLE(of, adc_tm5_match_table); static struct platform_driver adc_tm5_driver = { .driver = { .name = "qcom-spmi-adc-tm5", .of_match_table = adc_tm5_match_table, }, .probe = adc_tm5_probe, }; module_platform_driver(adc_tm5_driver); MODULE_DESCRIPTION("SPMI PMIC Thermal Monitor ADC driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1