Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
David Howells | 4525 | 93.16% | 77 | 69.37% |
Vishal Moola (Oracle) | 75 | 1.54% | 2 | 1.80% |
Matthew Wilcox | 74 | 1.52% | 5 | 4.50% |
Nicholas Piggin | 55 | 1.13% | 3 | 2.70% |
Al Viro | 27 | 0.56% | 4 | 3.60% |
Tom Rix | 20 | 0.41% | 1 | 0.90% |
Christoph Hellwig | 15 | 0.31% | 2 | 1.80% |
Josef Bacik | 15 | 0.31% | 1 | 0.90% |
Andrew Morton | 13 | 0.27% | 4 | 3.60% |
Jan Kara | 12 | 0.25% | 2 | 1.80% |
Jeff Layton | 6 | 0.12% | 2 | 1.80% |
Linus Torvalds | 5 | 0.10% | 1 | 0.90% |
Michal Hocko | 4 | 0.08% | 1 | 0.90% |
Marc Dionne | 3 | 0.06% | 1 | 0.90% |
Adrian Bunk | 2 | 0.04% | 1 | 0.90% |
Gustavo A. R. Silva | 2 | 0.04% | 1 | 0.90% |
Thomas Gleixner | 2 | 0.04% | 1 | 0.90% |
Anton Blanchard | 1 | 0.02% | 1 | 0.90% |
Souptick Joarder | 1 | 0.02% | 1 | 0.90% |
Total | 4857 | 111 |
// SPDX-License-Identifier: GPL-2.0-or-later /* handling of writes to regular files and writing back to the server * * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) */ #include <linux/backing-dev.h> #include <linux/slab.h> #include <linux/fs.h> #include <linux/pagemap.h> #include <linux/writeback.h> #include <linux/pagevec.h> #include <linux/netfs.h> #include "internal.h" static int afs_writepages_region(struct address_space *mapping, struct writeback_control *wbc, loff_t start, loff_t end, loff_t *_next, bool max_one_loop); static void afs_write_to_cache(struct afs_vnode *vnode, loff_t start, size_t len, loff_t i_size, bool caching); #ifdef CONFIG_AFS_FSCACHE /* * Mark a page as having been made dirty and thus needing writeback. We also * need to pin the cache object to write back to. */ bool afs_dirty_folio(struct address_space *mapping, struct folio *folio) { return fscache_dirty_folio(mapping, folio, afs_vnode_cache(AFS_FS_I(mapping->host))); } static void afs_folio_start_fscache(bool caching, struct folio *folio) { if (caching) folio_start_fscache(folio); } #else static void afs_folio_start_fscache(bool caching, struct folio *folio) { } #endif /* * Flush out a conflicting write. This may extend the write to the surrounding * pages if also dirty and contiguous to the conflicting region.. */ static int afs_flush_conflicting_write(struct address_space *mapping, struct folio *folio) { struct writeback_control wbc = { .sync_mode = WB_SYNC_ALL, .nr_to_write = LONG_MAX, .range_start = folio_pos(folio), .range_end = LLONG_MAX, }; loff_t next; return afs_writepages_region(mapping, &wbc, folio_pos(folio), LLONG_MAX, &next, true); } /* * prepare to perform part of a write to a page */ int afs_write_begin(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, struct page **_page, void **fsdata) { struct afs_vnode *vnode = AFS_FS_I(file_inode(file)); struct folio *folio; unsigned long priv; unsigned f, from; unsigned t, to; pgoff_t index; int ret; _enter("{%llx:%llu},%llx,%x", vnode->fid.vid, vnode->fid.vnode, pos, len); /* Prefetch area to be written into the cache if we're caching this * file. We need to do this before we get a lock on the page in case * there's more than one writer competing for the same cache block. */ ret = netfs_write_begin(&vnode->netfs, file, mapping, pos, len, &folio, fsdata); if (ret < 0) return ret; index = folio_index(folio); from = pos - index * PAGE_SIZE; to = from + len; try_again: /* See if this page is already partially written in a way that we can * merge the new write with. */ if (folio_test_private(folio)) { priv = (unsigned long)folio_get_private(folio); f = afs_folio_dirty_from(folio, priv); t = afs_folio_dirty_to(folio, priv); ASSERTCMP(f, <=, t); if (folio_test_writeback(folio)) { trace_afs_folio_dirty(vnode, tracepoint_string("alrdy"), folio); folio_unlock(folio); goto wait_for_writeback; } /* If the file is being filled locally, allow inter-write * spaces to be merged into writes. If it's not, only write * back what the user gives us. */ if (!test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags) && (to < f || from > t)) goto flush_conflicting_write; } *_page = folio_file_page(folio, pos / PAGE_SIZE); _leave(" = 0"); return 0; /* The previous write and this write aren't adjacent or overlapping, so * flush the page out. */ flush_conflicting_write: trace_afs_folio_dirty(vnode, tracepoint_string("confl"), folio); folio_unlock(folio); ret = afs_flush_conflicting_write(mapping, folio); if (ret < 0) goto error; wait_for_writeback: ret = folio_wait_writeback_killable(folio); if (ret < 0) goto error; ret = folio_lock_killable(folio); if (ret < 0) goto error; goto try_again; error: folio_put(folio); _leave(" = %d", ret); return ret; } /* * finalise part of a write to a page */ int afs_write_end(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, unsigned copied, struct page *subpage, void *fsdata) { struct folio *folio = page_folio(subpage); struct afs_vnode *vnode = AFS_FS_I(file_inode(file)); unsigned long priv; unsigned int f, from = offset_in_folio(folio, pos); unsigned int t, to = from + copied; loff_t i_size, write_end_pos; _enter("{%llx:%llu},{%lx}", vnode->fid.vid, vnode->fid.vnode, folio_index(folio)); if (!folio_test_uptodate(folio)) { if (copied < len) { copied = 0; goto out; } folio_mark_uptodate(folio); } if (copied == 0) goto out; write_end_pos = pos + copied; i_size = i_size_read(&vnode->netfs.inode); if (write_end_pos > i_size) { write_seqlock(&vnode->cb_lock); i_size = i_size_read(&vnode->netfs.inode); if (write_end_pos > i_size) afs_set_i_size(vnode, write_end_pos); write_sequnlock(&vnode->cb_lock); fscache_update_cookie(afs_vnode_cache(vnode), NULL, &write_end_pos); } if (folio_test_private(folio)) { priv = (unsigned long)folio_get_private(folio); f = afs_folio_dirty_from(folio, priv); t = afs_folio_dirty_to(folio, priv); if (from < f) f = from; if (to > t) t = to; priv = afs_folio_dirty(folio, f, t); folio_change_private(folio, (void *)priv); trace_afs_folio_dirty(vnode, tracepoint_string("dirty+"), folio); } else { priv = afs_folio_dirty(folio, from, to); folio_attach_private(folio, (void *)priv); trace_afs_folio_dirty(vnode, tracepoint_string("dirty"), folio); } if (folio_mark_dirty(folio)) _debug("dirtied %lx", folio_index(folio)); out: folio_unlock(folio); folio_put(folio); return copied; } /* * kill all the pages in the given range */ static void afs_kill_pages(struct address_space *mapping, loff_t start, loff_t len) { struct afs_vnode *vnode = AFS_FS_I(mapping->host); struct folio *folio; pgoff_t index = start / PAGE_SIZE; pgoff_t last = (start + len - 1) / PAGE_SIZE, next; _enter("{%llx:%llu},%llx @%llx", vnode->fid.vid, vnode->fid.vnode, len, start); do { _debug("kill %lx (to %lx)", index, last); folio = filemap_get_folio(mapping, index); if (IS_ERR(folio)) { next = index + 1; continue; } next = folio_next_index(folio); folio_clear_uptodate(folio); folio_end_writeback(folio); folio_lock(folio); generic_error_remove_page(mapping, &folio->page); folio_unlock(folio); folio_put(folio); } while (index = next, index <= last); _leave(""); } /* * Redirty all the pages in a given range. */ static void afs_redirty_pages(struct writeback_control *wbc, struct address_space *mapping, loff_t start, loff_t len) { struct afs_vnode *vnode = AFS_FS_I(mapping->host); struct folio *folio; pgoff_t index = start / PAGE_SIZE; pgoff_t last = (start + len - 1) / PAGE_SIZE, next; _enter("{%llx:%llu},%llx @%llx", vnode->fid.vid, vnode->fid.vnode, len, start); do { _debug("redirty %llx @%llx", len, start); folio = filemap_get_folio(mapping, index); if (IS_ERR(folio)) { next = index + 1; continue; } next = index + folio_nr_pages(folio); folio_redirty_for_writepage(wbc, folio); folio_end_writeback(folio); folio_put(folio); } while (index = next, index <= last); _leave(""); } /* * completion of write to server */ static void afs_pages_written_back(struct afs_vnode *vnode, loff_t start, unsigned int len) { struct address_space *mapping = vnode->netfs.inode.i_mapping; struct folio *folio; pgoff_t end; XA_STATE(xas, &mapping->i_pages, start / PAGE_SIZE); _enter("{%llx:%llu},{%x @%llx}", vnode->fid.vid, vnode->fid.vnode, len, start); rcu_read_lock(); end = (start + len - 1) / PAGE_SIZE; xas_for_each(&xas, folio, end) { if (!folio_test_writeback(folio)) { kdebug("bad %x @%llx page %lx %lx", len, start, folio_index(folio), end); ASSERT(folio_test_writeback(folio)); } trace_afs_folio_dirty(vnode, tracepoint_string("clear"), folio); folio_detach_private(folio); folio_end_writeback(folio); } rcu_read_unlock(); afs_prune_wb_keys(vnode); _leave(""); } /* * Find a key to use for the writeback. We cached the keys used to author the * writes on the vnode. *_wbk will contain the last writeback key used or NULL * and we need to start from there if it's set. */ static int afs_get_writeback_key(struct afs_vnode *vnode, struct afs_wb_key **_wbk) { struct afs_wb_key *wbk = NULL; struct list_head *p; int ret = -ENOKEY, ret2; spin_lock(&vnode->wb_lock); if (*_wbk) p = (*_wbk)->vnode_link.next; else p = vnode->wb_keys.next; while (p != &vnode->wb_keys) { wbk = list_entry(p, struct afs_wb_key, vnode_link); _debug("wbk %u", key_serial(wbk->key)); ret2 = key_validate(wbk->key); if (ret2 == 0) { refcount_inc(&wbk->usage); _debug("USE WB KEY %u", key_serial(wbk->key)); break; } wbk = NULL; if (ret == -ENOKEY) ret = ret2; p = p->next; } spin_unlock(&vnode->wb_lock); if (*_wbk) afs_put_wb_key(*_wbk); *_wbk = wbk; return 0; } static void afs_store_data_success(struct afs_operation *op) { struct afs_vnode *vnode = op->file[0].vnode; op->ctime = op->file[0].scb.status.mtime_client; afs_vnode_commit_status(op, &op->file[0]); if (op->error == 0) { if (!op->store.laundering) afs_pages_written_back(vnode, op->store.pos, op->store.size); afs_stat_v(vnode, n_stores); atomic_long_add(op->store.size, &afs_v2net(vnode)->n_store_bytes); } } static const struct afs_operation_ops afs_store_data_operation = { .issue_afs_rpc = afs_fs_store_data, .issue_yfs_rpc = yfs_fs_store_data, .success = afs_store_data_success, }; /* * write to a file */ static int afs_store_data(struct afs_vnode *vnode, struct iov_iter *iter, loff_t pos, bool laundering) { struct afs_operation *op; struct afs_wb_key *wbk = NULL; loff_t size = iov_iter_count(iter); int ret = -ENOKEY; _enter("%s{%llx:%llu.%u},%llx,%llx", vnode->volume->name, vnode->fid.vid, vnode->fid.vnode, vnode->fid.unique, size, pos); ret = afs_get_writeback_key(vnode, &wbk); if (ret) { _leave(" = %d [no keys]", ret); return ret; } op = afs_alloc_operation(wbk->key, vnode->volume); if (IS_ERR(op)) { afs_put_wb_key(wbk); return -ENOMEM; } afs_op_set_vnode(op, 0, vnode); op->file[0].dv_delta = 1; op->file[0].modification = true; op->store.pos = pos; op->store.size = size; op->store.laundering = laundering; op->flags |= AFS_OPERATION_UNINTR; op->ops = &afs_store_data_operation; try_next_key: afs_begin_vnode_operation(op); op->store.write_iter = iter; op->store.i_size = max(pos + size, vnode->netfs.remote_i_size); op->mtime = inode_get_mtime(&vnode->netfs.inode); afs_wait_for_operation(op); switch (op->error) { case -EACCES: case -EPERM: case -ENOKEY: case -EKEYEXPIRED: case -EKEYREJECTED: case -EKEYREVOKED: _debug("next"); ret = afs_get_writeback_key(vnode, &wbk); if (ret == 0) { key_put(op->key); op->key = key_get(wbk->key); goto try_next_key; } break; } afs_put_wb_key(wbk); _leave(" = %d", op->error); return afs_put_operation(op); } /* * Extend the region to be written back to include subsequent contiguously * dirty pages if possible, but don't sleep while doing so. * * If this page holds new content, then we can include filler zeros in the * writeback. */ static void afs_extend_writeback(struct address_space *mapping, struct afs_vnode *vnode, long *_count, loff_t start, loff_t max_len, bool new_content, bool caching, unsigned int *_len) { struct folio_batch fbatch; struct folio *folio; unsigned long priv; unsigned int psize, filler = 0; unsigned int f, t; loff_t len = *_len; pgoff_t index = (start + len) / PAGE_SIZE; bool stop = true; unsigned int i; XA_STATE(xas, &mapping->i_pages, index); folio_batch_init(&fbatch); do { /* Firstly, we gather up a batch of contiguous dirty pages * under the RCU read lock - but we can't clear the dirty flags * there if any of those pages are mapped. */ rcu_read_lock(); xas_for_each(&xas, folio, ULONG_MAX) { stop = true; if (xas_retry(&xas, folio)) continue; if (xa_is_value(folio)) break; if (folio_index(folio) != index) break; if (!folio_try_get_rcu(folio)) { xas_reset(&xas); continue; } /* Has the page moved or been split? */ if (unlikely(folio != xas_reload(&xas))) { folio_put(folio); break; } if (!folio_trylock(folio)) { folio_put(folio); break; } if (!folio_test_dirty(folio) || folio_test_writeback(folio) || folio_test_fscache(folio)) { folio_unlock(folio); folio_put(folio); break; } psize = folio_size(folio); priv = (unsigned long)folio_get_private(folio); f = afs_folio_dirty_from(folio, priv); t = afs_folio_dirty_to(folio, priv); if (f != 0 && !new_content) { folio_unlock(folio); folio_put(folio); break; } len += filler + t; filler = psize - t; if (len >= max_len || *_count <= 0) stop = true; else if (t == psize || new_content) stop = false; index += folio_nr_pages(folio); if (!folio_batch_add(&fbatch, folio)) break; if (stop) break; } if (!stop) xas_pause(&xas); rcu_read_unlock(); /* Now, if we obtained any folios, we can shift them to being * writable and mark them for caching. */ if (!folio_batch_count(&fbatch)) break; for (i = 0; i < folio_batch_count(&fbatch); i++) { folio = fbatch.folios[i]; trace_afs_folio_dirty(vnode, tracepoint_string("store+"), folio); if (!folio_clear_dirty_for_io(folio)) BUG(); if (folio_start_writeback(folio)) BUG(); afs_folio_start_fscache(caching, folio); *_count -= folio_nr_pages(folio); folio_unlock(folio); } folio_batch_release(&fbatch); cond_resched(); } while (!stop); *_len = len; } /* * Synchronously write back the locked page and any subsequent non-locked dirty * pages. */ static ssize_t afs_write_back_from_locked_folio(struct address_space *mapping, struct writeback_control *wbc, struct folio *folio, loff_t start, loff_t end) { struct afs_vnode *vnode = AFS_FS_I(mapping->host); struct iov_iter iter; unsigned long priv; unsigned int offset, to, len, max_len; loff_t i_size = i_size_read(&vnode->netfs.inode); bool new_content = test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags); bool caching = fscache_cookie_enabled(afs_vnode_cache(vnode)); long count = wbc->nr_to_write; int ret; _enter(",%lx,%llx-%llx", folio_index(folio), start, end); if (folio_start_writeback(folio)) BUG(); afs_folio_start_fscache(caching, folio); count -= folio_nr_pages(folio); /* Find all consecutive lockable dirty pages that have contiguous * written regions, stopping when we find a page that is not * immediately lockable, is not dirty or is missing, or we reach the * end of the range. */ priv = (unsigned long)folio_get_private(folio); offset = afs_folio_dirty_from(folio, priv); to = afs_folio_dirty_to(folio, priv); trace_afs_folio_dirty(vnode, tracepoint_string("store"), folio); len = to - offset; start += offset; if (start < i_size) { /* Trim the write to the EOF; the extra data is ignored. Also * put an upper limit on the size of a single storedata op. */ max_len = 65536 * 4096; max_len = min_t(unsigned long long, max_len, end - start + 1); max_len = min_t(unsigned long long, max_len, i_size - start); if (len < max_len && (to == folio_size(folio) || new_content)) afs_extend_writeback(mapping, vnode, &count, start, max_len, new_content, caching, &len); len = min_t(loff_t, len, max_len); } /* We now have a contiguous set of dirty pages, each with writeback * set; the first page is still locked at this point, but all the rest * have been unlocked. */ folio_unlock(folio); if (start < i_size) { _debug("write back %x @%llx [%llx]", len, start, i_size); /* Speculatively write to the cache. We have to fix this up * later if the store fails. */ afs_write_to_cache(vnode, start, len, i_size, caching); iov_iter_xarray(&iter, ITER_SOURCE, &mapping->i_pages, start, len); ret = afs_store_data(vnode, &iter, start, false); } else { _debug("write discard %x @%llx [%llx]", len, start, i_size); /* The dirty region was entirely beyond the EOF. */ fscache_clear_page_bits(mapping, start, len, caching); afs_pages_written_back(vnode, start, len); ret = 0; } switch (ret) { case 0: wbc->nr_to_write = count; ret = len; break; default: pr_notice("kAFS: Unexpected error from FS.StoreData %d\n", ret); fallthrough; case -EACCES: case -EPERM: case -ENOKEY: case -EKEYEXPIRED: case -EKEYREJECTED: case -EKEYREVOKED: case -ENETRESET: afs_redirty_pages(wbc, mapping, start, len); mapping_set_error(mapping, ret); break; case -EDQUOT: case -ENOSPC: afs_redirty_pages(wbc, mapping, start, len); mapping_set_error(mapping, -ENOSPC); break; case -EROFS: case -EIO: case -EREMOTEIO: case -EFBIG: case -ENOENT: case -ENOMEDIUM: case -ENXIO: trace_afs_file_error(vnode, ret, afs_file_error_writeback_fail); afs_kill_pages(mapping, start, len); mapping_set_error(mapping, ret); break; } _leave(" = %d", ret); return ret; } /* * write a region of pages back to the server */ static int afs_writepages_region(struct address_space *mapping, struct writeback_control *wbc, loff_t start, loff_t end, loff_t *_next, bool max_one_loop) { struct folio *folio; struct folio_batch fbatch; ssize_t ret; unsigned int i; int n, skips = 0; _enter("%llx,%llx,", start, end); folio_batch_init(&fbatch); do { pgoff_t index = start / PAGE_SIZE; n = filemap_get_folios_tag(mapping, &index, end / PAGE_SIZE, PAGECACHE_TAG_DIRTY, &fbatch); if (!n) break; for (i = 0; i < n; i++) { folio = fbatch.folios[i]; start = folio_pos(folio); /* May regress with THPs */ _debug("wback %lx", folio_index(folio)); /* At this point we hold neither the i_pages lock nor the * page lock: the page may be truncated or invalidated * (changing page->mapping to NULL), or even swizzled * back from swapper_space to tmpfs file mapping */ try_again: if (wbc->sync_mode != WB_SYNC_NONE) { ret = folio_lock_killable(folio); if (ret < 0) { folio_batch_release(&fbatch); return ret; } } else { if (!folio_trylock(folio)) continue; } if (folio->mapping != mapping || !folio_test_dirty(folio)) { start += folio_size(folio); folio_unlock(folio); continue; } if (folio_test_writeback(folio) || folio_test_fscache(folio)) { folio_unlock(folio); if (wbc->sync_mode != WB_SYNC_NONE) { folio_wait_writeback(folio); #ifdef CONFIG_AFS_FSCACHE folio_wait_fscache(folio); #endif goto try_again; } start += folio_size(folio); if (wbc->sync_mode == WB_SYNC_NONE) { if (skips >= 5 || need_resched()) { *_next = start; folio_batch_release(&fbatch); _leave(" = 0 [%llx]", *_next); return 0; } skips++; } continue; } if (!folio_clear_dirty_for_io(folio)) BUG(); ret = afs_write_back_from_locked_folio(mapping, wbc, folio, start, end); if (ret < 0) { _leave(" = %zd", ret); folio_batch_release(&fbatch); return ret; } start += ret; } folio_batch_release(&fbatch); cond_resched(); } while (wbc->nr_to_write > 0); *_next = start; _leave(" = 0 [%llx]", *_next); return 0; } /* * write some of the pending data back to the server */ int afs_writepages(struct address_space *mapping, struct writeback_control *wbc) { struct afs_vnode *vnode = AFS_FS_I(mapping->host); loff_t start, next; int ret; _enter(""); /* We have to be careful as we can end up racing with setattr() * truncating the pagecache since the caller doesn't take a lock here * to prevent it. */ if (wbc->sync_mode == WB_SYNC_ALL) down_read(&vnode->validate_lock); else if (!down_read_trylock(&vnode->validate_lock)) return 0; if (wbc->range_cyclic) { start = mapping->writeback_index * PAGE_SIZE; ret = afs_writepages_region(mapping, wbc, start, LLONG_MAX, &next, false); if (ret == 0) { mapping->writeback_index = next / PAGE_SIZE; if (start > 0 && wbc->nr_to_write > 0) { ret = afs_writepages_region(mapping, wbc, 0, start, &next, false); if (ret == 0) mapping->writeback_index = next / PAGE_SIZE; } } } else if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) { ret = afs_writepages_region(mapping, wbc, 0, LLONG_MAX, &next, false); if (wbc->nr_to_write > 0 && ret == 0) mapping->writeback_index = next / PAGE_SIZE; } else { ret = afs_writepages_region(mapping, wbc, wbc->range_start, wbc->range_end, &next, false); } up_read(&vnode->validate_lock); _leave(" = %d", ret); return ret; } /* * write to an AFS file */ ssize_t afs_file_write(struct kiocb *iocb, struct iov_iter *from) { struct afs_vnode *vnode = AFS_FS_I(file_inode(iocb->ki_filp)); struct afs_file *af = iocb->ki_filp->private_data; ssize_t result; size_t count = iov_iter_count(from); _enter("{%llx:%llu},{%zu},", vnode->fid.vid, vnode->fid.vnode, count); if (IS_SWAPFILE(&vnode->netfs.inode)) { printk(KERN_INFO "AFS: Attempt to write to active swap file!\n"); return -EBUSY; } if (!count) return 0; result = afs_validate(vnode, af->key); if (result < 0) return result; result = generic_file_write_iter(iocb, from); _leave(" = %zd", result); return result; } /* * flush any dirty pages for this process, and check for write errors. * - the return status from this call provides a reliable indication of * whether any write errors occurred for this process. */ int afs_fsync(struct file *file, loff_t start, loff_t end, int datasync) { struct afs_vnode *vnode = AFS_FS_I(file_inode(file)); struct afs_file *af = file->private_data; int ret; _enter("{%llx:%llu},{n=%pD},%d", vnode->fid.vid, vnode->fid.vnode, file, datasync); ret = afs_validate(vnode, af->key); if (ret < 0) return ret; return file_write_and_wait_range(file, start, end); } /* * notification that a previously read-only page is about to become writable * - if it returns an error, the caller will deliver a bus error signal */ vm_fault_t afs_page_mkwrite(struct vm_fault *vmf) { struct folio *folio = page_folio(vmf->page); struct file *file = vmf->vma->vm_file; struct