Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Chunfeng Yun | 4350 | 90.97% | 34 | 53.97% |
Ikjoon Jang | 193 | 4.04% | 3 | 4.76% |
Sage Sharp | 135 | 2.82% | 11 | 17.46% |
John Stultz | 56 | 1.17% | 1 | 1.59% |
Andiry Brienza | 16 | 0.33% | 2 | 3.17% |
Mathias Nyman | 10 | 0.21% | 2 | 3.17% |
Dong Nguyen | 5 | 0.10% | 1 | 1.59% |
Matt Evans | 4 | 0.08% | 1 | 1.59% |
Gustavo A. R. Silva | 3 | 0.06% | 1 | 1.59% |
Greg Kroah-Hartman | 3 | 0.06% | 3 | 4.76% |
Linus Torvalds (pre-git) | 2 | 0.04% | 1 | 1.59% |
Xenia Ragiadakou | 2 | 0.04% | 1 | 1.59% |
John Youn | 2 | 0.04% | 1 | 1.59% |
Linus Torvalds | 1 | 0.02% | 1 | 1.59% |
Total | 4782 | 63 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2015 MediaTek Inc. * Author: * Zhigang.Wei <zhigang.wei@mediatek.com> * Chunfeng.Yun <chunfeng.yun@mediatek.com> */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/slab.h> #include "xhci.h" #include "xhci-mtk.h" #define SSP_BW_BOUNDARY 130000 #define SS_BW_BOUNDARY 51000 /* table 5-5. High-speed Isoc Transaction Limits in usb_20 spec */ #define HS_BW_BOUNDARY 6144 /* usb2 spec section11.18.1: at most 188 FS bytes per microframe */ #define FS_PAYLOAD_MAX 188 #define LS_PAYLOAD_MAX 18 /* section 11.18.1, per fs frame */ #define FS_BW_BOUNDARY 1157 #define LS_BW_BOUNDARY 144 /* * max number of microframes for split transfer, assume extra-cs budget is 0 * for fs isoc in : 1 ss + 1 idle + 6 cs (roundup(1023/188)) */ #define TT_MICROFRAMES_MAX 8 /* offset from SS for fs/ls isoc/intr ep (ss + idle) */ #define CS_OFFSET 2 #define DBG_BUF_EN 64 /* schedule error type */ #define ESCH_SS_Y6 1001 #define ESCH_SS_OVERLAP 1002 #define ESCH_CS_OVERFLOW 1003 #define ESCH_BW_OVERFLOW 1004 #define ESCH_FIXME 1005 /* mtk scheduler bitmasks */ #define EP_BPKTS(p) ((p) & 0x7f) #define EP_BCSCOUNT(p) (((p) & 0x7) << 8) #define EP_BBM(p) ((p) << 11) #define EP_BOFFSET(p) ((p) & 0x3fff) #define EP_BREPEAT(p) (((p) & 0x7fff) << 16) static char *sch_error_string(int err_num) { switch (err_num) { case ESCH_SS_Y6: return "Can't schedule Start-Split in Y6"; case ESCH_SS_OVERLAP: return "Can't find a suitable Start-Split location"; case ESCH_CS_OVERFLOW: return "The last Complete-Split is greater than 7"; case ESCH_BW_OVERFLOW: return "Bandwidth exceeds the maximum limit"; case ESCH_FIXME: return "FIXME, to be resolved"; default: return "Unknown"; } } static int is_fs_or_ls(enum usb_device_speed speed) { return speed == USB_SPEED_FULL || speed == USB_SPEED_LOW; } static const char * decode_ep(struct usb_host_endpoint *ep, enum usb_device_speed speed) { static char buf[DBG_BUF_EN]; struct usb_endpoint_descriptor *epd = &ep->desc; unsigned int interval; const char *unit; interval = usb_decode_interval(epd, speed); if (interval % 1000) { unit = "us"; } else { unit = "ms"; interval /= 1000; } snprintf(buf, DBG_BUF_EN, "%s ep%d%s %s, mpkt:%d, interval:%d/%d%s", usb_speed_string(speed), usb_endpoint_num(epd), usb_endpoint_dir_in(epd) ? "in" : "out", usb_ep_type_string(usb_endpoint_type(epd)), usb_endpoint_maxp(epd), epd->bInterval, interval, unit); return buf; } static u32 get_bw_boundary(enum usb_device_speed speed) { u32 boundary; switch (speed) { case