Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
OGAWA Hirofumi | 3903 | 79.96% | 31 | 38.75% |
Wentao Wang | 368 | 7.54% | 1 | 1.25% |
Linus Torvalds (pre-git) | 294 | 6.02% | 19 | 23.75% |
David Woodhouse | 69 | 1.41% | 1 | 1.25% |
Al Viro | 47 | 0.96% | 1 | 1.25% |
Carmeli Tamir | 43 | 0.88% | 1 | 1.25% |
Artem B. Bityutskiy | 42 | 0.86% | 3 | 3.75% |
Linus Torvalds | 30 | 0.61% | 4 | 5.00% |
Christoph Hellwig | 27 | 0.55% | 5 | 6.25% |
Julia Lawall | 14 | 0.29% | 1 | 1.25% |
Brian Gerst | 12 | 0.25% | 1 | 1.25% |
Alexey Fisher | 8 | 0.16% | 1 | 1.25% |
Andrew Morton | 7 | 0.14% | 2 | 2.50% |
Khazhismel Kumykov | 3 | 0.06% | 1 | 1.25% |
David Howells | 3 | 0.06% | 1 | 1.25% |
Arjan van de Ven | 3 | 0.06% | 1 | 1.25% |
Thomas Gleixner | 2 | 0.04% | 1 | 1.25% |
Denis Karpov | 2 | 0.04% | 1 | 1.25% |
Tejun Heo | 1 | 0.02% | 1 | 1.25% |
Dave Hansen | 1 | 0.02% | 1 | 1.25% |
dingsenjie | 1 | 0.02% | 1 | 1.25% |
Harvey Harrison | 1 | 0.02% | 1 | 1.25% |
Total | 4881 | 80 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2004, OGAWA Hirofumi */ #include <linux/blkdev.h> #include <linux/sched/signal.h> #include <linux/backing-dev-defs.h> #include "fat.h" struct fatent_operations { void (*ent_blocknr)(struct super_block *, int, int *, sector_t *); void (*ent_set_ptr)(struct fat_entry *, int); int (*ent_bread)(struct super_block *, struct fat_entry *, int, sector_t); int (*ent_get)(struct fat_entry *); void (*ent_put)(struct fat_entry *, int); int (*ent_next)(struct fat_entry *); }; static DEFINE_SPINLOCK(fat12_entry_lock); static void fat12_ent_blocknr(struct super_block *sb, int entry, int *offset, sector_t *blocknr) { struct msdos_sb_info *sbi = MSDOS_SB(sb); int bytes = entry + (entry >> 1); WARN_ON(!fat_valid_entry(sbi, entry)); *offset = bytes & (sb->s_blocksize - 1); *blocknr = sbi->fat_start + (bytes >> sb->s_blocksize_bits); } static void fat_ent_blocknr(struct super_block *sb, int entry, int *offset, sector_t *blocknr) { struct msdos_sb_info *sbi = MSDOS_SB(sb); int bytes = (entry << sbi->fatent_shift); WARN_ON(!fat_valid_entry(sbi, entry)); *offset = bytes & (sb->s_blocksize - 1); *blocknr = sbi->fat_start + (bytes >> sb->s_blocksize_bits); } static void fat12_ent_set_ptr(struct fat_entry *fatent, int offset) { struct buffer_head **bhs = fatent->bhs; if (fatent->nr_bhs == 1) { WARN_ON(offset >= (bhs[0]->b_size - 1)); fatent->u.ent12_p[0] = bhs[0]->b_data + offset; fatent->u.ent12_p[1] = bhs[0]->b_data + (offset + 1); } else { WARN_ON(offset != (bhs[0]->b_size - 1)); fatent->u.ent12_p[0] = bhs[0]->b_data + offset; fatent->u.ent12_p[1] = bhs[1]->b_data; } } static void fat16_ent_set_ptr(struct fat_entry *fatent, int offset) { WARN_ON(offset & (2 - 1)); fatent->u.ent16_p = (__le16 *)(fatent->bhs[0]->b_data + offset); } static