Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Kent Overstreet | 7922 | 99.96% | 47 | 95.92% |
Dan Robertson | 2 | 0.03% | 1 | 2.04% |
Brett Holman | 1 | 0.01% | 1 | 2.04% |
Total | 7925 | 49 |
// SPDX-License-Identifier: GPL-2.0 /* * Code for working with individual keys, and sorted sets of keys with in a * btree node * * Copyright 2012 Google, Inc. */ #include "bcachefs.h" #include "btree_cache.h" #include "bset.h" #include "eytzinger.h" #include "trace.h" #include "util.h" #include <asm/unaligned.h> #include <linux/console.h> #include <linux/random.h> #include <linux/prefetch.h> static inline void __bch2_btree_node_iter_advance(struct btree_node_iter *, struct btree *); static inline unsigned __btree_node_iter_used(struct btree_node_iter *iter) { unsigned n = ARRAY_SIZE(iter->data); while (n && __btree_node_iter_set_end(iter, n - 1)) --n; return n; } struct bset_tree *bch2_bkey_to_bset(struct btree *b, struct bkey_packed *k) { return bch2_bkey_to_bset_inlined(b, k); } /* * There are never duplicate live keys in the btree - but including keys that * have been flagged as deleted (and will be cleaned up later) we _will_ see * duplicates. * * Thus the sort order is: usual key comparison first, but for keys that compare * equal the deleted key(s) come first, and the (at most one) live version comes * last. * * The main reason for this is insertion: to handle overwrites, we first iterate * over keys that compare equal to our insert key, and then insert immediately * prior to the first key greater than the key we're inserting - our insert * position will be after all keys that compare equal to our insert key, which * by the time we actually do the insert will all be deleted. */ void bch2_dump_bset(struct bch_fs *c, struct btree *b, struct bset *i, unsigned set) { struct bkey_packed *_k, *_n; struct bkey uk, n; struct bkey_s_c k; struct printbuf buf = PRINTBUF; if (!i->u64s) return; for (_k = i->start; _k < vstruct_last(i); _k = _n) { _n = bkey_p_next(_k); k = bkey_disassemble(b, _k, &uk); printbuf_reset(&buf); if (c) bch2_bkey_val_to_text(&buf, c, k); else bch2_bkey_to_text(&buf, k.k); printk(KERN_ERR "block %u key %5zu: %s\n", set, _k->_data - i->_data, buf.buf); if (_n == vstruct_last(i)) continue; n = bkey_unpack_key(b, _n); if (bpos_lt(n.p, k.k->p)) { printk(KERN_ERR "Key skipped backwards\n"); continue; } if (!bkey_deleted(k.k) && bpos_eq(n.p, k.k->p)) printk(KERN_ERR "Duplicate keys\n"); } printbuf_exit(&buf); } void bch2_dump_btree_node(struct bch_fs *c, struct btree *b) { struct bset_tree *t; console_lock(); for_each_bset(b, t) bch2_dump_bset(c, b, bset(b, t), t - b->set); console_unlock(); } void bch2_dump_btree_node_iter(struct btree *b, struct btree_node_iter *iter) { struct btree_node_iter_set *set; struct printbuf buf = PRINTBUF; printk(KERN_ERR "btree node iter with %u/%u sets:\n", __btree_node_iter_used(iter), b->nsets); btree_node_iter_for_each(iter, set) { struct bkey_packed *k = __btree_node_offset_to_key(b, set->k); struct bset_tree *t = bch2_bkey_to_bset(b, k); struct bkey uk = bkey_unpack_key(b, k); printbuf_reset(&buf); bch2_bkey_to_text(&buf, &uk); printk(KERN_ERR "set %zu key %u: %s\n", t - b->set, set->k, buf.buf); } printbuf_exit(&buf); } #ifdef CONFIG_BCACHEFS_DEBUG void __bch2_verify_btree_nr_keys(struct btree *b) { struct bset_tree *t; struct bkey_packed *k; struct btree_nr_keys nr = { 0 }; for_each_bset(b, t) bset_tree_for_each_key(b, t, k) if (!bkey_deleted(k)) btree_keys_account_key_add(&nr, t - b->set, k); BUG_ON(memcmp(&nr, &b->nr, sizeof(nr))); } static void bch2_btree_node_iter_next_check(struct btree_node_iter *_iter, struct btree *b) { struct btree_node_iter iter = *_iter; const struct bkey_packed *k, *n; k = bch2_btree_node_iter_peek_all(&iter, b); __bch2_btree_node_iter_advance(&iter, b); n = bch2_btree_node_iter_peek_all(&iter, b); bkey_unpack_key(b, k); if (n && bkey_iter_cmp(b, k, n) > 0) { struct btree_node_iter_set *set; struct bkey ku = bkey_unpack_key(b, k); struct bkey nu = bkey_unpack_key(b, n); struct printbuf buf1 = PRINTBUF; struct printbuf buf2 = PRINTBUF; bch2_dump_btree_node(NULL, b); bch2_bkey_to_text(&buf1, &ku); bch2_bkey_to_text(&buf2, &nu); printk(KERN_ERR "out of order/overlapping:\n%s\n%s\n", buf1.buf, buf2.buf); printk(KERN_ERR "iter was:"); btree_node_iter_for_each(_iter, set) { struct bkey_packed *k2 = __btree_node_offset_to_key(b, set->k); struct bset_tree *t = bch2_bkey_to_bset(b, k2); printk(" [%zi %zi]", t - b->set, k2->_data - bset(b, t)->_data); } panic("\n"); } } void bch2_btree_node_iter_verify(struct btree_node_iter *iter, struct btree *b) { struct btree_node_iter_set *set, *s2; struct bkey_packed *k, *p; struct bset_tree *t; if (bch2_btree_node_iter_end(iter)) return; /* Verify