USB_SPEED_SUPER_PLUS: boundary = SSP_BW_BOUNDARY; break; case USB_SPEED_SUPER: boundary = SS_BW_BOUNDARY; break; default: boundary = HS_BW_BOUNDARY; break; } return boundary; } /* * get the bandwidth domain which @ep belongs to. * * the bandwidth domain array is saved to @sch_array of struct xhci_hcd_mtk, * each HS root port is treated as a single bandwidth domain, * but each SS root port is treated as two bandwidth domains, one for IN eps, * one for OUT eps. * @real_port value is defined as follow according to xHCI spec: * 1 for SSport0, ..., N+1 for SSportN, N+2 for HSport0, N+3 for HSport1, etc * so the bandwidth domain array is organized as follow for simplification: * SSport0-OUT, SSport0-IN, ..., SSportX-OUT, SSportX-IN, HSport0, ..., HSportY */ static struct mu3h_sch_bw_info * get_bw_info(struct xhci_hcd_mtk *mtk, struct usb_device *udev, struct usb_host_endpoint *ep) { struct xhci_hcd *xhci = hcd_to_xhci(mtk->hcd); struct xhci_virt_device *virt_dev; int bw_index; virt_dev = xhci->devs[udev->slot_id]; if (!virt_dev->real_port) { WARN_ONCE(1, "%s invalid real_port\n", dev_name(&udev->dev)); return NULL; } if (udev->speed >= USB_SPEED_SUPER) { if (usb_endpoint_dir_out(&ep->desc)) bw_index = (virt_dev->real_port - 1) * 2; else bw_index = (virt_dev->real_port - 1) * 2 + 1; } else { /* add one more for each SS port */ bw_index = virt_dev->real_port + xhci->usb3_rhub.num_ports - 1; } return &mtk->sch_array[bw_index]; } static u32 get_esit(struct xhci_ep_ctx *ep_ctx) { u32 esit; esit = 1 << CTX_TO_EP_INTERVAL(le32_to_cpu(ep_ctx->ep_info)); if (esit > XHCI_MTK_MAX_ESIT) esit = XHCI_MTK_MAX_ESIT; return esit; } static struct mu3h_sch_tt *find_tt(struct usb_device *udev) { struct usb_tt *utt = udev->tt; struct mu3h_sch_tt *tt, **tt_index, **ptt; bool allocated_index = false; if (!utt) return NULL; /* Not below a TT */ /* * Find/create our data structure. * For hubs with a single TT, we get it directly. * For hubs with multiple TTs, there's an extra level of pointers. */ tt_index = NULL; if (utt->multi) { tt_index = utt->hcpriv; if (!tt_index) { /* Create the index array */ tt_index = kcalloc(utt->hub->maxchild, sizeof(*tt_index), GFP_KERNEL); if (!tt_index) return ERR_PTR(-ENOMEM); utt->hcpriv = tt_index; allocated_index = true; } ptt = &tt_index[udev->ttport - 1]; } else { ptt = (struct mu3h_sch_tt **) &utt->hcpriv; } tt = *ptt; if (!tt) { /* Create the mu3h_sch_tt */ tt = kzalloc(sizeof(*tt), GFP_KERNEL); if (!tt) { if (allocated_index) { utt->hcpriv = NULL; kfree(tt_index); } return ERR_PTR(-ENOMEM); } INIT_LIST_HEAD(&tt->ep_list); *ptt = tt; } return tt; } /* Release the TT above udev, if it's not in use */ static void drop_tt(struct usb_device *udev) { struct usb_tt *utt = udev->tt; struct mu3h_sch_tt *tt, **tt_index, **ptt; int i, cnt; if (!utt || !utt->hcpriv) return; /* Not below a TT, or never allocated */ cnt = 0; if (utt->multi) { tt_index = utt->hcpriv; ptt = &tt_index[udev->ttport - 1]; /* How many entries are left in tt_index? */ for (i = 0; i < utt->hub->maxchild; ++i) cnt += !!tt_index[i]; } else { tt_index = NULL; ptt = (struct mu3h_sch_tt **)&utt->hcpriv; } tt = *ptt; if (!tt || !list_empty(&tt->ep_list)) return; /* never