Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Yaniv Gardi | 3763 | 44.57% | 18 | 15.13% |
Manivannan Sadhasivam | 1193 | 14.13% | 13 | 10.92% |
Asutosh Das | 818 | 9.69% | 12 | 10.08% |
Can Guo | 681 | 8.07% | 7 | 5.88% |
Nitin Rawat | 493 | 5.84% | 8 | 6.72% |
Andrew Halaney | 294 | 3.48% | 2 | 1.68% |
Evan Green | 213 | 2.52% | 2 | 1.68% |
Abel Vesa | 194 | 2.30% | 2 | 1.68% |
Eric Biggers | 158 | 1.87% | 2 | 1.68% |
Björn Andersson | 102 | 1.21% | 2 | 1.68% |
Subhash Jadavani | 86 | 1.02% | 4 | 3.36% |
Vinayak Holikatti | 72 | 0.85% | 3 | 2.52% |
Venkat Gopalakrishnan | 61 | 0.72% | 2 | 1.68% |
Ziqi Chen | 55 | 0.65% | 3 | 2.52% |
Lee Jones | 52 | 0.62% | 2 | 1.68% |
Anjana Hari | 26 | 0.31% | 1 | 0.84% |
Vivek Gautam | 26 | 0.31% | 3 | 2.52% |
Sahitya Tummala | 25 | 0.30% | 2 | 1.68% |
Bart Van Assche | 21 | 0.25% | 6 | 5.04% |
Adrian Hunter | 14 | 0.17% | 2 | 1.68% |
Caleb Connolly | 12 | 0.14% | 1 | 0.84% |
Santosh Yaraganavi | 12 | 0.14% | 1 | 0.84% |
Stanley Chu | 11 | 0.13% | 4 | 3.36% |
Peter Wang | 11 | 0.13% | 2 | 1.68% |
Sujit Reddy Thumma | 10 | 0.12% | 1 | 0.84% |
Javier Martinez Canillas | 9 | 0.11% | 1 | 0.84% |
Dolev Raviv | 8 | 0.09% | 1 | 0.84% |
ChanWoo Lee | 6 | 0.07% | 2 | 1.68% |
Seungwon Jeon | 5 | 0.06% | 2 | 1.68% |
Tomas Winkler | 3 | 0.04% | 1 | 0.84% |
Thomas Gleixner | 2 | 0.02% | 1 | 0.84% |
Uwe Kleine-König | 2 | 0.02% | 1 | 0.84% |
Nishka Dasgupta | 1 | 0.01% | 1 | 0.84% |
Krzysztof Kozlowski | 1 | 0.01% | 1 | 0.84% |
Alim Akhtar | 1 | 0.01% | 1 | 0.84% |
Bao D. Nguyen | 1 | 0.01% | 1 | 0.84% |
Neil Armstrong | 1 | 0.01% | 1 | 0.84% |
Total | 8443 | 119 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2013-2016, Linux Foundation. All rights reserved. */ #include <linux/acpi.h> #include <linux/time.h> #include <linux/clk.h> #include <linux/delay.h> #include <linux/interconnect.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/phy/phy.h> #include <linux/gpio/consumer.h> #include <linux/reset-controller.h> #include <linux/devfreq.h> #include <soc/qcom/ice.h> #include <ufs/ufshcd.h> #include "ufshcd-pltfrm.h" #include <ufs/unipro.h> #include "ufs-qcom.h" #include <ufs/ufshci.h> #include <ufs/ufs_quirks.h> #define MCQ_QCFGPTR_MASK GENMASK(7, 0) #define MCQ_QCFGPTR_UNIT 0x200 #define MCQ_SQATTR_OFFSET(c) \ ((((c) >> 16) & MCQ_QCFGPTR_MASK) * MCQ_QCFGPTR_UNIT) #define MCQ_QCFG_SIZE 0x40 enum { TSTBUS_UAWM, TSTBUS_UARM, TSTBUS_TXUC, TSTBUS_RXUC, TSTBUS_DFC, TSTBUS_TRLUT, TSTBUS_TMRLUT, TSTBUS_OCSC, TSTBUS_UTP_HCI, TSTBUS_COMBINED, TSTBUS_WRAPPER, TSTBUS_UNIPRO, TSTBUS_MAX, }; #define QCOM_UFS_MAX_GEAR 4 #define QCOM_UFS_MAX_LANE 2 enum { MODE_MIN, MODE_PWM, MODE_HS_RA, MODE_HS_RB, MODE_MAX, }; static const struct __ufs_qcom_bw_table { u32 mem_bw; u32 cfg_bw; } ufs_qcom_bw_table[MODE_MAX + 1][QCOM_UFS_MAX_GEAR + 1][QCOM_UFS_MAX_LANE + 1] = { [MODE_MIN][0][0] = { 0, 0 }, /* Bandwidth values in KB/s */ [MODE_PWM][UFS_PWM_G1][UFS_LANE_1] = { 922, 1000 }, [MODE_PWM][UFS_PWM_G2][UFS_LANE_1] = { 1844, 1000 }, [MODE_PWM][UFS_PWM_G3][UFS_LANE_1] = { 3688, 1000 }, [MODE_PWM][UFS_PWM_G4][UFS_LANE_1] = { 7376, 1000 }, [MODE_PWM][UFS_PWM_G1][UFS_LANE_2] = { 1844, 1000 }, [MODE_PWM][UFS_PWM_G2][UFS_LANE_2] = { 3688, 1000 }, [MODE_PWM][UFS_PWM_G3][UFS_LANE_2] = { 7376, 1000 }, [MODE_PWM][UFS_PWM_G4][UFS_LANE_2] = { 14752, 1000 }, [MODE_HS_RA][UFS_HS_G1][UFS_LANE_1] = { 127796, 1000 }, [MODE_HS_RA][UFS_HS_G2][UFS_LANE_1] = { 255591, 1000 }, [MODE_HS_RA][UFS_HS_G3][UFS_LANE_1] = { 1492582, 102400 }, [MODE_HS_RA][UFS_HS_G4][UFS_LANE_1] = { 2915200, 204800 }, [MODE_HS_RA][UFS_HS_G1][UFS_LANE_2] = { 255591, 1000 }, [MODE_HS_RA][UFS_HS_G2][UFS_LANE_2] = { 511181, 1000 }, [MODE_HS_RA][UFS_HS_G3][UFS_LANE_2] = { 1492582, 204800 }, [MODE_HS_RA][UFS_HS_G4][UFS_LANE_2] = { 2915200, 409600 }, [MODE_HS_RB][UFS_HS_G1][UFS_LANE_1] = { 149422, 1000 }, [MODE_HS_RB][UFS_HS_G2][UFS_LANE_1] = { 298189, 1000 }, [MODE_HS_RB][UFS_HS_G3][UFS_LANE_1] = { 1492582, 102400 }, [MODE_HS_RB][UFS_HS_G4][UFS_LANE_1] = { 2915200, 204800 }, [MODE_HS_RB][UFS_HS_G1][UFS_LANE_2] = { 298189, 1000 }, [MODE_HS_RB][UFS_HS_G2][UFS_LANE_2] = { 596378, 1000 }, [MODE_HS_RB][UFS_HS_G3][UFS_LANE_2] = { 1492582, 204800 }, [MODE_HS_RB][UFS_HS_G4][UFS_LANE_2] = { 2915200, 409600 }, [MODE_MAX][0][0] = { 7643136, 307200 }, }; static struct ufs_qcom_host *ufs_qcom_hosts[MAX_UFS_QCOM_HOSTS]; static void ufs_qcom_get_default_testbus_cfg(struct ufs_qcom_host *host); static int ufs_qcom_set_core_clk_ctrl(struct ufs_hba *hba, bool is_scale_up); static struct ufs_qcom_host *rcdev_to_ufs_host(struct reset_controller_dev *rcd) { return container_of(rcd, struct ufs_qcom_host, rcdev); } #ifdef CONFIG_SCSI_UFS_CRYPTO static inline void ufs_qcom_ice_enable(struct ufs_qcom_host *host) { if (host->hba->caps & UFSHCD_CAP_CRYPTO) qcom_ice_enable(host->ice); } static int ufs_qcom_ice_init(struct ufs_qcom_host *host) { struct ufs_hba *hba = host->hba; struct device *dev = hba->dev; struct qcom_ice *ice; ice = of_qcom_ice_get(dev); if (ice == ERR_PTR(-EOPNOTSUPP)) { dev_warn(dev, "Disabling inline encryption support\n"); ice = NULL; } if (IS_ERR_OR_NULL(ice)) return PTR_ERR_OR_ZERO(ice); host->ice = ice; hba->caps |= UFSHCD_CAP_CRYPTO; return 0; } static inline int ufs_qcom_ice_resume(struct ufs_qcom_host *host) { if (host->hba->caps & UFSHCD_CAP_CRYPTO) return qcom_ice_resume(host->ice); return 0; } static inline int ufs_qcom_ice_suspend(struct ufs_qcom_host *host) { if (host->hba->caps & UFSHCD_CAP_CRYPTO) return qcom_ice_suspend(host->ice); return 0; } static int ufs_qcom_ice_program_key(struct ufs_hba *hba, const union ufs_crypto_cfg_entry *cfg, int slot) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); union ufs_crypto_cap_entry cap; bool config_enable = cfg->config_enable & UFS_CRYPTO_CONFIGURATION_ENABLE; /* Only AES-256-XTS has been tested so far. */ cap = hba->crypto_cap_array[cfg->crypto_cap_idx]; if (cap.algorithm_id != UFS_CRYPTO_ALG_AES_XTS || cap.key_size != UFS_CRYPTO_KEY_SIZE_256) return -EINVAL; if (config_enable) return qcom_ice_program_key(host->ice, QCOM_ICE_CRYPTO_ALG_AES_XTS, QCOM_ICE_CRYPTO_KEY_SIZE_256, cfg->crypto_key, cfg->data_unit_size, slot); else return qcom_ice_evict_key(host->ice, slot); } #else #define ufs_qcom_ice_program_key NULL static inline void ufs_qcom_ice_enable(struct ufs_qcom_host *host) { } static int ufs_qcom_ice_init(struct ufs_qcom_host *host) { return 0; } static inline int ufs_qcom_ice_resume(struct ufs_qcom_host *host) { return 0; } static inline int ufs_qcom_ice_suspend(struct ufs_qcom_host *host) { return 