no duplicates: */ btree_node_iter_for_each(iter, set) { BUG_ON(set->k > set->end); btree_node_iter_for_each(iter, s2) BUG_ON(set != s2 && set->end == s2->end); } /* Verify that set->end is correct: */ btree_node_iter_for_each(iter, set) { for_each_bset(b, t) if (set->end == t->end_offset) goto found; BUG(); found: BUG_ON(set->k < btree_bkey_first_offset(t) || set->k >= t->end_offset); } /* Verify iterator is sorted: */ btree_node_iter_for_each(iter, set) BUG_ON(set != iter->data && btree_node_iter_cmp(b, set[-1], set[0]) > 0); k = bch2_btree_node_iter_peek_all(iter, b); for_each_bset(b, t) { if (iter->data[0].end == t->end_offset) continue; p = bch2_bkey_prev_all(b, t, bch2_btree_node_iter_bset_pos(iter, b, t)); BUG_ON(p && bkey_iter_cmp(b, k, p) < 0); } } void bch2_verify_insert_pos(struct btree *b, struct bkey_packed *where, struct bkey_packed *insert, unsigned clobber_u64s) { struct bset_tree *t = bch2_bkey_to_bset(b, where); struct bkey_packed *prev = bch2_bkey_prev_all(b, t, where); struct bkey_packed *next = (void *) ((u64 *) where->_data + clobber_u64s); struct printbuf buf1 = PRINTBUF; struct printbuf buf2 = PRINTBUF; #if 0 BUG_ON(prev && bkey_iter_cmp(b, prev, insert) > 0); #else if (prev && bkey_iter_cmp(b, prev, insert) > 0) { struct bkey k1 = bkey_unpack_key(b, prev); struct bkey k2 = bkey_unpack_key(b, insert); bch2_dump_btree_node(NULL, b); bch2_bkey_to_text(&buf1, &k1); bch2_bkey_to_text(&buf2, &k2); panic("prev > insert:\n" "prev key %s\n" "insert key %s\n", buf1.buf, buf2.buf); } #endif #if 0 BUG_ON(next != btree_bkey_last(b, t) && bkey_iter_cmp(b, insert, next) > 0); #else if (next != btree_bkey_last(b, t) && bkey_iter_cmp(b, insert, next) > 0) { struct bkey k1 = bkey_unpack_key(b, insert); struct bkey k2 = bkey_unpack_key(b, next); bch2_dump_btree_node(NULL, b); bch2_bkey_to_text(&buf1, &k1); bch2_bkey_to_text(&buf2, &k2); panic("insert > next:\n" "insert key %s\n" "next key %s\n", buf1.buf, buf2.buf); } #endif } #else static inline void bch2_btree_node_iter_next_check(struct btree_node_iter *iter, struct btree *b) {} #endif /* Auxiliary search trees */ #define BFLOAT_FAILED_UNPACKED U8_MAX #define BFLOAT_FAILED U8_MAX struct bkey_float { u8 exponent; u8 key_offset; u16 mantissa; }; #define BKEY_MANTISSA_BITS 16 static unsigned bkey_float_byte_offset(unsigned idx) { return idx * sizeof(struct bkey_float); } struct ro_aux_tree { u8 nothing[0]; struct bkey_float f[]; }; struct rw_aux_tree { u16 offset; struct bpos k; }; static unsigned bset_aux_tree_buf_end(const struct bset_tree *t) { BUG_ON(t->aux_data_offset == U16_MAX); switch (bset_aux_tree_type(t)) { case BSET_NO_AUX_TREE: return t->aux_data_offset; case BSET_RO_AUX_TREE: return t->aux_data_offset + DIV_ROUND_UP(t->size * sizeof(struct bkey_float) + t->size * sizeof(u8), 8); case BSET_RW_AUX_TREE: return t->aux_data_offset + DIV_ROUND_UP(sizeof(struct rw_aux_tree) * t->size, 8); default: BUG(); } } static unsigned bset_aux_tree_buf_start(const struct btree *b, const struct bset_tree *t) { return t == b->set ? DIV_ROUND_UP(b->unpack_fn_len, 8) : bset_aux_tree_buf_end(t - 1); } static void *__aux_tree_base(const struct btree *b, const struct bset_tree *t) { return b->aux_data + t->aux_data_offset * 8; } static struct ro_aux_tree *ro_aux_tree_base(const struct btree *b, const struct bset_tree *t) { EBUG_ON(bset_aux_tree_type(t) != BSET_RO_AUX_TREE); return __aux_tree_base(b, t); } static u8 *ro_aux_tree_prev(const struct btree *b, const struct bset_tree *t) { EBUG_ON(bset_aux_tree_type(t) != BSET_RO_AUX_TREE); return __aux_tree_base(b, t) + bkey_float_byte_offset(t->size); } static struct bkey_float *bkey_float(const struct btree *b, const struct bset_tree *t, unsigned idx) { return ro_aux_tree_base(b, t)->f + idx; } static void bset_aux_tree_verify(const struct btree *b) { #ifdef CONFIG_BCACHEFS_DEBUG const struct bset_tree *t; for_each_bset(b, t) { if (t->aux_data_offset == U16_MAX) continue; BUG_ON(t != b->set && t[-1].aux_data_offset == U16_MAX); BUG_ON(t->aux_data_offset < bset_aux_tree_buf_start(b, t)); BUG_ON(t->aux_data_offset > btree_aux_data_u64s(b)); BUG_ON(bset_aux_tree_buf_end(t) > btree_aux_data_u64s(b)); } #endif } void bch2_btree_keys_init(struct btree *b) { unsigned i; b->nsets = 0; memset(&b->nr, 0, sizeof(b->nr)); for (i = 0; i < MAX_BSETS; i++) b->set[i].data_offset = U16_MAX; bch2_bset_set_no_aux_tree(b, b->set); } /* Binary tree stuff for auxiliary search trees */ /* * Cacheline/offset <-> bkey pointer arithmetic: * * t->tree is a binary search tree in an array; each node corresponds to a key * in one cacheline in t->set (BSET_CACHELINE bytes). * * This means we don't have to store the full index of the key that a node in * the binary tree