allocated , or still in use*/ *ptt = NULL; kfree(tt); if (cnt == 1) { utt->hcpriv = NULL; kfree(tt_index); } } static struct mu3h_sch_ep_info * create_sch_ep(struct xhci_hcd_mtk *mtk, struct usb_device *udev, struct usb_host_endpoint *ep, struct xhci_ep_ctx *ep_ctx) { struct mu3h_sch_ep_info *sch_ep; struct mu3h_sch_bw_info *bw_info; struct mu3h_sch_tt *tt = NULL; u32 len; bw_info = get_bw_info(mtk, udev, ep); if (!bw_info) return ERR_PTR(-ENODEV); if (is_fs_or_ls(udev->speed)) len = TT_MICROFRAMES_MAX; else if ((udev->speed >= USB_SPEED_SUPER) && usb_endpoint_xfer_isoc(&ep->desc)) len = get_esit(ep_ctx); else len = 1; sch_ep = kzalloc(struct_size(sch_ep, bw_budget_table, len), GFP_KERNEL); if (!sch_ep) return ERR_PTR(-ENOMEM); if (is_fs_or_ls(udev->speed)) { tt = find_tt(udev); if (IS_ERR(tt)) { kfree(sch_ep); return ERR_PTR(-ENOMEM); } } sch_ep->bw_info = bw_info; sch_ep->sch_tt = tt; sch_ep->ep = ep; sch_ep->speed = udev->speed; INIT_LIST_HEAD(&sch_ep->endpoint); INIT_LIST_HEAD(&sch_ep->tt_endpoint); INIT_HLIST_NODE(&sch_ep->hentry); return sch_ep; } static void setup_sch_info(struct xhci_ep_ctx *ep_ctx, struct mu3h_sch_ep_info *sch_ep) { u32 ep_type; u32 maxpkt; u32 max_burst; u32 mult; u32 esit_pkts; u32 max_esit_payload; u32 bw_per_microframe; u32 *bwb_table; int i; bwb_table = sch_ep->bw_budget_table; ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2)); maxpkt = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); max_burst = CTX_TO_MAX_BURST(le32_to_cpu(ep_ctx->ep_info2)); mult = CTX_TO_EP_MULT(le32_to_cpu(ep_ctx->ep_info)); max_esit_payload = (CTX_TO_MAX_ESIT_PAYLOAD_HI( le32_to_cpu(ep_ctx->ep_info)) << 16) | CTX_TO_MAX_ESIT_PAYLOAD(le32_to_cpu(ep_ctx->tx_info)); sch_ep->esit = get_esit(ep_ctx); sch_ep->num_esit = XHCI_MTK_MAX_ESIT / sch_ep->esit; sch_ep->ep_type = ep_type; sch_ep->maxpkt = maxpkt; sch_ep->offset = 0; sch_ep->burst_mode = 0; sch_ep->repeat = 0; if (sch_ep->speed == USB_SPEED_HIGH) { sch_ep->cs_count = 0; /* * usb_20 spec section5.9 * a single microframe is enough for HS synchromous endpoints * in a interval */ sch_ep->num_budget_microframes = 1; /* * xHCI spec section6.2.3.4 * @max_burst is the number of additional transactions * opportunities per microframe */ sch_ep->pkts = max_burst + 1; bwb_table[0] = maxpkt * sch_ep->pkts; } else if (sch_ep->speed >= USB_SPEED_SUPER) { /* usb3_r1 spec section4.4.7 & 4.4.8 */ sch_ep->cs_count = 0; sch_ep->burst_mode = 1; /* * some device's (d)wBytesPerInterval is set as 0, * then max_esit_payload is 0, so evaluate esit_pkts from * mult and burst */ esit_pkts = DIV_ROUND_UP(max_esit_payload, maxpkt); if (esit_pkts == 0) esit_pkts = (mult + 1) * (max_burst + 1); if (ep_type == INT_IN_EP || ep_type == INT_OUT_EP) { sch_ep->pkts = esit_pkts; sch_ep->num_budget_microframes = 1; bwb_table[0] = maxpkt * sch_ep->pkts; } if (ep_type == ISOC_IN_EP || ep_type == ISOC_OUT_EP) { if (sch_ep->esit == 1) sch_ep->pkts = esit_pkts; else if (esit_pkts <= sch_ep->esit) sch_ep->pkts = 1; else sch_ep->pkts = roundup_pow_of_two(esit_pkts) / sch_ep->esit; sch_ep->num_budget_microframes = DIV_ROUND_UP(esit_pkts, sch_ep->pkts); sch_ep->repeat = !!