0; } #endif static int ufs_qcom_host_clk_get(struct device *dev, const char *name, struct clk **clk_out, bool optional) { struct clk *clk; int err = 0; clk = devm_clk_get(dev, name); if (!IS_ERR(clk)) { *clk_out = clk; return 0; } err = PTR_ERR(clk); if (optional && err == -ENOENT) { *clk_out = NULL; return 0; } if (err != -EPROBE_DEFER) dev_err(dev, "failed to get %s err %d\n", name, err); return err; } static int ufs_qcom_host_clk_enable(struct device *dev, const char *name, struct clk *clk) { int err = 0; err = clk_prepare_enable(clk); if (err) dev_err(dev, "%s: %s enable failed %d\n", __func__, name, err); return err; } static void ufs_qcom_disable_lane_clks(struct ufs_qcom_host *host) { if (!host->is_lane_clks_enabled) return; clk_disable_unprepare(host->tx_l1_sync_clk); clk_disable_unprepare(host->tx_l0_sync_clk); clk_disable_unprepare(host->rx_l1_sync_clk); clk_disable_unprepare(host->rx_l0_sync_clk); host->is_lane_clks_enabled = false; } static int ufs_qcom_enable_lane_clks(struct ufs_qcom_host *host) { int err; struct device *dev = host->hba->dev; if (host->is_lane_clks_enabled) return 0; err = ufs_qcom_host_clk_enable(dev, "rx_lane0_sync_clk", host->rx_l0_sync_clk); if (err) return err; err = ufs_qcom_host_clk_enable(dev, "tx_lane0_sync_clk", host->tx_l0_sync_clk); if (err) goto disable_rx_l0; err = ufs_qcom_host_clk_enable(dev, "rx_lane1_sync_clk", host->rx_l1_sync_clk); if (err) goto disable_tx_l0; err = ufs_qcom_host_clk_enable(dev, "tx_lane1_sync_clk", host->tx_l1_sync_clk); if (err) goto disable_rx_l1; host->is_lane_clks_enabled = true; return 0; disable_rx_l1: clk_disable_unprepare(host->rx_l1_sync_clk); disable_tx_l0: clk_disable_unprepare(host->tx_l0_sync_clk); disable_rx_l0: clk_disable_unprepare(host->rx_l0_sync_clk); return err; } static int ufs_qcom_init_lane_clks(struct ufs_qcom_host *host) { int err = 0; struct device *dev = host->hba->dev; if (has_acpi_companion(dev)) return 0; err = ufs_qcom_host_clk_get(dev, "rx_lane0_sync_clk", &host->rx_l0_sync_clk, false); if (err) return err; err = ufs_qcom_host_clk_get(dev, "tx_lane0_sync_clk", &host->tx_l0_sync_clk, false); if (err) return err; /* In case of single lane per direction, don't read lane1 clocks */ if (host->hba->lanes_per_direction > 1) { err = ufs_qcom_host_clk_get(dev, "rx_lane1_sync_clk", &host->rx_l1_sync_clk, false); if (err) return err; err = ufs_qcom_host_clk_get(dev, "tx_lane1_sync_clk", &host->tx_l1_sync_clk, true); } return 0; } static int ufs_qcom_check_hibern8(struct ufs_hba *hba) { int err; u32 tx_fsm_val = 0; unsigned long timeout = jiffies + msecs_to_jiffies(HBRN8_POLL_TOUT_MS); do { err = ufshcd_dme_get(hba, UIC_ARG_MIB_SEL(MPHY_TX_FSM_STATE, UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)), &tx_fsm_val); if (err || tx_fsm_val == TX_FSM_HIBERN8) break; /* sleep for max. 200us */ usleep_range(100, 200); } while (time_before(jiffies, timeout)); /* * we might have scheduled out for long during polling so * check the state again. */ if (time_after(jiffies, timeout)) err = ufshcd_dme_get(hba, UIC_ARG_MIB_SEL(MPHY_TX_FSM_STATE, UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)), &tx_fsm_val); if (err) { dev_err(hba->dev, "%s: unable to get TX_FSM_STATE, err %d\n", __func__, err); } else if (tx_fsm_val != TX_FSM_HIBERN8) { err = tx_fsm_val; dev_err(hba->dev, "%s: invalid TX_FSM_STATE = %d\n", __func__, err); } return err; } static void ufs_qcom_select_unipro_mode(struct ufs_qcom_host *host) { ufshcd_rmwl(host->hba, QUNIPRO_SEL, ufs_qcom_cap_qunipro(host) ? QUNIPRO_SEL : 0, REG_UFS_CFG1); if (host->hw_ver.major >= 0x05) ufshcd_rmwl(host->hba, QUNIPRO_G4_SEL, 0, REG_UFS_CFG0); /* make sure above configuration is applied before we return */ mb(); } /* * ufs_qcom_host_reset - reset host controller and PHY */ static int ufs_qcom_host_reset(struct ufs_hba *hba) { int ret = 0; struct ufs_qcom_host *host = ufshcd_get_variant(hba); bool reenable_intr = false; if (!host->core_reset) { dev_warn(hba->dev, "%s: reset control not set\n", __func__); return 0; } reenable_intr = hba->is_irq_enabled; disable_irq(hba->irq); hba->is_irq_enabled = false; ret = reset_control_assert(host->core_reset); if (ret) { dev_err(hba->dev, "%s: core_reset assert failed, err = %d\n", __func__, ret); return ret; } /* * The hardware requirement for delay between assert/deassert * is at least 3-4 sleep clock (32.7KHz) cycles, which comes to * ~125us (4/32768). To be on the safe side add 200us delay. */ usleep_range(200, 210); ret = reset_control_deassert(host->core_reset); if (ret) dev_err(hba->dev, "%s: core_reset deassert failed, err = %d\n", __func__, ret); usleep_range(1000, 1100); if (reenable_intr) { enable_irq(hba->irq); hba->is_irq_enabled = true; } return 0; } static u32 ufs_qcom_get_hs_gear(struct ufs_hba *hba) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); if (host->hw_ver.major == 0x1) { /* * HS-G3 operations may not reliably work on legacy QCOM * UFS host controller hardware even though capability * exchange during link startup phase may end up * negotiating maximum supported gear as G3. * Hence downgrade the maximum supported gear to HS-G2. */ return UFS_HS_G2; } else if (host->hw_ver.major >= 0x4) { return UFS_QCOM_MAX_GEAR(ufshcd_readl(hba, REG_UFS_PARAM0)); } /* Default is HS-G3 */ return UFS_HS_G3; } static int ufs_qcom_power_up_sequence(struct ufs_hba *hba) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); struct phy *phy = host->generic_phy; int ret; /* Reset UFS Host Controller and PHY */ ret = ufs_qcom_host_reset(hba); if (ret) dev_warn(hba->dev, "%s: host reset returned %d\n", __func__, ret); /* phy initialization - calibrate the phy */ ret = phy_init(phy); if (ret) { dev_err(hba->dev, "%s: phy init failed, ret = %d\n", __func__, ret); return ret; } phy_set_mode_ext(phy, PHY_MODE_UFS_HS_B, host->phy_gear); /* power on phy - start serdes and phy's power and clocks */ ret = phy_power_on(phy); if (ret) { dev_err(hba->dev, "%s: phy power on failed, ret = %d\n", __func__, ret); goto out_disable_phy; } ufs_qcom_select_unipro_mode(host); return 0; out_disable_phy: phy_exit(phy); return ret; } /* * The UTP controller has a number of internal clock gating cells (CGCs). * Internal hardware sub-modules within the UTP controller control the CGCs. * Hardware CGCs disable the clock to inactivate UTP sub-modules not involved * in a specific operation, UTP controller CGCs are by default disabled and * this function enables them (after every UFS link startup) to save some power * leakage. */ static void ufs_qcom_enable_hw_clk_gating(struct