points to; eytzinger1_to_inorder() gives us the cacheline, and * then bkey_float->m gives us the offset within that cacheline, in units of 8 * bytes. * * cacheline_to_bkey() and friends abstract out all the pointer arithmetic to * make this work. * * To construct the bfloat for an arbitrary key we need to know what the key * immediately preceding it is: we have to check if the two keys differ in the * bits we're going to store in bkey_float->mantissa. t->prev[j] stores the size * of the previous key so we can walk backwards to it from t->tree[j]'s key. */ static inline void *bset_cacheline(const struct btree *b, const struct bset_tree *t, unsigned cacheline) { return (void *) round_down((unsigned long) btree_bkey_first(b, t), L1_CACHE_BYTES) + cacheline * BSET_CACHELINE; } static struct bkey_packed *cacheline_to_bkey(const struct btree *b, const struct bset_tree *t, unsigned cacheline, unsigned offset) { return bset_cacheline(b, t, cacheline) + offset * 8; } static unsigned bkey_to_cacheline(const struct btree *b, const struct bset_tree *t, const struct bkey_packed *k) { return ((void *) k - bset_cacheline(b, t, 0)) / BSET_CACHELINE; } static ssize_t __bkey_to_cacheline_offset(const struct btree *b, const struct bset_tree *t, unsigned cacheline, const struct bkey_packed *k) { return (u64 *) k - (u64 *) bset_cacheline(b, t, cacheline); } static unsigned bkey_to_cacheline_offset(const struct btree *b, const struct bset_tree *t, unsigned cacheline, const struct bkey_packed *k) { size_t m = __bkey_to_cacheline_offset(b, t, cacheline, k); EBUG_ON(m > U8_MAX); return m; } static inline struct bkey_packed *tree_to_bkey(const struct btree *b, const struct bset_tree *t, unsigned j) { return cacheline_to_bkey(b, t, __eytzinger1_to_inorder(j, t->size - 1, t->extra), bkey_float(b, t, j)->key_offset); } static struct bkey_packed *tree_to_prev_bkey(const struct btree *b, const struct bset_tree *t, unsigned j) { unsigned prev_u64s = ro_aux_tree_prev(b, t)[j]; return (void *) ((u64 *) tree_to_bkey(b, t, j)->_data - prev_u64s); } static struct rw_aux_tree *rw_aux_tree(const struct btree *b, const struct bset_tree *t) { EBUG_ON(bset_aux_tree_type(t) != BSET_RW_AUX_TREE); return __aux_tree_base(b, t); } /* * For the write set - the one we're currently inserting keys into - we don't * maintain a full search tree, we just keep a simple lookup table in t->prev. */ static struct bkey_packed *rw_aux_to_bkey(const struct btree *b, struct bset_tree *t, unsigned j) { return __btree_node_offset_to_key(b, rw_aux_tree(b, t)[j].offset); } static void rw_aux_tree_set(const struct btree *b, struct bset_tree *t, unsigned j, struct bkey_packed *k) { EBUG_ON(k >= btree_bkey_last(b, t)); rw_aux_tree(b, t)[j] = (struct rw_aux_tree) { .offset = __btree_node_key_to_offset(b, k), .k = bkey_unpack_pos(b, k), }; } static void bch2_bset_verify_rw_aux_tree(struct btree *b, struct bset_tree *t) { struct bkey_packed *k = btree_bkey_first(b, t); unsigned j = 0; if (!bch2_expensive_debug_checks) return; BUG_ON(bset_has_ro_aux_tree(t)); if (!bset_has_rw_aux_tree(t)) return; BUG_ON(t->size < 1); BUG_ON(rw_aux_to_bkey(b, t, j) != k); goto start; while (1) { if (rw_aux_to_bkey(b, t, j) == k) { BUG_ON(!bpos_eq(rw_aux_tree(b, t)[j].k, bkey_unpack_pos(b, k))); start: if (++j == t->size) break; BUG_ON(rw_aux_tree(b, t)[j].offset <= rw_aux_tree(b, t)[j - 1].offset); } k = bkey_p_next(k); BUG_ON(k >= btree_bkey_last(b, t)); } } /* returns idx of first entry >= offset: */ static unsigned rw_aux_tree_bsearch(struct btree *b, struct bset_tree *t, unsigned offset) { unsigned bset_offs = offset - btree_bkey_first_offset(t); unsigned bset_u64s = t->end_offset - btree_bkey_first_offset(t); unsigned idx = bset_u64s ? bset_offs * t->size / bset_u64s : 0; EBUG_ON(bset_aux_tree_type(t) != BSET_RW_AUX_TREE); EBUG_ON(!t->size); EBUG_ON(idx > t->size); while (idx < t->size && rw_aux_tree(b, t)[idx].offset < offset) idx++; while (idx && rw_aux_tree(b, t)[idx - 1].offset >= offset) idx--; EBUG_ON(idx < t->size && rw_aux_tree(b, t)[idx].offset < offset); EBUG_ON(idx && rw_aux_tree(b, t)[idx - 1].offset >= offset); EBUG_ON(idx + 1 < t->size && rw_aux_tree(b, t)[idx].offset == rw_aux_tree(b, t)[idx + 1].offset); return idx; } static inline unsigned bkey_mantissa(const struct bkey_packed *k, const struct bkey_float *f, unsigned idx) { u64 v; EBUG_ON(!bkey_packed(k)); v = get_unaligned((u64 *) (((u8 *) k->_data) + (f->exponent >> 3))); /* * In little endian, we're shifting off low bits (and then the bits we * want are at the low end), in big endian we're shifting off high bits * (and then the bits we want are at the high end, so we shift them * back down): */ #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ v >>= f->exponent & 7; #else v >>= 64 - (f->exponent & 7) - BKEY_MANTISSA_BITS; #endif return (u16) v; } static __always_inline void make_bfloat(struct btree *b, struct bset_tree *t, unsigned j, struct bkey_packed *min_key, struct bkey_packed *max_key) { struct bkey_float *f = bkey_float(b, t, j); struct bkey_packed *m = tree_to_bkey(b, t, j); struct bkey_packed *l = is_power_of_2(j) ? min_key : tree_to_prev_bkey(b, t, j >> ffs(j)); struct bkey_packed *r = is_power_of_2(j + 1) ? max_key : tree_to_bkey(b, t, j >> (ffz(j) + 1)); unsigned mantissa; int shift, exponent, high_bit; /* * for failed bfloats, the lookup code falls back to comparing against * the original key. */ if (!bkey_packed(l) || !bkey_packed(r) || !bkey_packed(m) || !b->nr_key_bits) { f->exponent = BFLOAT_FAILED_UNPACKED; return; } /* * The greatest differing bit of l and r is the first bit we must * include in the bfloat mantissa we're creating in order to do * comparisons - that bit always becomes the high bit of * bfloat->mantissa, and thus the exponent we're calculating here is * the position of what will become the low bit in bfloat->mantissa: * * Note that this may be negative - we may be running off the low end * of the key: we handle this later: */ high_bit = max(bch2_bkey_greatest_differing_bit(b, l, r), min_t(unsigned, BKEY_MANTISSA_BITS, b->nr_key_bits) - 1); exponent = high_bit - (BKEY_MANTISSA_BITS - 1); /* * Then we calculate the actual shift value, from the start of the key * (k->_data), to get the key bits starting at exponent: */ #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ shift = (int) (b->format.key_u64s * 64 - b->nr_key_bits) + exponent; EBUG_ON(shift + BKEY_MANTISSA_BITS > b->format.key_u64s * 64); #else shift = high_bit_offset + b->nr_key_bits - exponent - BKEY_MANTISSA_BITS; EBUG_ON(shift < KEY_PACKED_BITS_START); #endif EBUG_ON(shift < 0 || shift >= BFLOAT_FAILED); f->exponent = shift; mantissa = bkey_mantissa(m, f, j); /* * If we've got garbage bits, set them to all 1s - it's legal for the * bfloat to compare larger than the original key, but not smaller: */ if (exponent < 0) mantissa |= ~(~0U << -exponent); f->mantissa = mantissa; } /* bytes remaining - only valid for last bset: */ static unsigned __bset_tree_capacity(const struct btree *b, const struct bset_tree *t) { bset_aux_tree_verify(b); return btree_aux_data_bytes(b) - t->aux_data_offset * sizeof(u64); } static unsigned bset_ro_tree_capacity(const struct btree *b, const struct bset_tree *t) { return __bset_tree_capacity(b, t) / (sizeof(struct bkey_float) + sizeof(u8)); } static unsigned bset_rw_tree_capacity(const struct btree *b, const struct bset_tree *t) { return __bset_tree_capacity(b, t) / sizeof(struct rw_aux_tree); } static noinline void __build_rw_aux_tree(struct btree *b, struct bset_tree *t) { struct bkey_packed *k; t->size = 1; t->extra = BSET_RW_AUX_TREE_VAL; rw_aux_tree(b, t)[0].offset = __btree_node_key_to_offset(b, btree_bkey_first(b, t)); bset_tree_for_each_key(b, t, k) { if (t->size == bset_rw_tree_capacity(b, t)) break; if ((void *) k - (void *) rw_aux_to_bkey(b, t, t->size - 1) > L1_CACHE_BYTES) rw_aux_tree_set(b, t, t->size++, k); } } static noinline void __build_ro_aux_tree(struct btree *b, struct bset_tree *t) { struct bkey_packed *prev = NULL, *k = btree_bkey_first(b, t); struct bkey_i min_key, max_key; unsigned j, cacheline = 1; t->size = min(bkey_to_cacheline(b, t, btree_bkey_last(b, t)), bset_ro_tree_capacity(b, t)); retry: if (t->size < 2) { t->size = 0; t->extra = BSET_NO_AUX_TREE_VAL; return; } t->extra = (t->size - rounddown_pow_of_two(t->size - 1)) << 1; /* First we figure out where the first key in each cacheline is */ eytzinger1_for_each(j, t->size - 1) { while (bkey_to_cacheline(b, t, k) < cacheline) prev = k, k = bkey_p_next(k); if (k >= btree_bkey_last(b, t)) { /* XXX: this path sucks */ t->size--; goto retry; } ro_aux_tree_prev(b, t)[j] = prev->u64s; bkey_float(b, t, j)->key_offset = bkey_to_cacheline_offset(b, t, cacheline++, k); EBUG_ON(tree_to_prev_bkey(b, t, j) != prev); EBUG_ON(tree_to_bkey(b, t, j) != k); } while (k != btree_bkey_last(b, t)) prev = k, k = bkey_p_next(k); if (!bkey_pack_pos(bkey_to_packed(&min_key), b->data->min_key, b)) { bkey_init(&min_key.k); min_key.k.p = b->data->min_key; } if (!bkey_pack_pos(bkey_to_packed(&max_key), b->data->max_key, b)) { bkey_init(&max_key.k); max_key.k.p = b->data->max_key; } /* Then we build the tree */ eytzinger1_for_each(j, t->size - 1) make_bfloat(b, t, j, bkey_to_packed(&min_key), bkey_to_packed(&max_key)); } static void bset_alloc_tree(struct btree *b, struct bset_tree *t) { struct bset_tree *i; for (i = b->set; i != t; i++) BUG_ON(bset_has_rw_aux_tree(i)); bch2_bset_set_no_aux_tree(b, t); /* round up to next cacheline: */ t->aux_data_offset = round_up(bset_aux_tree_buf_start(b, t), SMP_CACHE_BYTES / sizeof(u64)); bset_aux_tree_verify(b); } void bch2_bset_build_aux_tree(struct btree *b, struct bset_tree *t, bool writeable) { if (writeable ? bset_has_rw_aux_tree(t) : bset_has_ro_aux_tree(t)) return; bset_alloc_tree(b, t); if (!