(sch_ep->num_budget_microframes > 1); bw_per_microframe = maxpkt * sch_ep->pkts; for (i = 0; i < sch_ep->num_budget_microframes - 1; i++) bwb_table[i] = bw_per_microframe; /* last one <= bw_per_microframe */ bwb_table[i] = maxpkt * esit_pkts - i * bw_per_microframe; } } else if (is_fs_or_ls(sch_ep->speed)) { sch_ep->pkts = 1; /* at most one packet for each microframe */ /* * @cs_count will be updated to add extra-cs when * check TT for INT_OUT_EP, ISOC/INT_IN_EP type * @maxpkt <= 1023; */ sch_ep->cs_count = DIV_ROUND_UP(maxpkt, FS_PAYLOAD_MAX); sch_ep->num_budget_microframes = sch_ep->cs_count; /* init budget table */ if (ep_type == ISOC_OUT_EP) { for (i = 0; i < sch_ep->cs_count - 1; i++) bwb_table[i] = FS_PAYLOAD_MAX; bwb_table[i] = maxpkt - i * FS_PAYLOAD_MAX; } else if (ep_type == INT_OUT_EP) { /* only first one used (maxpkt <= 64), others zero */ bwb_table[0] = maxpkt; } else { /* INT_IN_EP or ISOC_IN_EP */ bwb_table[0] = 0; /* start split */ bwb_table[1] = 0; /* idle */ /* * @cs_count will be updated according to cs position * (add 1 or 2 extra-cs), but assume only first * @num_budget_microframes elements will be used later, * although in fact it does not (extra-cs budget many receive * some data for IN ep); * @cs_count is 1 for INT_IN_EP (maxpkt <= 64); */ for (i = 0; i < sch_ep->cs_count - 1; i++) bwb_table[i + CS_OFFSET] = FS_PAYLOAD_MAX; bwb_table[i + CS_OFFSET] = maxpkt - i * FS_PAYLOAD_MAX; /* ss + idle */ sch_ep->num_budget_microframes += CS_OFFSET; } } } /* Get maximum bandwidth when we schedule at offset slot. */ static u32 get_max_bw(struct mu3h_sch_bw_info *sch_bw, struct mu3h_sch_ep_info *sch_ep, u32 offset) { u32 max_bw = 0; u32 bw; int i, j, k; for (i = 0; i < sch_ep->num_esit; i++) { u32 base = offset + i * sch_ep->esit; for (j = 0; j < sch_ep->num_budget_microframes; j++) { k = XHCI_MTK_BW_INDEX(base + j); bw = sch_bw->bus_bw[k] + sch_ep->bw_budget_table[j]; if (bw > max_bw) max_bw = bw; } } return max_bw; } /* * for OUT: get first SS consumed bw; * for IN: get first CS consumed bw; */ static u16 get_fs_bw(struct mu3h_sch_ep_info *sch_ep, int offset) { struct mu3h_sch_tt *tt = sch_ep->sch_tt; u16 fs_bw; if (sch_ep->ep_type == ISOC_OUT_EP || sch_ep->ep_type == INT_OUT_EP) fs_bw = tt->fs_bus_bw_out[XHCI_MTK_BW_INDEX(offset)]; else /* skip ss + idle */ fs_bw = tt->fs_bus_bw_in[XHCI_MTK_BW_INDEX(offset + CS_OFFSET)]; return fs_bw; } static void update_bus_bw(struct mu3h_sch_bw_info *sch_bw, struct mu3h_sch_ep_info *sch_ep, bool used) { u32 base; int i, j, k; for (i = 0; i < sch_ep->num_esit; i++) { base = sch_ep->offset + i * sch_ep->esit; for (j = 0; j < sch_ep->num_budget_microframes; j++) { k = XHCI_MTK_BW_INDEX(base + j); if (used) sch_bw->bus_bw[k] += sch_ep->bw_budget_table[j]; else sch_bw->bus_bw[k] -= sch_ep->bw_budget_table[j]; } } } static int check_ls_budget_microframes(struct mu3h_sch_ep_info *sch_ep, int offset) { struct mu3h_sch_tt *tt = sch_ep->sch_tt; int i; if (sch_ep->speed != USB_SPEED_LOW) return 0; if (sch_ep->ep_type == INT_OUT_EP) i = XHCI_MTK_BW_INDEX(offset); else if (sch_ep->ep_type == INT_IN_EP) i = XHCI_MTK_BW_INDEX(offset + CS_OFFSET); /* skip ss + idle */ else return -EINVAL; if (tt->ls_bus_bw[i] + sch_ep->maxpkt > LS_PAYLOAD_MAX) return -ESCH_BW_OVERFLOW; return 0; } static int check_fs_budget_microframes(struct mu3h_sch_ep_info *sch_ep, int offset) { struct mu3h_sch_tt *tt = sch_ep->sch_tt; u32 tmp; int i, k; /* * for OUT eps, will transfer exactly assigned length of data, * so can't allocate more than 188 bytes; * but it's not for IN eps, usually it can't receive full * 188 bytes in a uframe, if it not assign full 188 bytes, * can add another one; */ for (i = 0; i < sch_ep->num_budget_microframes; i++) { k = XHCI_MTK_BW_INDEX(offset + i); if (sch_ep->ep_type == ISOC_OUT_EP || sch_ep->ep_type == INT_OUT_EP) tmp = tt->fs_bus_bw_out[k] + sch_ep->bw_budget_table[i]; else /* ep_type : ISOC IN / INTR IN */ tmp = tt->fs_bus_bw_in[k]; if (tmp > FS_PAYLOAD_MAX) return -ESCH_BW_OVERFLOW; } return 0; } static int check_fs_budget_frames(struct mu3h_sch_ep_info *sch_ep, int offset) { struct mu3h_sch_tt *tt = sch_ep->sch_tt; u32 head, tail; int i, j, k; /* bugdet scheduled may cross at most two fs frames */ j = XHCI_MTK_BW_INDEX(offset) / UFRAMES_PER_FRAME; k = XHCI_MTK_BW_INDEX(offset + sch_ep->num_budget_microframes - 1) / UFRAMES_PER_FRAME; if (j != k) { head = tt->fs_frame_bw[j]; tail = tt->fs_frame_bw[k]; } else { head = tt->fs_frame_bw[j]; tail = 0; } j = roundup(offset, UFRAMES_PER_FRAME); for (i = 0; i < sch_ep->num_budget_microframes; i++) { if ((offset + i) < j) head += sch_ep->bw_budget_table[i]; else tail += sch_ep->bw_budget_table[i]; } if (head > FS_BW_BOUNDARY || tail > FS_BW_BOUNDARY) return -ESCH_BW_OVERFLOW; return 0; } static int check_fs_bus_bw(struct mu3h_sch_ep_info *sch_ep, int offset) { int i, base; int ret = 0; for (i = 0; i < sch_ep->num_esit; i++) { base = offset + i * sch_ep->esit; ret = check_ls_budget_microframes(sch_ep, base); if (ret) goto err; ret = check_fs_budget_microframes(sch_ep, base); if (ret) goto err; ret = check_fs_budget_frames(sch_ep, base); if (ret) goto err; } err: return ret; } static int check_ss_and_cs(struct mu3h_sch_ep_info *sch_ep, u32 offset) { u32 start_ss, last_ss; u32 start_cs, last_cs; start_ss = offset % UFRAMES_PER_FRAME; if (sch_ep->ep_type == ISOC_OUT_EP) { last_ss = start_ss + sch_ep->cs_count - 1; /* * usb_20 spec section11.18: * must never schedule Start-Split in Y6 */ if (!(start_ss == 7 || last_ss < 6)) return -ESCH_SS_Y6; } else { /* maxpkt <= 1023, cs <= 6 */ u32 cs_count = DIV_ROUND_UP(sch_ep->maxpkt, FS_PAYLOAD_MAX); /* * usb_20 spec section11.18: * must never schedule Start-Split in Y6 */ if (start_ss == 6) return -ESCH_SS_Y6; /* one uframe for ss + one uframe for idle */ start_cs = (start_ss + CS_OFFSET) % UFRAMES_PER_FRAME; last_cs = start_cs + cs_count - 1; if (last_cs > 7) return -ESCH_CS_OVERFLOW; /* add extra-cs */ cs_count += (last_cs == 7) ? 