ufs_hba *hba) { ufshcd_writel(hba, ufshcd_readl(hba, REG_UFS_CFG2) | REG_UFS_CFG2_CGC_EN_ALL, REG_UFS_CFG2); /* Ensure that HW clock gating is enabled before next operations */ mb(); } static int ufs_qcom_hce_enable_notify(struct ufs_hba *hba, enum ufs_notify_change_status status) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); int err = 0; switch (status) { case PRE_CHANGE: ufs_qcom_power_up_sequence(hba); /* * The PHY PLL output is the source of tx/rx lane symbol * clocks, hence, enable the lane clocks only after PHY * is initialized. */ err = ufs_qcom_enable_lane_clks(host); break; case POST_CHANGE: /* check if UFS PHY moved from DISABLED to HIBERN8 */ err = ufs_qcom_check_hibern8(hba); ufs_qcom_enable_hw_clk_gating(hba); ufs_qcom_ice_enable(host); break; default: dev_err(hba->dev, "%s: invalid status %d\n", __func__, status); err = -EINVAL; break; } return err; } /** * ufs_qcom_cfg_timers - Configure ufs qcom cfg timers * * @hba: host controller instance * @gear: Current operating gear * @hs: current power mode * @rate: current operating rate (A or B) * @update_link_startup_timer: indicate if link_start ongoing * @is_pre_scale_up: flag to check if pre scale up condition. * Return: zero for success and non-zero in case of a failure. */ static int ufs_qcom_cfg_timers(struct ufs_hba *hba, u32 gear, u32 hs, u32 rate, bool update_link_startup_timer, bool is_pre_scale_up) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); struct ufs_clk_info *clki; u32 core_clk_period_in_ns; u32 tx_clk_cycles_per_us = 0; unsigned long core_clk_rate = 0; u32 core_clk_cycles_per_us = 0; static u32 pwm_fr_table[][2] = { {UFS_PWM_G1, 0x1}, {UFS_PWM_G2, 0x1}, {UFS_PWM_G3, 0x1}, {UFS_PWM_G4, 0x1}, }; static u32 hs_fr_table_rA[][2] = { {UFS_HS_G1, 0x1F}, {UFS_HS_G2, 0x3e}, {UFS_HS_G3, 0x7D}, }; static u32 hs_fr_table_rB[][2] = { {UFS_HS_G1, 0x24}, {UFS_HS_G2, 0x49}, {UFS_HS_G3, 0x92}, }; /* * The Qunipro controller does not use following registers: * SYS1CLK_1US_REG, TX_SYMBOL_CLK_1US_REG, CLK_NS_REG & * UFS_REG_PA_LINK_STARTUP_TIMER. * However UTP controller uses SYS1CLK_1US_REG register for Interrupt * Aggregation logic. * It is mandatory to write SYS1CLK_1US_REG register on UFS host * controller V4.0.0 onwards. */ if (host->hw_ver.major < 4 && ufs_qcom_cap_qunipro(host) && !ufshcd_is_intr_aggr_allowed(hba)) return 0; if (gear == 0) { dev_err(hba->dev, "%s: invalid gear = %d\n", __func__, gear); return -EINVAL; } list_for_each_entry(clki, &hba->clk_list_head, list) { if (!strcmp(clki->name, "core_clk")) { if (is_pre_scale_up) core_clk_rate = clki->max_freq; else core_clk_rate = clk_get_rate(clki->clk); break; } } /* If frequency is smaller than 1MHz, set to 1MHz */ if (core_clk_rate < DEFAULT_CLK_RATE_HZ) core_clk_rate = DEFAULT_CLK_RATE_HZ; core_clk_cycles_per_us = core_clk_rate / USEC_PER_SEC; if (ufshcd_readl(hba, REG_UFS_SYS1CLK_1US) != core_clk_cycles_per_us) { ufshcd_writel(hba, core_clk_cycles_per_us, REG_UFS_SYS1CLK_1US); /* * make sure above write gets applied before we return from * this function. */ mb(); } if (ufs_qcom_cap_qunipro(host)) return 0; core_clk_period_in_ns = NSEC_PER_SEC / core_clk_rate; core_clk_period_in_ns <<= OFFSET_CLK_NS_REG; core_clk_period_in_ns &= MASK_CLK_NS_REG; switch (hs) { case FASTAUTO_MODE: case FAST_MODE: if (rate == PA_HS_MODE_A) { if (gear > ARRAY_SIZE(hs_fr_table_rA)) { dev_err(hba->dev, "%s: index %d exceeds table size %zu\n", __func__, gear, ARRAY_SIZE(hs_fr_table_rA)); return -EINVAL; } tx_clk_cycles_per_us = hs_fr_table_rA[gear-1][1]; } else if (rate == PA_HS_MODE_B) { if (gear > ARRAY_SIZE(hs_fr_table_rB)) { dev_err(hba->dev, "%s: index %d exceeds table size %zu\n", __func__, gear, ARRAY_SIZE(hs_fr_table_rB)); return -EINVAL; } tx_clk_cycles_per_us = hs_fr_table_rB[gear-1][1]; } else { dev_err(hba->dev, "%s: invalid rate = %d\n", __func__, rate); return -EINVAL; } break; case SLOWAUTO_MODE: case SLOW_MODE: if (gear > ARRAY_SIZE(pwm_fr_table)) { dev_err(hba->dev, "%s: index %d exceeds table size %zu\n", __func__, gear, ARRAY_SIZE(pwm_fr_table)); return -EINVAL; } tx_clk_cycles_per_us = pwm_fr_table[gear-1][1]; break; case UNCHANGED: default: dev_err(hba->dev, "%s: invalid mode = %d\n", __func__, hs); return -EINVAL; } if (ufshcd_readl(hba, REG_UFS_TX_SYMBOL_CLK_NS_US) != (core_clk_period_in_ns | tx_clk_cycles_per_us)) { /* this register 2 fields shall be written at once */ ufshcd_writel(hba, core_clk_period_in_ns | tx_clk_cycles_per_us, REG_UFS_TX_SYMBOL_CLK_NS_US); /* * make sure above write gets applied before we return from * this function. */ mb(); } if (update_link_startup_timer && host->hw_ver.major != 0x5) { ufshcd_writel(hba, ((core_clk_rate / MSEC_PER_SEC) * 100), REG_UFS_CFG0); /* * make sure that this configuration is applied before * we return */ mb(); } return 0; } static int ufs_qcom_link_startup_notify(struct ufs_hba *hba, enum ufs_notify_change_status status) { int err = 0; struct ufs_qcom_host *host = ufshcd_get_variant(hba); switch (status) { case PRE_CHANGE: if (ufs_qcom_cfg_timers(hba, UFS_PWM_G1, SLOWAUTO_MODE, 0, true, false)) { dev_err(hba->dev, "%s: ufs_qcom_cfg_timers() failed\n", __func__); return -EINVAL; } if (ufs_qcom_cap_qunipro(host)) { err = ufs_qcom_set_core_clk_ctrl(hba, true); if (err) dev_err(hba->dev, "cfg core clk ctrl failed\n"); } /* * Some UFS devices (and may be host) have issues if LCC is * enabled. So we are setting PA_Local_TX_LCC_Enable to 0 * before link startup which will make sure that both host * and device TX LCC are disabled once link startup is * completed. */ if (ufshcd_get_local_unipro_ver(hba) != UFS_UNIPRO_VER_1_41) err = ufshcd_disable_host_tx_lcc(hba); break; default: break; } return err; } static void ufs_qcom_device_reset_ctrl(struct ufs_hba *hba, bool asserted) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); /* reset gpio is optional */ if (!host->device_reset) return; gpiod_set_value_cansleep(host->device_reset, asserted); } static int ufs_qcom_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op, enum ufs_notify_change_status status) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); struct phy *phy = host->generic_phy; if (status == PRE_CHANGE) return 0; if (ufs_qcom_is_link_off(hba)) { /* * Disable the tx/rx lane symbol clocks before PHY is * powered down as the PLL source should be disabled * after downstream clocks are disabled. */ ufs_qcom_disable_lane_clks(host); phy_power_off(phy); /* reset the connected UFS device during power down */ ufs_qcom_device_reset_ctrl(hba, true); } else if (!ufs_qcom_is_link_active(hba)) { ufs_qcom_disable_lane_clks(host); } return ufs_qcom_ice_suspend(host); } static int ufs_qcom_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); struct phy *phy = host->generic_phy; int err; if (ufs_qcom_is_link_off(hba)) { err = phy_power_on(phy); if (err) { dev_err(hba->dev, "%s: failed PHY power on: %d\n", __func__, err); return err; } err = ufs_qcom_enable_lane_clks(host); if (err) return err; } else if (!ufs_qcom_is_link_active(hba)) { err = ufs_qcom_enable_lane_clks(host); if (err) return err; } return ufs_qcom_ice_resume(host); } static void ufs_qcom_dev_ref_clk_ctrl(struct ufs_qcom_host *host, bool enable) { if (host->dev_ref_clk_ctrl_mmio && (enable ^ host->is_dev_ref_clk_enabled)) { u32 temp = readl_relaxed(host->dev_ref_clk_ctrl_mmio); if (enable) temp |= host->dev_ref_clk_en_mask; else temp &= ~host->dev_ref_clk_en_mask; /* * If we are here to disable this clock it might be immediately * after entering into hibern8 in which case we need to make * sure that device ref_clk is active for specific time after * hibern8 enter. */ if (!enable) { unsigned long gating_wait; gating_wait = host->hba->dev_info.clk_gating_wait_us; if (!gating_wait) { udelay(1); } else { /* * bRefClkGatingWaitTime defines the minimum * time for which the reference clock is * required by device during transition from * HS-MODE to LS-MODE or HIBERN8 state. Give it * more delay to be on the safe side. */ gating_wait += 10; usleep_range(gating_wait, gating_wait + 10); } } writel_relaxed(temp, host->dev_ref_clk_ctrl_mmio); /* * Make sure the write to ref_clk reaches the destination and * not stored in a Write Buffer (WB). */ readl(host->dev_ref_clk_ctrl_mmio); /* * If we call hibern8 exit after this, we need to make sure that * device ref_clk is stable for at least 1us before the hibern8 * exit command. */ if (enable) udelay(1); host->is_dev_ref_clk_enabled = enable; } } static int ufs_qcom_icc_set_bw(struct ufs_qcom_host *host, u32 mem_bw, u32 cfg_bw) { struct device *dev = host->hba->dev; int ret; ret = icc_set_bw(host->icc_ddr, 0, mem_bw); if (ret < 0) { dev_err(dev, "failed to set bandwidth request: %d\n", ret); return ret; } ret = icc_set_bw(host->icc_cpu, 0, cfg_bw); if (ret < 0) { dev_err(dev, "failed to set bandwidth request: %d\n", ret); return ret; } return 0; } static struct __ufs_qcom_bw_table ufs_qcom_get_bw_table(struct ufs_qcom_host *host) { struct ufs_pa_layer_attr *p = &host->dev_req_params; int gear = max_t(u32, p->gear_rx, p->gear_tx); int lane = max_t(u32, p->lane_rx, p->lane_tx); if (ufshcd_is_hs_mode(p)) { if (p->hs_rate == PA_HS_MODE_B) return ufs_qcom_bw_table[MODE_HS_RB][gear][lane]; else return ufs_qcom_bw_table[MODE_HS_RA][gear][lane]; } else { return ufs_qcom_bw_table[MODE_PWM][gear][lane]; } } static int ufs_qcom_icc_update_bw(struct ufs_qcom_host *host) { struct __ufs_qcom_bw_table bw_table; bw_table = ufs_qcom_get_bw_table(host); return ufs_qcom_icc_set_bw(host, bw_table.mem_bw, bw_table.cfg_bw); } static int ufs_qcom_pwr_change_notify(struct ufs_hba *hba, enum ufs_notify_change_status status, struct ufs_pa_layer_attr *dev_max_params, struct ufs_pa_layer_attr *dev_req_params) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); struct ufs_dev_params ufs_qcom_cap; int ret = 0; if (!dev_req_params) { pr_err("%s: incoming dev_req_params is NULL\n", __func__); return -EINVAL; } switch (status) { case PRE_CHANGE: ufshcd_init_pwr_dev_param(&ufs_qcom_cap); ufs_qcom_cap.hs_rate = UFS_QCOM_LIMIT_HS_RATE; /* This driver only supports symmetic gear setting i.e., hs_tx_gear == hs_rx_gear */ ufs_qcom_cap.hs_tx_gear = ufs_qcom_cap.hs_rx_gear = ufs_qcom_get_hs_gear(hba); ret = ufshcd_get_pwr_dev_param(&ufs_qcom_cap, dev_max_params, dev_req_params); if (ret) { dev_err(hba->dev, "%s: failed to determine capabilities\n", __func__); return ret; } /* * Update phy_gear only when the gears are scaled to a higher value. This is * because, the PHY gear settings are backwards compatible and we only need to * change the PHY gear settings while scaling to higher gears. */ if (dev_req_params->gear_tx > host->phy_gear) host->phy_gear = dev_req_params->gear_tx; /* enable the device ref clock before changing to HS mode */ if (!ufshcd_is_hs_mode(&hba->pwr_info) && ufshcd_is_hs_mode(dev_req_params)) ufs_qcom_dev_ref_clk_ctrl(host, true); if (host->hw_ver.major >= 0x4) { ufshcd_dme_configure_adapt(hba, dev_req_params->gear_tx, PA_INITIAL_ADAPT); } break; case POST_CHANGE: if (ufs_qcom_cfg_timers(hba, dev_req_params->gear_rx, dev_req_params->pwr_rx, dev_req_params->hs_rate, false, false)) { dev_err(hba->dev, "%s: ufs_qcom_cfg_timers() failed\n", __func__); /* * we return error code at the end of the routine, * but continue to configure UFS_PHY_TX_LANE_ENABLE * and bus voting as usual */ ret = -EINVAL; } /* cache the power mode parameters to use internally */ memcpy(&host->dev_req_params, dev_req_params, sizeof(*dev_req_params)); ufs_qcom_icc_update_bw(host); /* disable the device ref clock if entered PWM mode */ if (ufshcd_is_hs_mode(&hba->pwr_info) && !ufshcd_is_hs_mode(dev_req_params)) ufs_qcom_dev_ref_clk_ctrl(host, false); break; default: ret = -EINVAL; break; } return ret; } static int ufs_qcom_quirk_host_pa_saveconfigtime(struct ufs_hba *hba) { int err; u32 pa_vs_config_reg1; err = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_VS_CONFIG_REG1), &pa_vs_config_reg1); if (err) return err; /* Allow extension of MSB bits of PA_SaveConfigTime attribute */ return ufshcd_dme_set(hba, UIC_ARG_MIB(PA_VS_CONFIG_REG1), (pa_vs_config_reg1 | (1 << 12))); } static int ufs_qcom_apply_dev_quirks(struct ufs_hba *hba) { int err = 0; if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME) err = ufs_qcom_quirk_host_pa_saveconfigtime(hba); if (hba->dev_info.wmanufacturerid == UFS_VENDOR_WDC) hba->dev_quirks |= UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE; return err; } static u32 ufs_qcom_get_ufs_hci_version(struct ufs_hba *hba) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); if (host->hw_ver.major == 0x1) return ufshci_version(1, 1); else return ufshci_version(2, 0); } /** * ufs_qcom_advertise_quirks - advertise the known QCOM UFS controller quirks * @hba: host controller instance * * QCOM UFS host controller might have some non standard behaviours (quirks) * than what is specified by UFSHCI specification. Advertise all such * quirks to standard UFS host controller driver so standard takes them into * account. */ static void ufs_qcom_advertise_quirks(struct ufs_hba *hba) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); if (host->hw_ver.major == 0x01) { hba->quirks |= UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS | UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP | UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE; if (host->hw_ver.minor == 0x0001 && host->hw_ver.step == 0x0001) hba->quirks |= UFSHCD_QUIRK_BROKEN_INTR_AGGR; hba->quirks |= UFSHCD_QUIRK_BROKEN_LCC; } if (host->hw_ver.major == 0x2) { hba->quirks |= UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION; if (!ufs_qcom_cap_qunipro(host)) /* Legacy UniPro mode still need following quirks */ hba->quirks |= (UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS | UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE | UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP); } if (host->hw_ver.major > 0x3) hba->quirks |= UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH; } static void ufs_qcom_set_caps(struct ufs_hba *hba) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); hba->caps |= UFSHCD_CAP_CLK_GATING | UFSHCD_CAP_HIBERN8_WITH_CLK_GATING; hba->caps |= UFSHCD_CAP_CLK_SCALING | UFSHCD_CAP_WB_WITH_CLK_SCALING; hba->caps |= UFSHCD_CAP_AUTO_BKOPS_SUSPEND; hba->caps |= UFSHCD_CAP_WB_EN; hba->caps |= UFSHCD_CAP_AGGR_POWER_COLLAPSE; hba->caps |= UFSHCD_CAP_RPM_AUTOSUSPEND; if (host->hw_ver.major >= 0x2) { host->caps = UFS_QCOM_CAP_QUNIPRO | UFS_QCOM_CAP_RETAIN_SEC_CFG_AFTER_PWR_COLLAPSE; } } /** * ufs_qcom_setup_clocks - enables/disable clocks * @hba: host controller instance * @on: If true, enable clocks else disable them. * @status: PRE_CHANGE or POST_CHANGE notify * * Return: 0 on success, non-zero on failure. */ static int ufs_qcom_setup_clocks(struct ufs_hba *hba, bool on, enum ufs_notify_change_status status) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); /* * In case ufs_qcom_init() is not yet done, simply ignore. * This ufs_qcom_setup_clocks() shall be called from * ufs_qcom_init() after init is done. */ if (!host) return 0; switch (status) { case PRE_CHANGE: if (on) { ufs_qcom_icc_update_bw(host); } else { if (!ufs_qcom_is_link_active(hba)) { /* disable device ref_clk */ ufs_qcom_dev_ref_clk_ctrl(host, false); } } break; case POST_CHANGE: if (on) { /* enable the device ref clock for HS mode*/ if (ufshcd_is_hs_mode(&hba->pwr_info)) ufs_qcom_dev_ref_clk_ctrl(host, true); } else { ufs_qcom_icc_set_bw(host, ufs_qcom_bw_table[MODE_MIN][0][0].mem_bw, ufs_qcom_bw_table[MODE_MIN][0][0].cfg_bw); } break; } return 0; } static int ufs_qcom_reset_assert(struct reset_controller_dev *rcdev, unsigned long id) { struct ufs_qcom_host *host = rcdev_to_ufs_host(rcdev); ufs_qcom_assert_reset(host->hba); /* provide 1ms delay to let the reset pulse propagate. */ usleep_range(1000, 1100); return 0; } static int ufs_qcom_reset_deassert(struct reset_controller_dev *rcdev, unsigned long id) { struct ufs_qcom_host *host = rcdev_to_ufs_host(rcdev); ufs_qcom_deassert_reset(host->hba); /* * after reset deassertion, phy will need all ref clocks, * voltage, current to settle down before starting serdes. */ usleep_range(1000, 1100); return 0; } static const struct reset_control_ops ufs_qcom_reset_ops = { .assert = ufs_qcom_reset_assert, .deassert = ufs_qcom_reset_deassert, }; static int ufs_qcom_icc_init(struct ufs_qcom_host *host) { struct device *dev = host->hba->dev; int ret; host->icc_ddr = devm_of_icc_get(dev, "ufs-ddr"); if (IS_ERR(host->icc_ddr)) return dev_err_probe(dev, PTR_ERR(host->icc_ddr), "failed to acquire interconnect path\n"); host->icc_cpu = devm_of_icc_get(dev, "cpu-ufs"); if (IS_ERR(host->icc_cpu)) return dev_err_probe(dev, PTR_ERR(host->icc_cpu), "failed to acquire interconnect path\n"); /* * Set Maximum bandwidth vote before initializing the UFS controller and * device. Ideally, a minimal interconnect vote would suffice for the * initialization, but a max vote would allow faster initialization. */ ret = ufs_qcom_icc_set_bw(host, ufs_qcom_bw_table[MODE_MAX][0][0].mem_bw, ufs_qcom_bw_table[MODE_MAX][0][0].cfg_bw); if (ret < 0) return dev_err_probe(dev, ret, "failed to set bandwidth request\n"); return 0; } /** * ufs_qcom_init - bind phy with controller * @hba: host controller instance * * Binds PHY with controller and powers up PHY enabling clocks * and regulators. * * Return: -EPROBE_DEFER if binding fails, returns negative error * on phy power up failure and returns zero on success. */ static int ufs_qcom_init(struct ufs_hba *hba) { int err; struct device *dev = hba->dev; struct platform_device *pdev = to_platform_device(dev); struct ufs_qcom_host *host; struct resource *res; struct ufs_clk_info *clki; host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL); if (!host) { dev_err(dev, "%s: no memory for qcom ufs host\n", __func__); return -ENOMEM; } /* Make a two way bind between the qcom host and the hba */ host->hba = hba; ufshcd_set_variant(hba, host); /* Setup the optional reset control of HCI */ host->core_reset = devm_reset_control_get_optional(hba->dev, "rst"); if (IS_ERR(host->core_reset)) { err = dev_err_probe(dev, PTR_ERR(host->core_reset), "Failed to get reset control\n"); goto out_variant_clear; } /* Fire up the reset controller. Failure here is non-fatal. */ host->rcdev.of_node = dev->of_node; host->rcdev.ops = &ufs_qcom_reset_ops; host->rcdev.owner = dev->driver->owner; host->rcdev.nr_resets = 1; err = devm_reset_controller_register(dev, &host->rcdev); if (err) dev_warn(dev, "Failed to register reset controller\n"); if (!has_acpi_companion(dev)) { host->generic_phy = devm_phy_get(dev, "ufsphy"); if (IS_ERR(host->generic_phy)) { err = dev_err_probe(dev, PTR_ERR(host->generic_phy), "Failed to get PHY\n"); goto out_variant_clear; } } err = ufs_qcom_icc_init(host); if (err) goto out_variant_clear; host->device_reset = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH); if (IS_ERR(host->device_reset)) { err = PTR_ERR(host->device_reset); if (err != -EPROBE_DEFER) dev_err(dev, "failed to acquire reset gpio: %d\n", err); goto out_variant_clear; } ufs_qcom_get_controller_revision(hba, &host->hw_ver.major, &host->hw_ver.minor, &host->hw_ver.step); /* * for newer controllers, device reference clock control bit has * moved inside UFS controller register address space itself. */ if (host->hw_ver.major >= 0x02) { host->dev_ref_clk_ctrl_mmio = hba->mmio_base + REG_UFS_CFG1; host->dev_ref_clk_en_mask = BIT(26); } else { /* "dev_ref_clk_ctrl_mem" is optional resource */ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dev_ref_clk_ctrl_mem"); if (res) { host->dev_ref_clk_ctrl_mmio = devm_ioremap_resource(dev, res); if (IS_ERR(host->dev_ref_clk_ctrl_mmio)) host->dev_ref_clk_ctrl_mmio = NULL; host->dev_ref_clk_en_mask = BIT(5); } } list_for_each_entry(clki, &hba->clk_list_head, list) { if (!strcmp(clki->name, "core_clk_unipro")) clki->keep_link_active = true; } err = ufs_qcom_init_lane_clks(host); if (err) goto out_variant_clear; ufs_qcom_set_caps(hba); ufs_qcom_advertise_quirks(hba); err = ufs_qcom_ice_init(host); if (err) goto out_variant_clear; ufs_qcom_setup_clocks(hba, true, POST_CHANGE); if (hba->dev->id < MAX_UFS_QCOM_HOSTS) ufs_qcom_hosts[hba->dev->id] = host; ufs_qcom_get_default_testbus_cfg(host); err = ufs_qcom_testbus_config(host); if (err) /* Failure is non-fatal */ dev_warn(dev, "%s: failed to configure the testbus %d\n", __func__, err); /* * Power up the PHY using the minimum supported gear (UFS_HS_G2). * Switching to max gear will be performed during reinit if supported. */ host->phy_gear = UFS_HS_G2; return 0; out_variant_clear: ufshcd_set_variant(hba, NULL); return err; } static void ufs_qcom_exit(struct ufs_hba *hba) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); ufs_qcom_disable_lane_clks(host); phy_power_off(host->generic_phy); phy_exit(host->generic_phy); } /** * ufs_qcom_set_clk_40ns_cycles - Configure 40ns clk cycles * * @hba: host controller instance * @cycles_in_1us: No of cycles in 1us to be configured * * Returns error if dme get/set configuration for 40ns fails * and returns zero on success. */ static int ufs_qcom_set_clk_40ns_cycles(struct ufs_hba *hba, u32 cycles_in_1us) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); u32 cycles_in_40ns; u32 reg; int err; /* * UFS host controller V4.0.0 onwards needs to program * PA_VS_CORE_CLK_40NS_CYCLES attribute per programmed * frequency of unipro core clk of UFS host controller. */ if (host->hw_ver.major < 4) return 0; /* * Generic formulae for cycles_in_40ns = (freq_unipro/25) is not * applicable for all frequencies. For ex: ceil(37.5 MHz/25) will * be 2 and ceil(403 MHZ/25) will be 17 whereas Hardware * specification expect to be 16. Hence use exact hardware spec * mandated value for cycles_in_40ns instead of calculating using * generic formulae. */ switch (cycles_in_1us) { case UNIPRO_CORE_CLK_FREQ_403_MHZ: cycles_in_40ns = 16; break; case UNIPRO_CORE_CLK_FREQ_300_MHZ: cycles_in_40ns = 12; break; case UNIPRO_CORE_CLK_FREQ_201_5_MHZ: cycles_in_40ns = 8; break; case UNIPRO_CORE_CLK_FREQ_150_MHZ: cycles_in_40ns = 6; break; case UNIPRO_CORE_CLK_FREQ_100_MHZ: cycles_in_40ns = 4; break; case UNIPRO_CORE_CLK_FREQ_75_MHZ: cycles_in_40ns = 3; break; case UNIPRO_CORE_CLK_FREQ_37_5_MHZ: cycles_in_40ns = 2; break; default: dev_err(hba->dev, "UNIPRO clk freq %u MHz not supported\n", cycles_in_1us); return -EINVAL; } err = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_VS_CORE_CLK_40NS_CYCLES), ®); if (err) return err; reg &= ~PA_VS_CORE_CLK_40NS_CYCLES_MASK; reg |= cycles_in_40ns; return ufshcd_dme_set(hba, UIC_ARG_MIB(PA_VS_CORE_CLK_40NS_CYCLES), reg); } static int ufs_qcom_set_core_clk_ctrl(struct ufs_hba *hba, bool is_scale_up) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); struct list_head *head = &hba->clk_list_head; struct ufs_clk_info *clki; u32 cycles_in_1us; u32 core_clk_ctrl_reg; int err; list_for_each_entry(clki, head, list) { if (!IS_ERR_OR_NULL(clki->clk) && !strcmp(clki->name, "core_clk_unipro")) { if (is_scale_up) cycles_in_1us = ceil(clki->max_freq, (1000 * 1000)); else cycles_in_1us = ceil(clk_get_rate(clki->clk), (1000 * 1000)); break; } } err = ufshcd_dme_get(hba, UIC_ARG_MIB(DME_VS_CORE_CLK_CTRL), &core_clk_ctrl_reg); if (err) return err; /* Bit mask is different for UFS host controller V4.0.0 onwards */ if (host->hw_ver.major >= 4) { if (!FIELD_FIT(CLK_1US_CYCLES_MASK_V4, cycles_in_1us)) return -ERANGE; core_clk_ctrl_reg &= ~CLK_1US_CYCLES_MASK_V4; core_clk_ctrl_reg |= FIELD_PREP(CLK_1US_CYCLES_MASK_V4, cycles_in_1us); } else { if (!FIELD_FIT(CLK_1US_CYCLES_MASK, cycles_in_1us)) return -ERANGE; core_clk_ctrl_reg &= ~CLK_1US_CYCLES_MASK; core_clk_ctrl_reg |= FIELD_PREP(CLK_1US_CYCLES_MASK, cycles_in_1us); } /* Clear CORE_CLK_DIV_EN */ core_clk_ctrl_reg &= ~DME_VS_CORE_CLK_CTRL_CORE_CLK_DIV_EN_BIT; err = ufshcd_dme_set(hba, UIC_ARG_MIB(DME_VS_CORE_CLK_CTRL), core_clk_ctrl_reg); if (err) return err; /* Configure unipro core clk 40ns attribute */ return ufs_qcom_set_clk_40ns_cycles(hba, cycles_in_1us); } static int ufs_qcom_clk_scale_up_pre_change(struct ufs_hba *hba) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); struct ufs_pa_layer_attr *attr = &host->dev_req_params; int ret; if (!ufs_qcom_cap_qunipro(host)) return 0; ret = ufs_qcom_cfg_timers(hba, attr->gear_rx, attr->pwr_rx, attr->hs_rate, false, true); if (ret) { dev_err(hba->dev, "%s ufs cfg timer failed\n", __func__); return ret; } /* set unipro core clock attributes and clear clock divider */ return ufs_qcom_set_core_clk_ctrl(hba, true); } static int ufs_qcom_clk_scale_up_post_change(struct ufs_hba *hba) { return 0; } static int ufs_qcom_clk_scale_down_pre_change(struct ufs_hba *hba) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); int err; u32 core_clk_ctrl_reg; if (!ufs_qcom_cap_qunipro(host)) return 0; err = ufshcd_dme_get(hba, UIC_ARG_MIB(DME_VS_CORE_CLK_CTRL), &core_clk_ctrl_reg); /* make sure CORE_CLK_DIV_EN is cleared */ if (!err && (core_clk_ctrl_reg & DME_VS_CORE_CLK_CTRL_CORE_CLK_DIV_EN_BIT)) { core_clk_ctrl_reg &= ~DME_VS_CORE_CLK_CTRL_CORE_CLK_DIV_EN_BIT; err = ufshcd_dme_set(hba, UIC_ARG_MIB(DME_VS_CORE_CLK_CTRL), core_clk_ctrl_reg); } return err; } static int ufs_qcom_clk_scale_down_post_change(struct ufs_hba *hba) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); if (!ufs_qcom_cap_qunipro(host)) return 0; /* set unipro core clock attributes and clear clock divider */ return ufs_qcom_set_core_clk_ctrl(hba, false); } static int ufs_qcom_clk_scale_notify(struct ufs_hba *hba, bool scale_up, enum ufs_notify_change_status status) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); int err = 0; /* check the host controller state before sending hibern8 cmd */ if (!ufshcd_is_hba_active(hba)) return 0; if (status == PRE_CHANGE) { err = ufshcd_uic_hibern8_enter(hba); if (err) return err; if (scale_up) err = ufs_qcom_clk_scale_up_pre_change(hba); else err = ufs_qcom_clk_scale_down_pre_change(hba); if (err) { ufshcd_uic_hibern8_exit(hba); return err; } } else { if (scale_up) err = ufs_qcom_clk_scale_up_post_change(hba); else err = ufs_qcom_clk_scale_down_post_change(hba); if (err) { ufshcd_uic_hibern8_exit(hba); return