Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Kunihiko Hayashi | 1431 | 97.08% | 4 | 44.44% |
Daniel Lezcano | 40 | 2.71% | 3 | 33.33% |
Uwe Kleine-König | 2 | 0.14% | 1 | 11.11% |
Randy Dunlap | 1 | 0.07% | 1 | 11.11% |
Total | 1474 | 9 |
// SPDX-License-Identifier: GPL-2.0 /* * uniphier_thermal.c - Socionext UniPhier thermal driver * Copyright 2014 Panasonic Corporation * Copyright 2016-2017 Socionext Inc. * Author: * Kunihiko Hayashi <hayashi.kunihiko@socionext.com> */ #include <linux/bitops.h> #include <linux/interrupt.h> #include <linux/mfd/syscon.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/regmap.h> #include <linux/thermal.h> /* * block registers * addresses are the offset from .block_base */ #define PVTCTLEN 0x0000 #define PVTCTLEN_EN BIT(0) #define PVTCTLMODE 0x0004 #define PVTCTLMODE_MASK 0xf #define PVTCTLMODE_TEMPMON 0x5 #define EMONREPEAT 0x0040 #define EMONREPEAT_ENDLESS BIT(24) #define EMONREPEAT_PERIOD GENMASK(3, 0) #define EMONREPEAT_PERIOD_1000000 0x9 /* * common registers * addresses are the offset from .map_base */ #define PVTCTLSEL 0x0900 #define PVTCTLSEL_MASK GENMASK(2, 0) #define PVTCTLSEL_MONITOR 0 #define SETALERT0 0x0910 #define SETALERT1 0x0914 #define SETALERT2 0x0918 #define SETALERT_TEMP_OVF (GENMASK(7, 0) << 16) #define SETALERT_TEMP_OVF_VALUE(val) (((val) & GENMASK(7, 0)) << 16) #define SETALERT_EN BIT(0) #define PMALERTINTCTL 0x0920 #define PMALERTINTCTL_CLR(ch) BIT(4 * (ch) + 2) #define PMALERTINTCTL_SET(ch) BIT(4 * (ch) + 1) #define PMALERTINTCTL_EN(ch) BIT(4 * (ch) + 0) #define PMALERTINTCTL_MASK (GENMASK(10, 8) | GENMASK(6, 4) | \ GENMASK(2, 0)) #define TMOD 0x0928 #define TMOD_WIDTH 9 #define TMODCOEF 0x0e5c #define TMODSETUP0_EN BIT(30) #define TMODSETUP0_VAL(val) (((val) & GENMASK(13, 0)) << 16) #define TMODSETUP1_EN BIT(15) #define TMODSETUP1_VAL(val) ((val) & GENMASK(14, 0)) /* SoC critical temperature */ #define CRITICAL_TEMP_LIMIT (120 * 1000) /* Max # of alert channels */ #define ALERT_CH_NUM 3 /* SoC specific thermal sensor data */ struct uniphier_tm_soc_data { u32 map_base; u32 block_base; u32 tmod_setup_addr; }; struct uniphier_tm_dev { struct regmap *regmap; struct device *dev; bool alert_en[ALERT_CH_NUM]; struct thermal_zone_device *tz_dev; const struct uniphier_tm_soc_data *data; }; static int uniphier_tm_initialize_sensor(struct uniphier_tm_dev *tdev) { struct regmap *map = tdev->regmap; u32 val; u32 tmod_calib[2]; int ret; /* stop PVT */ regmap_write_bits(map, tdev->data->block_base + PVTCTLEN, PVTCTLEN_EN, 0); /* * Since SoC has a calibrated value that was set in advance, * TMODCOEF shows non-zero and PVT refers the value internally. * * If TMODCOEF shows zero, the boards don't have the calibrated * value, and the driver has to set default value from DT. */ ret = regmap_read(map, tdev->data->map_base + TMODCOEF, &val); if (ret) return ret; if (!val) { /* look for the default values in DT */ ret = of_property_read_u32_array(tdev->dev->of_node, "socionext,tmod-calibration", tmod_calib, ARRAY_SIZE(tmod_calib)); if (ret) return