1 : 2; if (cs_count > 7) cs_count = 7; /* HW limit */ sch_ep->cs_count = cs_count; } return 0; } /* * when isoc-out transfers 188 bytes in a uframe, and send isoc/intr's * ss token in the uframe, may cause 'bit stuff error' in downstream * port; * when isoc-out transfer less than 188 bytes in a uframe, shall send * isoc-in's ss after isoc-out's ss (but hw can't ensure the sequence, * so just avoid overlap). */ static int check_isoc_ss_overlap(struct mu3h_sch_ep_info *sch_ep, u32 offset) { struct mu3h_sch_tt *tt = sch_ep->sch_tt; int base; int i, j, k; if (!tt) return 0; for (i = 0; i < sch_ep->num_esit; i++) { base = offset + i * sch_ep->esit; if (sch_ep->ep_type == ISOC_OUT_EP) { for (j = 0; j < sch_ep->num_budget_microframes; j++) { k = XHCI_MTK_BW_INDEX(base + j); if (tt->in_ss_cnt[k]) return -ESCH_SS_OVERLAP; } } else if (sch_ep->ep_type == ISOC_IN_EP || sch_ep->ep_type == INT_IN_EP) { k = XHCI_MTK_BW_INDEX(base); /* only check IN's ss */ if (tt->fs_bus_bw_out[k]) return -ESCH_SS_OVERLAP; } } return 0; } static int check_sch_tt_budget(struct mu3h_sch_ep_info *sch_ep, u32 offset) { int ret; ret = check_ss_and_cs(sch_ep, offset); if (ret) return ret; ret = check_isoc_ss_overlap(sch_ep, offset); if (ret) return ret; return check_fs_bus_bw(sch_ep, offset); } /* allocate microframes in the ls/fs frame */ static int alloc_sch_portion_of_frame(struct mu3h_sch_ep_info *sch_ep) { struct mu3h_sch_bw_info *sch_bw = sch_ep->bw_info; const u32 bw_boundary = get_bw_boundary(sch_ep->speed); u32 bw_max, fs_bw_min; u32 offset, offset_min; u16 fs_bw; int frames; int i, j; int ret; frames = sch_ep->esit / UFRAMES_PER_FRAME; for (i = 0; i < UFRAMES_PER_FRAME; i++) { fs_bw_min = FS_PAYLOAD_MAX; offset_min = XHCI_MTK_MAX_ESIT; for (j = 0; j < frames; j++) { offset = (i + j * UFRAMES_PER_FRAME) % sch_ep->esit; ret = check_sch_tt_budget(sch_ep, offset); if (ret) continue; /* check hs bw domain */ bw_max = get_max_bw(sch_bw, sch_ep, offset); if (bw_max > bw_boundary) { ret = -ESCH_BW_OVERFLOW; continue; } /* use best-fit between frames */ fs_bw = get_fs_bw(sch_ep, offset); if (fs_bw < fs_bw_min) { fs_bw_min = fs_bw; offset_min = offset; } if (!fs_bw_min) break; } /* use first-fit between microframes in a frame */ if (offset_min < XHCI_MTK_MAX_ESIT) break; } if (offset_min == XHCI_MTK_MAX_ESIT) return -ESCH_BW_OVERFLOW; sch_ep->offset = offset_min; return 0; } static void update_sch_tt(struct mu3h_sch_ep_info *sch_ep, bool used) { struct mu3h_sch_tt *tt = sch_ep->sch_tt; u16 *fs_bus_bw; u32 base; int i, j, k, f; if (sch_ep->ep_type == ISOC_OUT_EP || sch_ep->ep_type == INT_OUT_EP) fs_bus_bw = tt->fs_bus_bw_out; else fs_bus_bw = tt->fs_bus_bw_in; for (i = 0; i < sch_ep->num_esit; i++) { base = sch_ep->offset + i * sch_ep->esit; for (j = 0; j < sch_ep->num_budget_microframes; j++) { k = XHCI_MTK_BW_INDEX(base + j); f = k / UFRAMES_PER_FRAME; if (used) { if (sch_ep->speed == USB_SPEED_LOW) tt->ls_bus_bw[k] += (u8)sch_ep->bw_budget_table[j]; fs_bus_bw[k] += (u16)sch_ep->bw_budget_table[j]; tt->fs_frame_bw[f] += (u16)sch_ep->bw_budget_table[j]; } else { if (sch_ep->speed == USB_SPEED_LOW) tt->ls_bus_bw[k] -= (u8)sch_ep->bw_budget_table[j]; fs_bus_bw[k] -= (u16)sch_ep->bw_budget_table[j]; tt->fs_frame_bw[f] -= (u16)sch_ep->bw_budget_table[j]; } } if (sch_ep->ep_type == ISOC_IN_EP || sch_ep->ep_type == INT_IN_EP) { k = XHCI_MTK_BW_INDEX(base); if (used) tt->in_ss_cnt[k]++; else tt->in_ss_cnt[k]--; } } if (used) list_add_tail(&sch_ep->tt_endpoint, &tt->ep_list); else list_del(&sch_ep->tt_endpoint); } static int load_ep_bw(struct