Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Fu Wei | 1170 | 84.97% | 1 | 6.25% |
Shaokun Zhang | 135 | 9.80% | 1 | 6.25% |
Pratyush Anand | 22 | 1.60% | 2 | 12.50% |
George Cherian | 14 | 1.02% | 1 | 6.25% |
Guenter Roeck | 12 | 0.87% | 2 | 12.50% |
Darren Hart | 8 | 0.58% | 1 | 6.25% |
Jayachandran C | 4 | 0.29% | 1 | 6.25% |
Rob Herring | 3 | 0.22% | 1 | 6.25% |
Jamie Iles | 2 | 0.15% | 1 | 6.25% |
Bhumika Goyal | 2 | 0.15% | 2 | 12.50% |
Wang Wensheng | 2 | 0.15% | 1 | 6.25% |
Thomas Gleixner | 2 | 0.15% | 1 | 6.25% |
Marc Zyngier | 1 | 0.07% | 1 | 6.25% |
Total | 1377 | 16 |
// SPDX-License-Identifier: GPL-2.0-only /* * SBSA(Server Base System Architecture) Generic Watchdog driver * * Copyright (c) 2015, Linaro Ltd. * Author: Fu Wei <fu.wei@linaro.org> * Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com> * Al Stone <al.stone@linaro.org> * Timur Tabi <timur@codeaurora.org> * * ARM SBSA Generic Watchdog has two stage timeouts: * the first signal (WS0) is for alerting the system by interrupt, * the second one (WS1) is a real hardware reset. * More details about the hardware specification of this device: * ARM DEN0029B - Server Base System Architecture (SBSA) * * This driver can operate ARM SBSA Generic Watchdog as a single stage watchdog * or a two stages watchdog, it's set up by the module parameter "action". * In the single stage mode, when the timeout is reached, your system * will be reset by WS1. The first signal (WS0) is ignored. * In the two stages mode, when the timeout is reached, the first signal (WS0) * will trigger panic. If the system is getting into trouble and cannot be reset * by panic or restart properly by the kdump kernel(if supported), then the * second stage (as long as the first stage) will be reached, system will be * reset by WS1. This function can help administrator to backup the system * context info by panic console output or kdump. * * SBSA GWDT: * if action is 1 (the two stages mode): * |--------WOR-------WS0--------WOR-------WS1 * |----timeout-----(panic)----timeout-----reset * * if action is 0 (the single stage mode): * |------WOR-----WS0(ignored)-----WOR------WS1 * |--------------timeout-------------------reset * * Note: Since this watchdog timer has two stages, and each stage is determined * by WOR, in the single stage mode, the timeout is (WOR * 2); in the two * stages mode, the timeout is WOR. The maximum timeout in the two stages mode * is half of that in the single stage mode. */ #include <linux/io.h> #include <linux/io-64-nonatomic-lo-hi.h> #include <linux/interrupt.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/platform_device.h> #include <linux/uaccess.h> #include <linux/watchdog.h> #include <asm/arch_timer.h> #define DRV_NAME "sbsa-gwdt" #define WATCHDOG_NAME "SBSA Generic Watchdog" /* SBSA Generic Watchdog register definitions */ /* refresh frame */ #define SBSA_GWDT_WRR 0x000 /* control frame */ #define SBSA_GWDT_WCS 0x000 #define SBSA_GWDT_WOR 0x008 #define SBSA_GWDT_WCV 0x010 /* refresh/control frame */ #define SBSA_GWDT_W_IIDR 0xfcc #define SBSA_GWDT_IDR 0xfd0 /* Watchdog Control and Status Register */ #define SBSA_GWDT_WCS_EN BIT(0) #define SBSA_GWDT_WCS_WS0 BIT(1) #define SBSA_GWDT_WCS_WS1 BIT(2) #define SBSA_GWDT_VERSION_MASK 0xF #define SBSA_GWDT_VERSION_SHIFT 16 /** * struct sbsa_gwdt - Internal representation of the SBSA GWDT * @wdd: kernel watchdog_device structure * @clk: store the System Counter clock frequency, in Hz. * @version: store the architecture version * @refresh_base: Virtual address of the watchdog refresh frame * @control_base: Virtual address of the watchdog control frame */ struct sbsa_gwdt { struct watchdog_device wdd; u32 clk; int version; void __iomem *refresh_base; void __iomem *control_base; }; #define DEFAULT_TIMEOUT 10 /* seconds */ static unsigned int timeout; module_param(timeout, uint, 0); MODULE_PARM_DESC(timeout, "Watchdog timeout in