__bset_tree_capacity(b, t)) return; if (writeable) __build_rw_aux_tree(b, t); else __build_ro_aux_tree(b, t); bset_aux_tree_verify(b); } void bch2_bset_init_first(struct btree *b, struct bset *i) { struct bset_tree *t; BUG_ON(b->nsets); memset(i, 0, sizeof(*i)); get_random_bytes(&i->seq, sizeof(i->seq)); SET_BSET_BIG_ENDIAN(i, CPU_BIG_ENDIAN); t = &b->set[b->nsets++]; set_btree_bset(b, t, i); } void bch2_bset_init_next(struct bch_fs *c, struct btree *b, struct btree_node_entry *bne) { struct bset *i = &bne->keys; struct bset_tree *t; BUG_ON(bset_byte_offset(b, bne) >= btree_bytes(c)); BUG_ON((void *) bne < (void *) btree_bkey_last(b, bset_tree_last(b))); BUG_ON(b->nsets >= MAX_BSETS); memset(i, 0, sizeof(*i)); i->seq = btree_bset_first(b)->seq; SET_BSET_BIG_ENDIAN(i, CPU_BIG_ENDIAN); t = &b->set[b->nsets++]; set_btree_bset(b, t, i); } /* * find _some_ key in the same bset as @k that precedes @k - not necessarily the * immediate predecessor: */ static struct bkey_packed *__bkey_prev(struct btree *b, struct bset_tree *t, struct bkey_packed *k) { struct bkey_packed *p; unsigned offset; int j; EBUG_ON(k < btree_bkey_first(b, t) || k > btree_bkey_last(b, t)); if (k == btree_bkey_first(b, t)) return NULL; switch (bset_aux_tree_type(t)) { case BSET_NO_AUX_TREE: p = btree_bkey_first(b, t); break; case BSET_RO_AUX_TREE: j = min_t(unsigned, t->size - 1, bkey_to_cacheline(b, t, k)); do { p = j ? tree_to_bkey(b, t, __inorder_to_eytzinger1(j--, t->size - 1, t->extra)) : btree_bkey_first(b, t); } while (p >= k); break; case BSET_RW_AUX_TREE: offset = __btree_node_key_to_offset(b, k); j = rw_aux_tree_bsearch(b, t, offset); p = j ? rw_aux_to_bkey(b, t, j - 1) : btree_bkey_first(b, t); break; } return p; } struct bkey_packed *bch2_bkey_prev_filter(struct btree *b, struct bset_tree *t, struct bkey_packed *k, unsigned min_key_type) { struct bkey_packed *p, *i, *ret = NULL, *orig_k = k; while ((p = __bkey_prev(b, t, k)) && !ret) { for (i = p; i != k; i = bkey_p_next(i)) if (i->type >= min_key_type) ret = i; k = p; } if (bch2_expensive_debug_checks) { BUG_ON(ret >= orig_k); for (i = ret ? bkey_p_next(ret) : btree_bkey_first(b, t); i != orig_k; i = bkey_p_next(i)) BUG_ON(i->type >= min_key_type); } return ret; } /* Insert */ static void bch2_bset_fix_lookup_table(struct btree *b, struct bset_tree *t, struct bkey_packed *_where, unsigned clobber_u64s, unsigned new_u64s) { int shift = new_u64s - clobber_u64s; unsigned l, j, where = __btree_node_key_to_offset(b, _where); EBUG_ON(bset_has_ro_aux_tree(t)); if (!bset_has_rw_aux_tree(t)) return; /* returns first entry >= where */ l = rw_aux_tree_bsearch(b, t, where); if (!l) /* never delete first entry */ l++; else if (l < t->size && where < t->end_offset && rw_aux_tree(b, t)[l].offset == where) rw_aux_tree_set(b, t, l++, _where); /* l now > where */ for (j = l; j < t->size && rw_aux_tree(b, t)[j].offset < where + clobber_u64s; j++) ; if (j < t->size && rw_aux_tree(b, t)[j].offset + shift == rw_aux_tree(b, t)[l - 1].offset) j++; memmove(&rw_aux_tree(b, t)[l], &rw_aux_tree(b, t)[j], (void *) &rw_aux_tree(b, t)[t->size] - (void *) &rw_aux_tree(b, t)[j]); t->size -= j - l; for (j = l; j < t->size; j++) rw_aux_tree(b, t)[j].offset += shift; EBUG_ON(l < t->size && rw_aux_tree(b, t)[l].offset == rw_aux_tree(b, t)[l - 1].offset); if (t->size < bset_rw_tree_capacity(b, t) && (l < t->size ? rw_aux_tree(b, t)[l].offset : t->end_offset) - rw_aux_tree(b, t)[l - 1].offset > L1_CACHE_BYTES / sizeof(u64)) { struct bkey_packed *start = rw_aux_to_bkey(b, t, l - 1); struct bkey_packed *end = l < t->size ? rw_aux_to_bkey(b, t, l) : btree_bkey_last(b, t); struct bkey_packed *k = start; while (1) { k = bkey_p_next(k); if (k == end) break; if ((void *) k - (void *) start >= L1_CACHE_BYTES) { memmove(&rw_aux_tree(b, t)[l + 1], &rw_aux_tree(b, t)[l], (void *) &rw_aux_tree(b, t)[t->size] - (void *) &rw_aux_tree(b, t)[l]); t->size++; rw_aux_tree_set(b, t, l, k); break; } } } bch2_bset_verify_rw_aux_tree(b, t); bset_aux_tree_verify(b); } void bch2_bset_insert(struct btree *b, struct btree_node_iter *iter, struct bkey_packed *where, struct bkey_i *insert, unsigned clobber_u64s) { struct bkey_format *f = &b->format; struct bset_tree *t = bset_tree_last(b); struct bkey_packed packed, *src = bkey_to_packed(insert); bch2_bset_verify_rw_aux_tree(b, t); bch2_verify_insert_pos(b, where, bkey_to_packed(insert), clobber_u64s); if (bch2_bkey_pack_key(&packed, &insert->k, f)) src = &packed; if (!bkey_deleted(&insert->k)) btree_keys_account_key_add(&b->nr, t - b->set, src); if (src->u64s != clobber_u64s) { u64 *src_p = (u64 *) where->_data + clobber_u64s; u64 *dst_p = (u64 *) where->_data + src->u64s; EBUG_ON((int) le16_to_cpu(bset(b, t)->u64s) < (int) clobber_u64s - src->u64s); memmove_u64s(dst_p, src_p, btree_bkey_last(b, t)->_data - src_p); le16_add_cpu(&bset(b, t)->u64s, src->u64s - clobber_u64s); set_btree_bset_end(b, t); } memcpy_u64s_small(where, src, bkeyp_key_u64s(f, src)); memcpy_u64s(bkeyp_val(f, where), &insert->v, bkeyp_val_u64s(f, src)); if (src->u64s != clobber_u64s) bch2_bset_fix_lookup_table(b, t, where, clobber_u64s, src->u64s); bch2_verify_btree_nr_keys(b); } void bch2_bset_delete(struct btree *b, struct bkey_packed *where, unsigned clobber_u64s) { struct bset_tree *t = bset_tree_last(b); u64 *src_p = (u64 *) where->_data + clobber_u64s; u64 *dst_p = where->_data; bch2_bset_verify_rw_aux_tree(b, t); EBUG_ON(le16_to_cpu(bset(b, t)->u64s) < clobber_u64s); memmove_u64s_down(dst_p, src_p, btree_bkey_last(b, t)->_data - src_p); le16_add_cpu(&bset(b, t)->u64s, -clobber_u64s); set_btree_bset_end(b, t); bch2_bset_fix_lookup_table(b, t, where, clobber_u64s, 0); } /* Lookup */ __flatten static struct bkey_packed *bset_search_write_set(const struct btree *b, struct bset_tree *t, struct bpos *search) { unsigned l = 0, r = t->size; while (l + 1 != r) { unsigned m = (l + r) >> 1; if (bpos_lt(rw_aux_tree(b, t)[m].k, *search)) l = m; else r = m; } return rw_aux_to_bkey(b, t, l); } static inline void prefetch_four_cachelines(void *p) { #ifdef CONFIG_X86_64 asm("prefetcht0 (-127 + 64 * 0)(%0);" "prefetcht0 (-127 + 64 * 1)(%0);" "prefetcht0 (-127 + 64 * 2)(%0);" "prefetcht0 (-127 + 64 * 3)(%0);" : : "r" (p + 127)); #else prefetch(p + L1_CACHE_BYTES * 0); prefetch(p + L1_CACHE_BYTES * 1); prefetch(p + L1_CACHE_BYTES * 2); prefetch(p + L1_CACHE_BYTES * 3); #endif } static inline bool bkey_mantissa_bits_dropped(const struct btree *b, const struct bkey_float *f, unsigned idx) { #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ unsigned key_bits_start = b->format.key_u64s * 64 - b->nr_key_bits; return f->exponent > key_bits_start; #else unsigned key_bits_end = high_bit_offset + b->nr_key_bits; return f->exponent + BKEY_MANTISSA_BITS < key_bits_end; #endif } __flatten static struct bkey_packed *bset_search_tree(const struct btree *b, const struct bset_tree *t, const struct bpos *search, const struct bkey_packed *packed_search) { struct ro_aux_tree *base = ro_aux_tree_base(b, t); struct bkey_float *f; struct bkey_packed *k; unsigned inorder, n = 1, l, r; int cmp; do { if (likely(n << 4 < t->size)) prefetch(&base->f[n << 4]); f = &base->f[n]; if (unlikely(f->exponent >= BFLOAT_FAILED)) goto slowpath; l = f->mantissa; r = bkey_mantissa(packed_search, f, n); if (unlikely(l == r) && bkey_mantissa_bits_dropped(b, f, n)) goto slowpath; n = n * 2 + (l < r); continue; slowpath: k = tree_to_bkey(b, t, n); cmp = bkey_cmp_p_or_unp(b, k, packed_search, search); if (!cmp) return k; n = n * 2 + (cmp < 0); } while (n < t->size); inorder = __eytzinger1_to_inorder(n >> 1, t->size - 1, t->extra); /* * n would have been the node we recursed to - the low bit tells us if * we recursed left or recursed right. */ if (likely(!(n & 1))) { --inorder; if (unlikely(!inorder)) return btree_bkey_first(b, t); f = &base->f[eytzinger1_prev(n >> 1, t->size - 1)]; } return cacheline_to_bkey(b, t, inorder, f->key_offset); } static __always_inline __flatten struct bkey_packed *__bch2_bset_search(struct btree *b, struct bset_tree *t, struct bpos *search, const struct bkey_packed *lossy_packed_search) { /* * First, we search for a cacheline, then lastly we do a linear search * within that cacheline. * * To search for the cacheline, there's three different possibilities: * * The set is too small to have a search tree, so we just do a linear * search over the whole set. * * The set is the one we're currently inserting into; keeping a full * auxiliary search tree up to date would be too expensive, so we * use a much simpler lookup table to do a binary search - * bset_search_write_set(). * * Or we use the auxiliary search tree we constructed earlier - * bset_search_tree() */ switch (bset_aux_tree_type(t)) { case BSET_NO_AUX_TREE: return btree_bkey_first(b, t); case BSET_RW_AUX_TREE: return bset_search_write_set(b, t, search); case BSET_RO_AUX_TREE: return bset_search_tree(b, t, search, lossy_packed_search); default: BUG(); } } static __always_inline __flatten struct bkey_packed *bch2_bset_search_linear(struct btree *b, struct bset_tree *t, struct bpos *search, struct bkey_packed *packed_search, const struct bkey_packed *lossy_packed_search, struct bkey_packed *m) { if (lossy_packed_search) while (m != btree_bkey_last(b, t) && bkey_iter_cmp_p_or_unp(b, m, lossy_packed_search, search) < 0) m = bkey_p_next(m); if (!packed_search) while (m != btree_bkey_last(b, t) && bkey_iter_pos_cmp(b, m, search) < 0) m = bkey_p_next(m); if (bch2_expensive_debug_checks) { struct bkey_packed *prev = bch2_bkey_prev_all(b, t, m); BUG_ON(prev && bkey_iter_cmp_p_or_unp(b, prev, packed_search, search) >= 0); } return m; } /* Btree node iterator */ static inline void __bch2_btree_node_iter_push(struct btree_node_iter *iter, struct btree *b, const struct bkey_packed *k, const struct bkey_packed *end) { if (k != end) { struct btree_node_iter_set *pos; btree_node_iter_for_each(iter, pos) ; BUG_ON(pos >= iter->data + ARRAY_SIZE(iter->data)); *pos = (struct btree_node_iter_set) { __btree_node_key_to_offset(b, k), __btree_node_key_to_offset(b, end) }; } } void bch2_btree_node_iter_push(struct btree_node_iter *iter, struct btree *b, const struct bkey_packed *k, const struct bkey_packed *end) { __bch2_btree_node_iter_push(iter, b, k, end); bch2_btree_node_iter_sort(iter, b); } noinline __flatten __cold static void btree_node_iter_init_pack_failed(struct btree_node_iter *iter, struct btree *b, struct bpos *search) { struct bkey_packed *k; trace_bkey_pack_pos_fail(search); bch2_btree_node_iter_init_from_start(iter, b); while ((k = bch2_btree_node_iter_peek(iter, b)) && bkey_iter_pos_cmp(b, k, search) < 0) bch2_btree_node_iter_advance(iter, b); } /** * bch2_btree_node_iter_init - initialize a btree node iterator, starting from a * given position * * @iter: iterator to initialize * @b: btree node to search * @search: search key * * Main entry point to the lookup code for individual btree nodes: * * NOTE: * * When you don't filter out deleted keys, btree nodes _do_ contain duplicate * keys. This doesn't matter for most code, but it does matter for lookups. * * Some adjacent keys with a string of equal keys: * i j k k k k l m * * If you search for k, the lookup code isn't guaranteed to return you any * specific k. The lookup code is conceptually doing a binary search and * iterating backwards is very expensive so if the pivot happens to land at the * last k that's what you'll get. * * This works out ok, but it's something to be aware of: * * - For non extents, we guarantee that the live key comes last - see * btree_node_iter_cmp(), keys_out_of_order(). So the duplicates you don't * see will only be deleted keys you don't care about. * * - For extents, deleted keys sort last (see the comment at the top of this * file). But when you're searching for extents, you actually want the first * key strictly greater than your search key - an extent that compares equal * to the search key is going to have 0 sectors after the search key. * * But this does mean that we can't just search for * bpos_successor(start_of_range) to get the first extent that overlaps with * the range we want - if we're unlucky and there's an extent that ends * exactly where we searched, then there could be a deleted key at the same * position and we'd get that when we search instead of the preceding extent * we needed. * * So we've got to search for start_of_range, then after the lookup iterate * past any extents that compare equal to the position we searched for. */ __flatten void bch2_btree_node_iter_init(struct btree_node_iter *iter, struct btree *b, struct bpos *search) { struct bkey_packed p, *packed_search = NULL; struct btree_node_iter_set *pos = iter->data; struct bkey_packed *k[MAX_BSETS]; unsigned i; EBUG_ON(bpos_lt(*search, b->data->min_key)); EBUG_ON(bpos_gt(*search, b->data->max_key)); bset_aux_tree_verify(b); memset(iter, 0, sizeof(*iter)); switch (bch2_bkey_pack_pos_lossy(&p, *search, b)) { case BKEY_PACK_POS_EXACT: packed_search = &p; break; case BKEY_PACK_POS_SMALLER: packed_search = NULL; break; case BKEY_PACK_POS_FAIL: btree_node_iter_init_pack_failed(iter, b, search); return; } for (i = 0; i < b->nsets; i++) { k[i] = __bch2_bset_search(b, b->set + i, search, &p); prefetch_four_cachelines(k[i]); } for (i = 0; i < b->nsets; i++) { struct bset_tree *t = b->set + i; struct bkey_packed *end = btree_bkey_last(b, t); k[i] = bch2_bset_search_linear(b, t, search, packed_search, &p, k[i]); if (k[i] != end) *pos++ = (struct btree_node_iter_set) { __btree_node_key_to_offset(b, k[i]), __btree_node_key_to_offset(b, end) }; } bch2_btree_node_iter_sort(iter, b); } void bch2_btree_node_iter_init_from_start(struct btree_node_iter *iter, struct btree *b) { struct bset_tree *t; memset(iter, 0, sizeof(*iter)); for_each_bset(b, t) __bch2_btree_node_iter_push(iter, b, btree_bkey_first(b, t), btree_bkey_last(b, t)); bch2_btree_node_iter_sort(iter, b); } struct bkey_packed *bch2_btree_node_iter_bset_pos(struct btree_node_iter *iter, struct btree *b, struct bset_tree *t) { struct btree_node_iter_set *set; btree_node_iter_for_each(iter, set) if (set->end == t->end_offset) return __btree_node_offset_to_key(b, set->k); return btree_bkey_last(b, t); } static inline bool btree_node_iter_sort_two(struct btree_node_iter *iter, struct btree *b, unsigned first) { bool ret; if ((ret = (btree_node_iter_cmp(b, iter->data[first], iter->data[first + 1]) > 0))) swap(iter->data[first], iter->data[first + 1]); return ret; } void bch2_btree_node_iter_sort(struct btree_node_iter *iter, struct btree *b) { /* unrolled bubble sort: */ if (!