mu3h_sch_bw_info *sch_bw, struct mu3h_sch_ep_info *sch_ep, bool loaded) { if (sch_ep->sch_tt) update_sch_tt(sch_ep, loaded); /* update bus bandwidth info */ update_bus_bw(sch_bw, sch_ep, loaded); sch_ep->allocated = loaded; return 0; } /* allocate microframes for hs/ss/ssp */ static int alloc_sch_microframes(struct mu3h_sch_ep_info *sch_ep) { struct mu3h_sch_bw_info *sch_bw = sch_ep->bw_info; const u32 bw_boundary = get_bw_boundary(sch_ep->speed); u32 offset; u32 worst_bw; u32 min_bw = ~0; int min_index = -1; /* * Search through all possible schedule microframes. * and find a microframe where its worst bandwidth is minimum. */ for (offset = 0; offset < sch_ep->esit; offset++) { worst_bw = get_max_bw(sch_bw, sch_ep, offset); if (worst_bw > bw_boundary) continue; if (min_bw > worst_bw) { min_bw = worst_bw; min_index = offset; } } if (min_index < 0) return -ESCH_BW_OVERFLOW; sch_ep->offset = min_index; return 0; } static int check_sch_bw(struct mu3h_sch_ep_info *sch_ep) { int ret; if (sch_ep->sch_tt) ret = alloc_sch_portion_of_frame(sch_ep); else ret = alloc_sch_microframes(sch_ep); if (ret) return ret; return load_ep_bw(sch_ep->bw_info, sch_ep, true); } static void destroy_sch_ep(struct xhci_hcd_mtk *mtk, struct usb_device *udev, struct mu3h_sch_ep_info *sch_ep) { /* only release ep bw check passed by check_sch_bw() */ if (sch_ep->allocated) load_ep_bw(sch_ep->bw_info, sch_ep, false); if (sch_ep->sch_tt) drop_tt(udev); list_del(&sch_ep->endpoint); hlist_del(&sch_ep->hentry); kfree(sch_ep); } static bool need_bw_sch(struct usb_device *udev, struct usb_host_endpoint *ep) { bool has_tt = udev->tt && udev->tt->hub->parent; /* only for periodic endpoints */ if (usb_endpoint_xfer_control(&ep->desc) || usb_endpoint_xfer_bulk(&ep->desc)) return false; /* * for LS & FS periodic endpoints which its device is not behind * a TT are also ignored, root-hub will schedule them directly, * but need set @bpkts field of endpoint context to 1. */ if (is_fs_or_ls(udev->speed) && !has_tt) return false; /* skip endpoint with zero maxpkt */ if (usb_endpoint_maxp(&ep->desc) == 0) return false; return true; } int xhci_mtk_sch_init(struct xhci_hcd_mtk *mtk) { struct xhci_hcd *xhci = hcd_to_xhci(mtk->hcd); struct mu3h_sch_bw_info *sch_array; int num_usb_bus; /* ss IN and OUT are separated */ num_usb_bus = xhci->usb3_rhub.num_ports * 2 + xhci->usb2_rhub.num_ports; sch_array = kcalloc(num_usb_bus, sizeof(*sch_array), GFP_KERNEL); if (sch_array == NULL) return -ENOMEM; mtk->sch_array = sch_array; INIT_LIST_HEAD(&mtk->bw_ep_chk_list); hash_init(mtk->sch_ep_hash); return 0; } void xhci_mtk_sch_exit(struct xhci_hcd_mtk *mtk) { kfree(mtk->sch_array); } static int add_ep_quirk(struct usb_hcd *hcd, struct usb_device *udev, struct usb_host_endpoint *ep) { struct xhci_hcd_mtk *mtk = hcd_to_mtk(hcd); struct xhci_hcd *xhci = hcd_to_xhci(hcd); struct xhci_ep_ctx *ep_ctx; struct xhci_virt_device *virt_dev; struct mu3h_sch_ep_info *sch_ep; unsigned int ep_index; virt_dev = xhci->devs[udev->slot_id]; ep_index = xhci_get_endpoint_index(&ep->desc); ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); if (!need_bw_sch(udev, ep)) { /* * set @bpkts to 1 if it is LS or FS