err; } ufs_qcom_icc_update_bw(host); ufshcd_uic_hibern8_exit(hba); } return 0; } static void ufs_qcom_enable_test_bus(struct ufs_qcom_host *host) { ufshcd_rmwl(host->hba, UFS_REG_TEST_BUS_EN, UFS_REG_TEST_BUS_EN, REG_UFS_CFG1); ufshcd_rmwl(host->hba, TEST_BUS_EN, TEST_BUS_EN, REG_UFS_CFG1); } static void ufs_qcom_get_default_testbus_cfg(struct ufs_qcom_host *host) { /* provide a legal default configuration */ host->testbus.select_major = TSTBUS_UNIPRO; host->testbus.select_minor = 37; } static bool ufs_qcom_testbus_cfg_is_ok(struct ufs_qcom_host *host) { if (host->testbus.select_major >= TSTBUS_MAX) { dev_err(host->hba->dev, "%s: UFS_CFG1[TEST_BUS_SEL} may not equal 0x%05X\n", __func__, host->testbus.select_major); return false; } return true; } int ufs_qcom_testbus_config(struct ufs_qcom_host *host) { int reg; int offset; u32 mask = TEST_BUS_SUB_SEL_MASK; if (!host) return -EINVAL; if (!ufs_qcom_testbus_cfg_is_ok(host)) return -EPERM; switch (host->testbus.select_major) { case TSTBUS_UAWM: reg = UFS_TEST_BUS_CTRL_0; offset = 24; break; case TSTBUS_UARM: reg = UFS_TEST_BUS_CTRL_0; offset = 16; break; case TSTBUS_TXUC: reg = UFS_TEST_BUS_CTRL_0; offset = 8; break; case TSTBUS_RXUC: reg = UFS_TEST_BUS_CTRL_0; offset = 0; break; case TSTBUS_DFC: reg = UFS_TEST_BUS_CTRL_1; offset = 24; break; case TSTBUS_TRLUT: reg = UFS_TEST_BUS_CTRL_1; offset = 16; break; case TSTBUS_TMRLUT: reg = UFS_TEST_BUS_CTRL_1; offset = 8; break; case TSTBUS_OCSC: reg = UFS_TEST_BUS_CTRL_1; offset = 0; break; case TSTBUS_WRAPPER: reg = UFS_TEST_BUS_CTRL_2; offset = 16; break; case TSTBUS_COMBINED: reg = UFS_TEST_BUS_CTRL_2; offset = 8; break; case TSTBUS_UTP_HCI: reg = UFS_TEST_BUS_CTRL_2; offset = 0; break; case TSTBUS_UNIPRO: reg = UFS_UNIPRO_CFG; offset = 20; mask = 0xFFF; break; /* * No need for a default case, since * ufs_qcom_testbus_cfg_is_ok() checks that the configuration * is legal */ } mask <<= offset; ufshcd_rmwl(host->hba, TEST_BUS_SEL, (u32)host->testbus.select_major << 19, REG_UFS_CFG1); ufshcd_rmwl(host->hba, mask, (u32)host->testbus.select_minor << offset, reg); ufs_qcom_enable_test_bus(host); /* * Make sure the test bus configuration is * committed before returning. */ mb(); return 0; } static void ufs_qcom_dump_dbg_regs(struct ufs_hba *hba) { u32 reg; struct ufs_qcom_host *host; host = ufshcd_get_variant(hba); ufshcd_dump_regs(hba, REG_UFS_SYS1CLK_1US, 16 * 4, "HCI Vendor Specific Registers "); reg = ufs_qcom_get_debug_reg_offset(host, UFS_UFS_DBG_RD_REG_OCSC); ufshcd_dump_regs(hba, reg, 44 * 4, "UFS_UFS_DBG_RD_REG_OCSC "); reg = ufshcd_readl(hba, REG_UFS_CFG1); reg |= UTP_DBG_RAMS_EN; ufshcd_writel(hba, reg, REG_UFS_CFG1); reg = ufs_qcom_get_debug_reg_offset(host, UFS_UFS_DBG_RD_EDTL_RAM); ufshcd_dump_regs(hba, reg, 32 * 4, "UFS_UFS_DBG_RD_EDTL_RAM "); reg = ufs_qcom_get_debug_reg_offset(host, UFS_UFS_DBG_RD_DESC_RAM); ufshcd_dump_regs(hba, reg, 128 * 4, "UFS_UFS_DBG_RD_DESC_RAM "); reg = ufs_qcom_get_debug_reg_offset(host, UFS_UFS_DBG_RD_PRDT_RAM); ufshcd_dump_regs(hba, reg, 64 * 4, "UFS_UFS_DBG_RD_PRDT_RAM "); /* clear bit 17 - UTP_DBG_RAMS_EN */ ufshcd_rmwl(hba, UTP_DBG_RAMS_EN, 0, REG_UFS_CFG1); reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_UAWM); ufshcd_dump_regs(hba, reg, 4 * 4, "UFS_DBG_RD_REG_UAWM "); reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_UARM); ufshcd_dump_regs(hba, reg, 4 * 4, "UFS_DBG_RD_REG_UARM "); reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_TXUC); ufshcd_dump_regs(hba, reg, 48 * 4, "UFS_DBG_RD_REG_TXUC "); reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_RXUC); ufshcd_dump_regs(hba, reg, 27 * 4, "UFS_DBG_RD_REG_RXUC "); reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_DFC); ufshcd_dump_regs(hba, reg, 19 * 4, "UFS_DBG_RD_REG_DFC "); reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_TRLUT); ufshcd_dump_regs(hba, reg, 34 * 4, "UFS_DBG_RD_REG_TRLUT "); reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_TMRLUT); ufshcd_dump_regs(hba, reg, 9 * 4, "UFS_DBG_RD_REG_TMRLUT "); } /** * ufs_qcom_device_reset() - toggle the (optional) device reset line * @hba: per-adapter instance * * Toggles the (optional) reset line to reset the attached device. */ static int ufs_qcom_device_reset(struct ufs_hba *hba) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); /* reset gpio is optional */ if (!host->device_reset) return -EOPNOTSUPP; /* * The UFS device shall detect reset pulses of 1us, sleep for 10us to * be on the safe side. */ ufs_qcom_device_reset_ctrl(hba, true); usleep_range(10, 15); ufs_qcom_device_reset_ctrl(hba, false); usleep_range(10, 15); return 0; } #if IS_ENABLED(CONFIG_DEVFREQ_GOV_SIMPLE_ONDEMAND) static void ufs_qcom_config_scaling_param(struct ufs_hba *hba, struct devfreq_dev_profile *p, struct devfreq_simple_ondemand_data *d) { p->polling_ms = 60; p->timer = DEVFREQ_TIMER_DELAYED; d->upthreshold = 70; d->downdifferential = 5; } #else static void ufs_qcom_config_scaling_param(struct ufs_hba *hba, struct devfreq_dev_profile *p, struct devfreq_simple_ondemand_data *data) { } #endif static void ufs_qcom_reinit_notify(struct ufs_hba *hba) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); phy_power_off(host->generic_phy); } /* Resources */ static const struct ufshcd_res_info ufs_res_info[RES_MAX] = { {.name = "ufs_mem",}, {.name = "mcq",}, /* Submission Queue DAO */ {.name = "mcq_sqd",}, /* Submission Queue Interrupt Status */ {.name = "mcq_sqis",}, /* Completion Queue DAO */ {.name = "mcq_cqd",}, /* Completion Queue Interrupt Status */ {.name = "mcq_cqis",}, /* MCQ vendor specific */ {.name = "mcq_vs",}, }; static int ufs_qcom_mcq_config_resource(struct ufs_hba *hba) { struct platform_device *pdev = to_platform_device(hba->dev); struct ufshcd_res_info *res; struct resource *res_mem, *res_mcq; int i, ret = 0; memcpy(hba->res, ufs_res_info, sizeof(ufs_res_info)); for (i = 0; i < RES_MAX; i++) { res = &hba->res[i]; res->resource = platform_get_resource_byname(pdev, IORESOURCE_MEM, res->name); if (!res->resource) { dev_info(hba->dev, "Resource %s not provided\n", res->name); if (i == RES_UFS) return -ENOMEM; continue; } else if (i == RES_UFS) { res_mem = res->resource; res->base = hba->mmio_base; continue; } res->base = devm_ioremap_resource(hba->dev, res->resource); if (IS_ERR(res->base)) { dev_err(hba->dev, "Failed to map res %s, err=%d\n", res->name, (int)PTR_ERR(res->base)); ret = PTR_ERR(res->base); res->base = NULL; return ret; } } /* MCQ resource provided in DT */ res = &hba->res[RES_MCQ]; /* Bail if MCQ resource is provided */ if (res->base) goto out; /* Explicitly