__btree_node_iter_set_end(iter, 2)) { btree_node_iter_sort_two(iter, b, 0); btree_node_iter_sort_two(iter, b, 1); } if (!__btree_node_iter_set_end(iter, 1)) btree_node_iter_sort_two(iter, b, 0); } void bch2_btree_node_iter_set_drop(struct btree_node_iter *iter, struct btree_node_iter_set *set) { struct btree_node_iter_set *last = iter->data + ARRAY_SIZE(iter->data) - 1; memmove(&set[0], &set[1], (void *) last - (void *) set); *last = (struct btree_node_iter_set) { 0, 0 }; } static inline void __bch2_btree_node_iter_advance(struct btree_node_iter *iter, struct btree *b) { iter->data->k += __bch2_btree_node_iter_peek_all(iter, b)->u64s; EBUG_ON(iter->data->k > iter->data->end); if (unlikely(__btree_node_iter_set_end(iter, 0))) { /* avoid an expensive memmove call: */ iter->data[0] = iter->data[1]; iter->data[1] = iter->data[2]; iter->data[2] = (struct btree_node_iter_set) { 0, 0 }; return; } if (__btree_node_iter_set_end(iter, 1)) return; if (!btree_node_iter_sort_two(iter, b, 0)) return; if (__btree_node_iter_set_end(iter, 2)) return; btree_node_iter_sort_two(iter, b, 1); } void bch2_btree_node_iter_advance(struct btree_node_iter *iter, struct btree *b) { if (bch2_expensive_debug_checks) { bch2_btree_node_iter_verify(iter, b); bch2_btree_node_iter_next_check(iter, b); } __bch2_btree_node_iter_advance(iter, b); } /* * Expensive: */ struct bkey_packed *bch2_btree_node_iter_prev_all(struct btree_node_iter *iter, struct btree *b) { struct bkey_packed *k, *prev = NULL; struct btree_node_iter_set *set; struct bset_tree *t; unsigned end = 0; if (bch2_expensive_debug_checks) bch2_btree_node_iter_verify(iter, b); for_each_bset(b, t) { k = bch2_bkey_prev_all(b, t, bch2_btree_node_iter_bset_pos(iter, b, t)); if (k && (!prev || bkey_iter_cmp(b, k, prev) > 0)) { prev = k; end = t->end_offset; } } if (!prev) return NULL; /* * We're manually memmoving instead of just calling sort() to ensure the * prev we picked ends up in slot 0 - sort won't necessarily put it * there because of duplicate deleted keys: */ btree_node_iter_for_each(iter, set) if (set->end == end) goto found; BUG_ON(set != &iter->data[__btree_node_iter_used(iter)]); found: BUG_ON(set >= iter->data + ARRAY_SIZE(iter->data)); memmove(&iter->data[1], &iter->data[0], (void *) set - (void *) &iter->data[0]); iter->data[0].k = __btree_node_key_to_offset(b, prev); iter->data[0].end = end; if (bch2_expensive_debug_checks) bch2_btree_node_iter_verify(iter, b); return prev; } struct bkey_packed *bch2_btree_node_iter_prev(struct btree_node_iter *iter, struct btree *b) { struct bkey_packed *prev; do { prev = bch2_btree_node_iter_prev_all(iter, b); } while (prev && bkey_deleted(prev)); return prev; } struct bkey_s_c bch2_btree_node_iter_peek_unpack(struct btree_node_iter *iter, struct btree *b, struct bkey *u) { struct bkey_packed *k = bch2_btree_node_iter_peek(iter, b); return k ? bkey_disassemble(b, k, u) : bkey_s_c_null; } /* Mergesort */ void bch2_btree_keys_stats(const struct btree *b, struct bset_stats *stats) { const struct bset_tree *t; for_each_bset(b, t) { enum bset_aux_tree_type type = bset_aux_tree_type(t); size_t j; stats->sets[type].nr++; stats->sets[type].bytes += le16_to_cpu(bset(b, t)->u64s) * sizeof(u64); if (bset_has_ro_aux_tree(t)) { stats->floats += t->size - 1; for (j = 1; j < t->size; j++) stats->failed += bkey_float(b, t, j)->exponent == BFLOAT_FAILED; } } } void bch2_bfloat_to_text(struct printbuf *out, struct btree *b, struct bkey_packed *k) { struct bset_tree *t = bch2_bkey_to_bset(b, k); struct bkey uk; unsigned j, inorder; if (!bset_has_ro_aux_tree(t)) return; inorder = bkey_to_cacheline(b, t, k); if (!inorder || inorder >= t->size) return; j = __inorder_to_eytzinger1(inorder, t->size - 1, t->extra); if (k != tree_to_bkey(b, t, j)) return; switch (bkey_float(b, t, j)->exponent) { case BFLOAT_FAILED: uk = bkey_unpack_key(b, k); prt_printf(out, " failed unpacked at depth %u\n" "\t", ilog2(j)); bch2_bpos_to_text(out, uk.p); prt_printf(out, "\n"); break; } }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1