periodic endpoint, and its * device does not connected through an external HS hub */ if (usb_endpoint_xfer_int(&ep->desc) || usb_endpoint_xfer_isoc(&ep->desc)) ep_ctx->reserved[0] = cpu_to_le32(EP_BPKTS(1)); return 0; } xhci_dbg(xhci, "%s %s\n", __func__, decode_ep(ep, udev->speed)); sch_ep = create_sch_ep(mtk, udev, ep, ep_ctx); if (IS_ERR_OR_NULL(sch_ep)) return -ENOMEM; setup_sch_info(ep_ctx, sch_ep); list_add_tail(&sch_ep->endpoint, &mtk->bw_ep_chk_list); hash_add(mtk->sch_ep_hash, &sch_ep->hentry, (unsigned long)ep); return 0; } static void drop_ep_quirk(struct usb_hcd *hcd, struct usb_device *udev, struct usb_host_endpoint *ep) { struct xhci_hcd_mtk *mtk = hcd_to_mtk(hcd); struct xhci_hcd *xhci = hcd_to_xhci(hcd); struct mu3h_sch_ep_info *sch_ep; struct hlist_node *hn; if (!need_bw_sch(udev, ep)) return; xhci_dbg(xhci, "%s %s\n", __func__, decode_ep(ep, udev->speed)); hash_for_each_possible_safe(mtk->sch_ep_hash, sch_ep, hn, hentry, (unsigned long)ep) { if (sch_ep->ep == ep) { destroy_sch_ep(mtk, udev, sch_ep); break; } } } int xhci_mtk_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) { struct xhci_hcd_mtk *mtk = hcd_to_mtk(hcd); struct xhci_hcd *xhci = hcd_to_xhci(hcd); struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id]; struct mu3h_sch_ep_info *sch_ep; int ret; xhci_dbg(xhci, "%s() udev %s\n", __func__, dev_name(&udev->dev)); list_for_each_entry(sch_ep, &mtk->bw_ep_chk_list, endpoint) { struct xhci_ep_ctx *ep_ctx; struct usb_host_endpoint *ep = sch_ep->ep; unsigned int ep_index = xhci_get_endpoint_index(&ep->desc); ret = check_sch_bw(sch_ep); if (ret) { xhci_err(xhci, "Not enough bandwidth! (%s)\n", sch_error_string(-ret)); return -ENOSPC; } ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); ep_ctx->reserved[0] = cpu_to_le32(EP_BPKTS(sch_ep->pkts) | EP_BCSCOUNT(sch_ep->cs_count) | EP_BBM(sch_ep->burst_mode)); ep_ctx->reserved[1] = cpu_to_le32(EP_BOFFSET(sch_ep->offset) | EP_BREPEAT(sch_ep->repeat)); xhci_dbg(xhci, " PKTS:%x, CSCOUNT:%x, BM:%x, OFFSET:%x, REPEAT:%x\n", sch_ep->pkts, sch_ep->cs_count, sch_ep->burst_mode, sch_ep->offset, sch_ep->repeat); } ret = xhci_check_bandwidth(hcd, udev); if (!ret) list_del_init(&mtk->bw_ep_chk_list); return ret; } void xhci_mtk_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) { struct xhci_hcd_mtk *mtk = hcd_to_mtk(hcd); struct xhci_hcd *xhci = hcd_to_xhci(hcd); struct mu3h_sch_ep_info *sch_ep, *tmp; xhci_dbg(xhci, "%s() udev %s\n", __func__, dev_name(&udev->dev)); list_for_each_entry_safe(sch_ep, tmp, &mtk->bw_ep_chk_list, endpoint) destroy_sch_ep(mtk, udev, sch_ep); xhci_reset_bandwidth(hcd, udev); } int xhci_mtk_add_ep(struct usb_hcd *hcd, struct usb_device *udev, struct usb_host_endpoint *ep) { int ret; ret = xhci_add_endpoint(hcd, udev, ep); if (ret) return ret; if (ep->hcpriv) ret = add_ep_quirk(hcd, udev, ep); return ret; } int xhci_mtk_drop_ep(struct usb_hcd *hcd, struct usb_device *udev, struct usb_host_endpoint *ep) { int ret; ret = xhci_drop_endpoint(hcd, udev, ep); if (ret) return ret; /* needn't check @ep->hcpriv, xhci_endpoint_disable set it NULL */ drop_ep_quirk(hcd, udev, ep); return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1