allocate MCQ resource from ufs_mem */ res_mcq = devm_kzalloc(hba->dev, sizeof(*res_mcq), GFP_KERNEL); if (!res_mcq) return -ENOMEM; res_mcq->start = res_mem->start + MCQ_SQATTR_OFFSET(hba->mcq_capabilities); res_mcq->end = res_mcq->start + hba->nr_hw_queues * MCQ_QCFG_SIZE - 1; res_mcq->flags = res_mem->flags; res_mcq->name = "mcq"; ret = insert_resource(&iomem_resource, res_mcq); if (ret) { dev_err(hba->dev, "Failed to insert MCQ resource, err=%d\n", ret); return ret; } res->base = devm_ioremap_resource(hba->dev, res_mcq); if (IS_ERR(res->base)) { dev_err(hba->dev, "MCQ registers mapping failed, err=%d\n", (int)PTR_ERR(res->base)); ret = PTR_ERR(res->base); goto ioremap_err; } out: hba->mcq_base = res->base; return 0; ioremap_err: res->base = NULL; remove_resource(res_mcq); return ret; } static int ufs_qcom_op_runtime_config(struct ufs_hba *hba) { struct ufshcd_res_info *mem_res, *sqdao_res; struct ufshcd_mcq_opr_info_t *opr; int i; mem_res = &hba->res[RES_UFS]; sqdao_res = &hba->res[RES_MCQ_SQD]; if (!mem_res->base || !sqdao_res->base) return -EINVAL; for (i = 0; i < OPR_MAX; i++) { opr = &hba->mcq_opr[i]; opr->offset = sqdao_res->resource->start - mem_res->resource->start + 0x40 * i; opr->stride = 0x100; opr->base = sqdao_res->base + 0x40 * i; } return 0; } static int ufs_qcom_get_hba_mac(struct ufs_hba *hba) { /* Qualcomm HC supports up to 64 */ return MAX_SUPP_MAC; } static int ufs_qcom_get_outstanding_cqs(struct ufs_hba *hba, unsigned long *ocqs) { struct ufshcd_res_info *mcq_vs_res = &hba->res[RES_MCQ_VS]; if (!mcq_vs_res->base) return -EINVAL; *ocqs = readl(mcq_vs_res->base + UFS_MEM_CQIS_VS); return 0; } static void ufs_qcom_write_msi_msg(struct msi_desc *desc, struct msi_msg *msg) { struct device *dev = msi_desc_to_dev(desc); struct ufs_hba *hba = dev_get_drvdata(dev); ufshcd_mcq_config_esi(hba, msg); } static irqreturn_t ufs_qcom_mcq_esi_handler(int irq, void *data) { struct msi_desc *desc = data; struct device *dev = msi_desc_to_dev(desc); struct ufs_hba *hba = dev_get_drvdata(dev); u32 id = desc->msi_index; struct ufs_hw_queue *hwq = &hba->uhq[id]; ufshcd_mcq_write_cqis(hba, 0x1, id); ufshcd_mcq_poll_cqe_lock(hba, hwq); return IRQ_HANDLED; } static int ufs_qcom_config_esi(struct ufs_hba *hba) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); struct msi_desc *desc; struct msi_desc *failed_desc = NULL; int nr_irqs, ret; if (host->esi_enabled) return 0; /* * 1. We only handle CQs as of now. * 2. Poll queues do not need ESI. */ nr_irqs = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL]; ret = platform_msi_domain_alloc_irqs(hba->dev, nr_irqs, ufs_qcom_write_msi_msg); if (ret) { dev_err(hba->dev, "Failed to request Platform MSI %d\n", ret); goto out; } msi_lock_descs(hba->dev); msi_for_each_desc(desc, hba->dev, MSI_DESC_ALL) { ret = devm_request_irq(hba->dev, desc->irq, ufs_qcom_mcq_esi_handler, IRQF_SHARED, "qcom-mcq-esi", desc); if (ret) { dev_err(hba->dev, "%s: Fail to request IRQ for %d, err = %d\n", __func__, desc->irq, ret); failed_desc = desc; break; } } msi_unlock_descs(hba->dev); if (ret) { /* Rewind */ msi_lock_descs(hba->dev); msi_for_each_desc(desc, hba->dev, MSI_DESC_ALL) { if (desc == failed_desc) break; devm_free_irq(hba->dev, desc->irq, hba); } msi_unlock_descs(hba->dev); platform_msi_domain_free_irqs(hba->dev); } else { if (host->hw_ver.major == 6 && host->hw_ver.minor == 0 && host->hw_ver.step == 0) { ufshcd_writel(hba, ufshcd_readl(hba, REG_UFS_CFG3) | 0x1F000, REG_UFS_CFG3); } ufshcd_mcq_enable_esi(hba); } out: if (!ret) host->esi_enabled = true; return ret; } /* * struct ufs_hba_qcom_vops - UFS QCOM specific variant operations * * The variant operations configure the necessary controller and PHY * handshake during initialization. */ static const struct ufs_hba_variant_ops ufs_hba_qcom_vops = { .name = "qcom", .init = ufs_qcom_init, .exit = ufs_qcom_exit, .get_ufs_hci_version = ufs_qcom_get_ufs_hci_version, .clk_scale_notify = ufs_qcom_clk_scale_notify, .setup_clocks = ufs_qcom_setup_clocks, .hce_enable_notify = ufs_qcom_hce_enable_notify, .link_startup_notify = ufs_qcom_link_startup_notify, .pwr_change_notify = ufs_qcom_pwr_change_notify, .apply_dev_quirks = ufs_qcom_apply_dev_quirks, .suspend = ufs_qcom_suspend, .resume = ufs_qcom_resume, .dbg_register_dump = ufs_qcom_dump_dbg_regs, .device_reset = ufs_qcom_device_reset, .config_scaling_param = ufs_qcom_config_scaling_param, .program_key = ufs_qcom_ice_program_key, .reinit_notify = ufs_qcom_reinit_notify, .mcq_config_resource = ufs_qcom_mcq_config_resource, .get_hba_mac = ufs_qcom_get_hba_mac, .op_runtime_config = ufs_qcom_op_runtime_config, .get_outstanding_cqs = ufs_qcom_get_outstanding_cqs, .config_esi = ufs_qcom_config_esi, }; /** * ufs_qcom_probe - probe routine of the driver * @pdev: pointer to Platform device handle * * Return: zero for success and non-zero for failure. */ static int ufs_qcom_probe(struct platform_device *pdev) { int err; struct device *dev = &pdev->dev; /* Perform generic probe */ err = ufshcd_pltfrm_init(pdev, &ufs_hba_qcom_vops); if (err) return dev_err_probe(dev, err, "ufshcd_pltfrm_init() failed\n"); return 0; } /** * ufs_qcom_remove - set driver_data of the device to NULL * @pdev: pointer to platform device handle * * Always returns 0 */ static void ufs_qcom_remove(struct platform_device *pdev) { struct ufs_hba *hba = platform_get_drvdata(pdev); pm_runtime_get_sync(&(pdev)->dev); ufshcd_remove(hba); platform_msi_domain_free_irqs(hba->dev); } static const struct of_device_id ufs_qcom_of_match[] __maybe_unused = { { .compatible = "qcom,ufshc"}, {}, }; MODULE_DEVICE_TABLE(of, ufs_qcom_of_match); #ifdef CONFIG_ACPI static const struct acpi_device_id ufs_qcom_acpi_match[] = { { "QCOM24A5" }, { }, }; MODULE_DEVICE_TABLE(acpi, ufs_qcom_acpi_match); #endif static const struct dev_pm_ops ufs_qcom_pm_ops = { SET_RUNTIME_PM_OPS(ufshcd_runtime_suspend, ufshcd_runtime_resume, NULL) .prepare = ufshcd_suspend_prepare, .complete = ufshcd_resume_complete, #ifdef CONFIG_PM_SLEEP .suspend = ufshcd_system_suspend, .resume = ufshcd_system_resume, .freeze = ufshcd_system_freeze, .restore = ufshcd_system_restore, .thaw = ufshcd_system_thaw, #endif }; static struct platform_driver ufs_qcom_pltform = { .probe = ufs_qcom_probe, .remove_new = ufs_qcom_remove, .driver = { .name = "ufshcd-qcom", .pm = &ufs_qcom_pm_ops, .of_match_table = of_match_ptr(ufs_qcom_of_match), .acpi_match_table = ACPI_PTR(ufs_qcom_acpi_match), }, }; module_platform_driver(ufs_qcom_pltform); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1