seconds. (>=0, default=" __MODULE_STRING(DEFAULT_TIMEOUT) ")"); /* * action refers to action taken when watchdog gets WS0 * 0 = skip * 1 = panic * defaults to skip (0) */ static int action; module_param(action, int, 0); MODULE_PARM_DESC(action, "after watchdog gets WS0 interrupt, do: " "0 = skip(*) 1 = panic"); static bool nowayout = WATCHDOG_NOWAYOUT; module_param(nowayout, bool, S_IRUGO); MODULE_PARM_DESC(nowayout, "Watchdog cannot be stopped once started (default=" __MODULE_STRING(WATCHDOG_NOWAYOUT) ")"); /* * Arm Base System Architecture 1.0 introduces watchdog v1 which * increases the length watchdog offset register to 48 bits. * - For version 0: WOR is 32 bits; * - For version 1: WOR is 48 bits which comprises the register * offset 0x8 and 0xC, and the bits [63:48] are reserved which are * Read-As-Zero and Writes-Ignored. */ static u64 sbsa_gwdt_reg_read(struct sbsa_gwdt *gwdt) { if (gwdt->version == 0) return readl(gwdt->control_base + SBSA_GWDT_WOR); else return lo_hi_readq(gwdt->control_base + SBSA_GWDT_WOR); } static void sbsa_gwdt_reg_write(u64 val, struct sbsa_gwdt *gwdt) { if (gwdt->version == 0) writel((u32)val, gwdt->control_base + SBSA_GWDT_WOR); else lo_hi_writeq(val, gwdt->control_base + SBSA_GWDT_WOR); } /* * watchdog operation functions */ static int sbsa_gwdt_set_timeout(struct watchdog_device *wdd, unsigned int timeout) { struct sbsa_gwdt *gwdt = watchdog_get_drvdata(wdd); wdd->timeout = timeout; timeout = clamp_t(unsigned int, timeout, 1, wdd->max_hw_heartbeat_ms / 1000); if (action) sbsa_gwdt_reg_write((u64)gwdt->clk * timeout, gwdt); else /* * In the single stage mode, The first signal (WS0) is ignored, * the timeout is (WOR * 2), so the WOR should be configured * to half value of timeout. */ sbsa_gwdt_reg_write(((u64)gwdt->clk / 2) * timeout, gwdt); return 0; } static unsigned int sbsa_gwdt_get_timeleft(struct watchdog_device *wdd) { struct sbsa_gwdt *gwdt = watchdog_get_drvdata(wdd); u64 timeleft = 0; /* * In the single stage mode, if WS0 is deasserted * (watchdog is in the first stage), * timeleft = WOR + (WCV - system counter) */ if (!action && !(readl(gwdt->control_base + SBSA_GWDT_WCS) & SBSA_GWDT_WCS_WS0)) timeleft += sbsa_gwdt_reg_read(gwdt); timeleft += lo_hi_readq(gwdt->control_base + SBSA_GWDT_WCV) - arch_timer_read_counter(); do_div(timeleft, gwdt->clk); return timeleft; } static int sbsa_gwdt_keepalive(struct watchdog_device *wdd) { struct sbsa_gwdt *gwdt = watchdog_get_drvdata(wdd); /* * Writing WRR for an explicit watchdog refresh. * You can write anyting (like 0). */ writel(0, gwdt->refresh_base + SBSA_GWDT_WRR); return 0; } static void sbsa_gwdt_get_version(struct watchdog_device *wdd) { struct sbsa_gwdt *gwdt = watchdog_get_drvdata(wdd); int ver; ver = readl(gwdt->control_base + SBSA_GWDT_W_IIDR); ver = (ver >> SBSA_GWDT_VERSION_SHIFT) & SBSA_GWDT_VERSION_MASK; gwdt->version = ver; } static int sbsa_gwdt_start(struct watchdog_device *wdd) { struct sbsa_gwdt *gwdt = watchdog_get_drvdata(wdd); /* writing WCS will cause an explicit watchdog refresh */ writel(SBSA_GWDT_WCS_EN, gwdt->control_base + SBSA_GWDT_WCS); return 0; } static int sbsa_gwdt_stop(struct watchdog_device *wdd) { struct sbsa_gwdt *gwdt = watchdog_get_drvdata(wdd); /* Simply write 0 to WCS to clean WCS_EN bit */ writel(0, gwdt->control_base + SBSA_GWDT_WCS); return 0; } static irqreturn_t sbsa_gwdt_interrupt(int irq, void *dev_id) { panic(WATCHDOG_NAME " timeout"); return IRQ_HANDLED; } static const struct watchdog_info sbsa_gwdt_info = { .identity = WATCHDOG_NAME, .options = WDIOF_SETTIMEOUT | WDIOF_KEEPALIVEPING | WDIOF_MAGICCLOSE | WDIOF_CARDRESET, }; static const struct watchdog_ops sbsa_gwdt_ops = { .owner = THIS_MODULE, .start = sbsa_gwdt_start, .stop = sbsa_gwdt_stop, .ping = sbsa_gwdt_keepalive, .set_timeout = sbsa_gwdt_set_timeout, .get_timeleft = sbsa_gwdt_get_timeleft, }; static int sbsa_gwdt_probe(struct platform_device *pdev) { void __iomem *rf_base, *cf_base; struct device *dev = &pdev->dev; struct watchdog_device *wdd; struct sbsa_gwdt *gwdt; int ret, irq; u32 status; gwdt = devm_kzalloc(dev, sizeof(*gwdt), GFP_KERNEL); if (!gwdt) return -ENOMEM; platform_set_drvdata(pdev, gwdt); cf_base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(cf_base)) return PTR_ERR(cf_base); rf_base = devm_platform_ioremap_resource(pdev, 1); if (IS_ERR(rf_base)) return PTR_ERR(rf_base); /* * Get the frequency of system counter from the cp15 interface of ARM * Generic timer. We don't need to check it, because if it returns "0", * system would panic in very early stage. */ gwdt->clk = arch_timer_get_cntfrq(); gwdt->refresh_base = rf_base; gwdt->control_base = cf_base; wdd = &gwdt->wdd; wdd->parent = dev; wdd->info = &sbsa_gwdt_info; wdd->ops = &sbsa_gwdt_ops; wdd->min_timeout = 1; wdd->timeout = DEFAULT_TIMEOUT; watchdog_set_drvdata(wdd, gwdt); watchdog_set_nowayout(wdd, nowayout); sbsa_gwdt_get_version(wdd); if (gwdt->version == 0) wdd->max_hw_heartbeat_ms = U32_MAX / gwdt->clk * 1000; else wdd->max_hw_heartbeat_ms = GENMASK_ULL(47, 0) / gwdt->clk * 1000; status = readl(cf_base + SBSA_GWDT_WCS); if (status & SBSA_GWDT_WCS_WS1) { dev_warn(dev, "System reset by WDT.\n"); wdd->bootstatus |= WDIOF_CARDRESET; } if (status & SBSA_GWDT_WCS_EN) set_bit(WDOG_HW_RUNNING, &wdd->status); if (action) { irq = platform_get_irq(pdev, 0); if (irq < 0) { action = 0; dev_warn(dev, "unable to get ws0 interrupt.\n"); } else { /* * In case there is a pending ws0 interrupt, just ping * the watchdog before registering the interrupt routine */ writel(0, rf_base + SBSA_GWDT_WRR); if (devm_request_irq(dev, irq, sbsa_gwdt_interrupt, 0, pdev->name, gwdt)) { action = 0; dev_warn(dev, "unable to request IRQ %d.\n", irq); } } if (!action) dev_warn(dev, "falling back to single stage mode.\n"); } /* * In the single stage mode, The first signal (WS0) is ignored, * the timeout is (WOR * 2), so the maximum timeout should be doubled. */ if (!action) wdd->max_hw_heartbeat_ms *= 2; watchdog_init_timeout(wdd, timeout, dev); /* * Update timeout to WOR. * Because of the explicit watchdog refresh mechanism, * it's also a ping, if watchdog is enabled. */ sbsa_gwdt_set_timeout(wdd, wdd->timeout); watchdog_stop_on_reboot(wdd); ret = devm_watchdog_register_device(dev, wdd); if (ret) return ret; dev_info(dev, "Initialized with %ds timeout @ %u Hz, action=%d.%s\n", wdd->timeout, gwdt->clk, action, status & SBSA_GWDT_WCS_EN ? " [enabled]" : ""); return 0; } /* Disable watchdog if it is active during suspend */ static int __maybe_unused sbsa_gwdt_suspend(struct device *dev) { struct sbsa_gwdt *gwdt = dev_get_drvdata(dev); if (watchdog_hw_running(&gwdt->wdd)) sbsa_gwdt_stop(&gwdt->wdd); return 0; } /* Enable watchdog if necessary */ static int __maybe_unused sbsa_gwdt_resume(struct device *dev) { struct sbsa_gwdt *gwdt = dev_get_drvdata(dev); if (watchdog_hw_running(&gwdt->wdd)) sbsa_gwdt_start(&gwdt->wdd); return 0; } static const struct dev_pm_ops sbsa_gwdt_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(sbsa_gwdt_suspend, sbsa_gwdt_resume) }; static const struct of_device_id sbsa_gwdt_of_match[] = { { .compatible = "arm,sbsa-gwdt", }, {}, }; MODULE_DEVICE_TABLE(of, sbsa_gwdt_of_match); static const struct platform_device_id sbsa_gwdt_pdev_match[] = { { .name = DRV_NAME, }, {}, }; MODULE_DEVICE_TABLE(platform, sbsa_gwdt_pdev_match); static struct platform_driver sbsa_gwdt_driver = { .driver = { .name = DRV_NAME, .pm = &sbsa_gwdt_pm_ops, .of_match_table = sbsa_gwdt_of_match, }, .probe = sbsa_gwdt_probe, .id_table = sbsa_gwdt_pdev_match, }; module_platform_driver(sbsa_gwdt_driver); MODULE_DESCRIPTION("SBSA Generic Watchdog Driver"); MODULE_AUTHOR("Fu Wei <fu.wei@linaro.org>"); MODULE_AUTHOR("Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com>"); MODULE_AUTHOR("Al Stone <al.stone@linaro.org>"); MODULE_AUTHOR("Timur Tabi <timur@codeaurora.org>"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1