ret; regmap_write(map, tdev->data->tmod_setup_addr, TMODSETUP0_EN | TMODSETUP0_VAL(tmod_calib[0]) | TMODSETUP1_EN | TMODSETUP1_VAL(tmod_calib[1])); } /* select temperature mode */ regmap_write_bits(map, tdev->data->block_base + PVTCTLMODE, PVTCTLMODE_MASK, PVTCTLMODE_TEMPMON); /* set monitoring period */ regmap_write_bits(map, tdev->data->block_base + EMONREPEAT, EMONREPEAT_ENDLESS | EMONREPEAT_PERIOD, EMONREPEAT_ENDLESS | EMONREPEAT_PERIOD_1000000); /* set monitor mode */ regmap_write_bits(map, tdev->data->map_base + PVTCTLSEL, PVTCTLSEL_MASK, PVTCTLSEL_MONITOR); return 0; } static void uniphier_tm_set_alert(struct uniphier_tm_dev *tdev, u32 ch, u32 temp) { struct regmap *map = tdev->regmap; /* set alert temperature */ regmap_write_bits(map, tdev->data->map_base + SETALERT0 + (ch << 2), SETALERT_EN | SETALERT_TEMP_OVF, SETALERT_EN | SETALERT_TEMP_OVF_VALUE(temp / 1000)); } static void uniphier_tm_enable_sensor(struct uniphier_tm_dev *tdev) { struct regmap *map = tdev->regmap; int i; u32 bits = 0; for (i = 0; i < ALERT_CH_NUM; i++) if (tdev->alert_en[i]) bits |= PMALERTINTCTL_EN(i); /* enable alert interrupt */ regmap_write_bits(map, tdev->data->map_base + PMALERTINTCTL, PMALERTINTCTL_MASK, bits); /* start PVT */ regmap_write_bits(map, tdev->data->block_base + PVTCTLEN, PVTCTLEN_EN, PVTCTLEN_EN); usleep_range(700, 1500); /* The spec note says at least 700us */ } static void uniphier_tm_disable_sensor(struct uniphier_tm_dev *tdev) { struct regmap *map = tdev->regmap; /* disable alert interrupt */ regmap_write_bits(map, tdev->data->map_base + PMALERTINTCTL, PMALERTINTCTL_MASK, 0); /* stop PVT */ regmap_write_bits(map, tdev->data->block_base + PVTCTLEN, PVTCTLEN_EN, 0); usleep_range(1000, 2000); /* The spec note says at least 1ms */ } static int uniphier_tm_get_temp(struct thermal_zone_device *tz, int *out_temp) { struct uniphier_tm_dev *tdev = thermal_zone_device_priv(tz); struct regmap *map = tdev->regmap; int ret; u32 temp; ret = regmap_read(map, tdev->data->map_base + TMOD, &temp); if (ret) return ret; /* MSB of the TMOD field is a sign bit */ *out_temp = sign_extend32(temp, TMOD_WIDTH - 1) * 1000; return 0; } static const struct thermal_zone_device_ops uniphier_of_thermal_ops = { .get_temp = uniphier_tm_get_temp, }; static void uniphier_tm_irq_clear(struct uniphier_tm_dev *tdev) { u32 mask = 0, bits = 0; int i; for (i = 0; i < ALERT_CH_NUM; i++) { mask |= (PMALERTINTCTL_CLR(i) | PMALERTINTCTL_SET(i)); bits |= PMALERTINTCTL_CLR(i); } /* clear alert interrupt */ regmap_write_bits(tdev->regmap, tdev->data->map_base + PMALERTINTCTL, mask, bits); } static irqreturn_t uniphier_tm_alarm_irq(int irq, void *_tdev) { struct uniphier_tm_dev *tdev = _tdev; disable_irq_nosync(irq); uniphier_tm_irq_clear(tdev); return IRQ_WAKE_THREAD; } static irqreturn_t uniphier_tm_alarm_irq_thread(int irq, void *_tdev) { struct uniphier_tm_dev *tdev = _tdev; thermal_zone_device_update(tdev->tz_dev, THERMAL_EVENT_UNSPECIFIED); return IRQ_HANDLED; } static int uniphier_tm_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct regmap *regmap; struct device_node *parent; struct uniphier_tm_dev *tdev; int i, ret, irq, crit_temp = INT_MAX; tdev = devm_kzalloc(dev, sizeof(*tdev), GFP_KERNEL); if (!tdev) return -ENOMEM; tdev->dev = dev; tdev->data = of_device_get_match_data(dev); if (WARN_ON(!tdev->data)) return -EINVAL; irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; /* get regmap from syscon node */ parent = of_get_parent(dev->of_node); /* parent should be syscon node */ regmap = syscon_node_to_regmap(parent); of_node_put(parent); if (IS_ERR(regmap)) { dev_err(dev, "failed to get regmap (error %ld)\n", PTR_ERR(regmap)); return PTR_ERR(regmap); } tdev->regmap = regmap; ret = uniphier_tm_initialize_sensor(tdev); if (ret) { dev_err(dev, "failed to initialize sensor\n"); return ret; } ret = devm_request_threaded_irq(dev, irq, uniphier_tm_alarm_irq, uniphier_tm_alarm_irq_thread, 0, "thermal", tdev); if (ret) return ret; platform_set_drvdata(pdev, tdev); tdev->tz_dev = devm_thermal_of_zone_register(dev, 0, tdev, &uniphier_of_thermal_ops); if (IS_ERR(tdev->tz_dev)) { dev_err(dev, "failed to register sensor device\n"); return PTR_ERR(tdev->tz_dev); } /* set alert temperatures */ for (i = 0; i < thermal_zone_get_num_trips(tdev->tz_dev); i++) { struct thermal_trip trip; ret = thermal_zone_get_trip(tdev->tz_dev, i, &trip); if (ret) return ret; if (trip.type == THERMAL_TRIP_CRITICAL && trip.temperature < crit_temp) crit_temp = trip.temperature; uniphier_tm_set_alert(tdev, i, trip.temperature); tdev->alert_en[i] = true; } if (crit_temp > CRITICAL_TEMP_LIMIT) { dev_err(dev, "critical trip is over limit(>%d), or not set\n", CRITICAL_TEMP_LIMIT); return -EINVAL; } uniphier_tm_enable_sensor(tdev); return 0; } static void uniphier_tm_remove(struct platform_device *pdev) { struct uniphier_tm_dev *tdev = platform_get_drvdata(pdev); /* disable sensor */ uniphier_tm_disable_sensor(tdev); } static const struct uniphier_tm_soc_data uniphier_pxs2_tm_data = { .map_base = 0xe000, .block_base = 0xe000, .tmod_setup_addr = 0xe904, }; static const struct uniphier_tm_soc_data uniphier_ld20_tm_data = { .map_base = 0xe000, .block_base = 0xe800, .tmod_setup_addr = 0xe938, }; static const struct of_device_id uniphier_tm_dt_ids[] = { { .compatible = "socionext,uniphier-pxs2-thermal", .data = &uniphier_pxs2_tm_data, }, { .compatible = "socionext,uniphier-ld20-thermal", .data = &uniphier_ld20_tm_data, }, { .compatible = "socionext,uniphier-pxs3-thermal", .data = &uniphier_ld20_tm_data, }, { .compatible = "socionext,uniphier-nx1-thermal", .data = &uniphier_ld20_tm_data, }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, uniphier_tm_dt_ids); static struct platform_driver uniphier_tm_driver = { .probe = uniphier_tm_probe, .remove_new = uniphier_tm_remove, .driver = { .name = "uniphier-thermal", .of_match_table = uniphier_tm_dt_ids, }, }; module_platform_driver(uniphier_tm_driver); MODULE_AUTHOR("Kunihiko Hayashi <hayashi.kunihiko@socionext.com>"); MODULE_DESCRIPTION("UniPhier thermal driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1