inode *inode = file_inode(file); struct afs_vnode *vnode = AFS_FS_I(inode); struct afs_file *af = file->private_data; unsigned long priv; vm_fault_t ret = VM_FAULT_RETRY; _enter("{{%llx:%llu}},{%lx}", vnode->fid.vid, vnode->fid.vnode, folio_index(folio)); afs_validate(vnode, af->key); sb_start_pagefault(inode->i_sb); /* Wait for the page to be written to the cache before we allow it to * be modified. We then assume the entire page will need writing back. */ #ifdef CONFIG_AFS_FSCACHE if (folio_test_fscache(folio) && folio_wait_fscache_killable(folio) < 0) goto out; #endif if (folio_wait_writeback_killable(folio)) goto out; if (folio_lock_killable(folio) < 0) goto out; /* We mustn't change folio->private until writeback is complete as that * details the portion of the page we need to write back and we might * need to redirty the page if there's a problem. */ if (folio_wait_writeback_killable(folio) < 0) { folio_unlock(folio); goto out; } priv = afs_folio_dirty(folio, 0, folio_size(folio)); priv = afs_folio_dirty_mmapped(priv); if (folio_test_private(folio)) { folio_change_private(folio, (void *)priv); trace_afs_folio_dirty(vnode, tracepoint_string("mkwrite+"), folio); } else { folio_attach_private(folio, (void *)priv); trace_afs_folio_dirty(vnode, tracepoint_string("mkwrite"), folio); } file_update_time(file); ret = VM_FAULT_LOCKED; out: sb_end_pagefault(inode->i_sb); return ret; } /* * Prune the keys cached for writeback. The caller must hold vnode->wb_lock. */ void afs_prune_wb_keys(struct afs_vnode *vnode) { LIST_HEAD(graveyard); struct afs_wb_key *wbk, *tmp; /* Discard unused keys */ spin_lock(&vnode->wb_lock); if (!mapping_tagged(&vnode->netfs.inode.i_data, PAGECACHE_TAG_WRITEBACK) && !mapping_tagged(&vnode->netfs.inode.i_data, PAGECACHE_TAG_DIRTY)) { list_for_each_entry_safe(wbk, tmp, &vnode->wb_keys, vnode_link) { if (refcount_read(&wbk->usage) == 1) list_move(&wbk->vnode_link, &graveyard); } } spin_unlock(&vnode->wb_lock); while (!list_empty(&graveyard)) { wbk = list_entry(graveyard.next, struct afs_wb_key, vnode_link); list_del(&wbk->vnode_link); afs_put_wb_key(wbk); } } /* * Clean up a page during invalidation. */ int afs_launder_folio(struct folio *folio) { struct afs_vnode *vnode = AFS_FS_I(folio_inode(folio)); struct iov_iter iter; struct bio_vec bv; unsigned long priv; unsigned int f, t; int ret = 0; _enter("{%lx}", folio->index); priv = (unsigned long)folio_get_private(folio); if (folio_clear_dirty_for_io(folio)) { f = 0; t = folio_size(folio); if (folio_test_private(folio)) { f = afs_folio_dirty_from(folio, priv); t = afs_folio_dirty_to(folio, priv); } bvec_set_folio(&bv, folio, t - f, f); iov_iter_bvec(&iter, ITER_SOURCE, &bv, 1, bv.bv_len); trace_afs_folio_dirty(vnode, tracepoint_string("launder"), folio); ret = afs_store_data(vnode, &iter, folio_pos(folio) + f, true); } trace_afs_folio_dirty(vnode, tracepoint_string("laundered"), folio); folio_detach_private(folio); folio_wait_fscache(folio); return ret; } /* * Deal with the completion of writing the data to the cache. */ static void afs_write_to_cache_done(void *priv, ssize_t transferred_or_error, bool was_async) { struct afs_vnode *vnode = priv; if (IS_ERR_VALUE(transferred_or_error) && transferred_or_error != -ENOBUFS) afs_invalidate_cache(vnode, 0); } /* * Save the write to the cache also. */ static void afs_write_to_cache(struct afs_vnode *vnode, loff_t start, size_t len, loff_t i_size, bool caching) { fscache_write_to_cache(afs_vnode_cache(vnode), vnode->netfs.inode.i_mapping, start, len, i_size, afs_write_to_cache_done, vnode, caching); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1