void fat32_ent_set_ptr(struct fat_entry *fatent, int offset) { WARN_ON(offset & (4 - 1)); fatent->u.ent32_p = (__le32 *)(fatent->bhs[0]->b_data + offset); } static int fat12_ent_bread(struct super_block *sb, struct fat_entry *fatent, int offset, sector_t blocknr) { struct buffer_head **bhs = fatent->bhs; WARN_ON(blocknr < MSDOS_SB(sb)->fat_start); fatent->fat_inode = MSDOS_SB(sb)->fat_inode; bhs[0] = sb_bread(sb, blocknr); if (!bhs[0]) goto err; if ((offset + 1) < sb->s_blocksize) fatent->nr_bhs = 1; else { /* This entry is block boundary, it needs the next block */ blocknr++; bhs[1] = sb_bread(sb, blocknr); if (!bhs[1]) goto err_brelse; fatent->nr_bhs = 2; } fat12_ent_set_ptr(fatent, offset); return 0; err_brelse: brelse(bhs[0]); err: fat_msg_ratelimit(sb, KERN_ERR, "FAT read failed (blocknr %llu)", (llu)blocknr); return -EIO; } static int fat_ent_bread(struct super_block *sb, struct fat_entry *fatent, int offset, sector_t blocknr) { const struct fatent_operations *ops = MSDOS_SB(sb)->fatent_ops; WARN_ON(blocknr < MSDOS_SB(sb)->fat_start); fatent->fat_inode = MSDOS_SB(sb)->fat_inode; fatent->bhs[0] = sb_bread(sb, blocknr); if (!fatent->bhs[0]) { fat_msg_ratelimit(sb, KERN_ERR, "FAT read failed (blocknr %llu)", (llu)blocknr); return -EIO; } fatent->nr_bhs = 1; ops->ent_set_ptr(fatent, offset); return 0; } static int fat12_ent_get(struct fat_entry *fatent) { u8 **ent12_p = fatent->u.ent12_p; int next; spin_lock(&fat12_entry_lock); if (fatent->entry & 1) next = (*ent12_p[0] >> 4) | (*ent12_p[1] << 4); else next = (*ent12_p[1] << 8) | *ent12_p[0]; spin_unlock(&fat12_entry_lock); next &= 0x0fff; if (next >= BAD_FAT12) next = FAT_ENT_EOF; return next; } static int fat16_ent_get(struct fat_entry *fatent) { int next = le16_to_cpu(*fatent->u.ent16_p); WARN_ON((unsigned long)fatent->u.ent16_p & (2 - 1)); if (next >= BAD_FAT16) next = FAT_ENT_EOF; return next; } static int fat32_ent_get(struct fat_entry *fatent) { int next = le32_to_cpu(*fatent->u.ent32_p) & 0x0fffffff; WARN_ON((unsigned long)fatent->u.ent32_p & (4 - 1)); if (next >= BAD_FAT32) next = FAT_ENT_EOF; return next; } static void fat12_ent_put(struct fat_entry *fatent, int new) { u8 **ent12_p = fatent->u.ent12_p; if (new == FAT_ENT_EOF) new = EOF_FAT12; spin_lock(&fat12_entry_lock); if (fatent->entry & 1) { *ent12_p[0] = (new << 4) | (*ent12_p[0] & 0x0f); *ent12_p[1] = new >> 4; } else { *ent12_p[0] = new & 0xff; *ent12_p[1] = (*ent12_p[1] & 0xf0) | (new >> 8); } spin_unlock(&fat12_entry_lock); mark_buffer_dirty_inode(fatent->bhs[0], fatent->fat_inode); if (fatent->nr_bhs == 2) mark_buffer_dirty_inode(fatent->bhs[1], fatent->fat_inode); } static void fat16_ent_put(struct fat_entry *fatent, int new) { if (new == FAT_ENT_EOF) new = EOF_FAT16; *fatent->u.ent16_p = cpu_to_le16(new); mark_buffer_dirty_inode(fatent->bhs[0], fatent->fat_inode); } static void fat32_ent_put(struct fat_entry *fatent, int new) { WARN_ON(new & 0xf0000000); new |= le32_to_cpu(*fatent->u.ent32_p) & ~0x0fffffff; *fatent->u.ent32_p = cpu_to_le32(new); mark_buffer_dirty_inode(fatent->bhs[0], fatent->fat_inode); } static int fat12_ent_next(struct fat_entry *fatent) { u8 **ent12_p = fatent->u.ent12_p; struct buffer_head **bhs = fatent->bhs; u8 *nextp = ent12_p[1] + 1 + (fatent->entry & 1); fatent->entry++; if (fatent->nr_bhs == 1) { WARN_ON(ent12_p[0] > (u8 *)(bhs[0]->b_data + (bhs[0]->b_size - 2))); WARN_ON(ent12_p[1] > (u8 *)(bhs[0]->b_data + (bhs[0]->b_size - 1))); if (nextp < (u8 *)(bhs[0]->b_data + (bhs[0]->b_size - 1))) { ent12_p[0] = nextp - 1; ent12_p[1] = nextp; return 1; } } else { WARN_ON(ent12_p[0] != (u8 *)(bhs[0]->b_data + (bhs[0]->b_size - 1))); WARN_ON(ent12_p[1] != (u8 *)bhs[1]->b_data); ent12_p[0] = nextp - 1; ent12_p[1] = nextp; brelse(bhs[0]); bhs[0] = bhs[1]; fatent->nr_bhs = 1; return 1; } ent12_p[0] = NULL; ent12_p[1] = NULL; return 0; } static int fat16_ent_next(struct fat_entry *fatent) { const struct buffer_head *bh = fatent->bhs[0]; fatent->entry++; if (fatent->u.ent16_p < (__le16 *)(bh->b_data + (bh->b_size - 2))) { fatent->u.ent16_p++; return 1; } fatent->u.ent16_p = NULL; return 0; } static int fat32_ent_next(struct fat_entry *fatent) { const struct buffer_head *bh = fatent->bhs[0]; fatent->entry++; if (fatent->u.ent32_p < (__le32 *)(bh->b_data + (bh->b_size - 4))) { fatent->u.ent32_p++; return 1; } fatent->u.ent32_p = NULL; return 0; } static const struct fatent_operations fat12_ops = { .ent_blocknr = fat12_ent_blocknr, .ent_set_ptr = fat12_ent_set_ptr, .ent_bread = fat12_ent_bread, .ent_get = fat12_ent_get, .ent_put = fat12_ent_put, .ent_next = fat12_ent_next, }; static const struct fatent_operations fat16_ops = { .ent_blocknr = fat_ent_blocknr, .ent_set_ptr = fat16_ent_set_ptr, .ent_bread = fat_ent_bread, .ent_get = fat16_ent_get, .ent_put = fat16_ent_put, .ent_next = fat16_ent_next, }; static const struct fatent_operations fat32_ops = { .ent_blocknr = fat_ent_blocknr, .ent_set_ptr = fat32_ent_set_ptr, .ent_bread = fat_ent_bread, .ent_get = fat32_ent_get, .ent_put = fat32_ent_put, .ent_next = fat32_ent_next, }; static inline void lock_fat(struct msdos_sb_info *sbi) { mutex_lock(&sbi->fat_lock); } static inline void unlock_fat(struct msdos_sb_info *sbi) { mutex_unlock(&sbi->fat_lock); } void fat_ent_access_init(struct super_block *sb) { struct msdos_sb_info *sbi = MSDOS_SB(sb); mutex_init(&sbi->fat_lock); if (is_fat32(sbi)) { sbi->fatent_shift = 2; sbi->fatent_ops = &fat32_ops; } else if (is_fat16(sbi)) { sbi->fatent_shift = 1; sbi->fatent_ops = &fat16_ops; } else if (is_fat12(sbi)) { sbi->fatent_shift = -1; sbi->fatent_ops = &fat12_ops; } else { fat_fs_error(sb, "invalid FAT variant, %u bits", sbi->fat_bits); } } static void mark_fsinfo_dirty(struct super_block *sb) { struct msdos_sb_info *sbi = MSDOS_SB(sb); if (sb_rdonly(sb) || !is_fat32(sbi)) return; __mark_inode_dirty(sbi->fsinfo_inode, I_DIRTY_SYNC); } static inline int fat_ent_update_ptr(struct super_block *sb, struct fat_entry *fatent, int offset, sector_t blocknr) { struct msdos_sb_info *sbi = MSDOS_SB(sb); const struct fatent_operations *ops = sbi->fatent_ops; struct buffer_head **bhs = fatent->bhs; /* Is this fatent's blocks including this entry? */ if (!fatent->nr_bhs || bhs[0]->b_blocknr != blocknr) return 0; if (is_fat12(sbi)) { if ((offset + 1) < sb->s_blocksize) { /* This entry is on bhs[0]. */ if (fatent->nr_bhs == 2) { brelse(bhs[1]); fatent->nr_bhs = 1; } } else { /* This entry needs the next block. */ if (fatent->nr_bhs != 2) return 0; if (bhs[1]->b_blocknr != (blocknr + 1)) return 0; } } ops->ent_set_ptr(fatent, offset); return 1; } int fat_ent_read(struct inode *inode, struct fat_entry *fatent, int entry) { struct super_block *sb = inode->i_sb; struct msdos_sb_info *sbi = MSDOS_SB(inode->i_sb); const struct fatent_operations *ops = sbi->fatent_ops; int err, offset; sector_t blocknr; if (!fat_valid_entry(sbi, entry)) { fatent_brelse(fatent); fat_fs_error(sb, "invalid access to FAT (entry 0x%08x)", entry); return -EIO; } fatent_set_entry(fatent, entry); ops->ent_blocknr(sb, entry, &offset, &blocknr); if (!fat_ent_update_ptr(sb, fatent, offset, blocknr)) { fatent_brelse(fatent); err = ops->ent_bread(sb, fatent, offset, blocknr); if (err) return err; } return ops->ent_get(fatent); } /* FIXME: We can write the blocks as more big chunk. */ static int fat_mirror_bhs(struct super_block *sb, struct buffer_head **bhs, int nr_bhs) { struct msdos_sb_info *sbi = MSDOS_SB(sb); struct buffer_head *c_bh; int err, n, copy; err = 0; for (copy = 1; copy < sbi->fats; copy++) { sector_t backup_fat = sbi->fat_length * copy; for (n = 0; n < nr_bhs; n++) { c_bh = sb_getblk(sb, backup_fat + bhs[n]->b_blocknr); if (!c_bh) { err = -ENOMEM; goto error; } /* Avoid race with userspace read via bdev */ lock_buffer(c_bh); memcpy(c_bh->b_data, bhs[n]->b_data, sb->s_blocksize); set_buffer_uptodate(c_bh); unlock_buffer(c_bh); mark_buffer_dirty_inode(c_bh, sbi->fat_inode); if (sb->s_flags & SB_SYNCHRONOUS) err = sync_dirty_buffer(c_bh); brelse(c_bh); if (err) goto error; } } error: return err; } int fat_ent_write(struct inode *inode, struct fat_entry *fatent, int new, int wait) { struct super_block *sb = inode->i_sb; const struct fatent_operations *ops = MSDOS_SB(sb)->fatent_ops; int err; ops->ent_put(fatent, new); if (wait) { err = fat_sync_bhs(fatent->bhs, fatent->nr_bhs); if (err) return err; } return fat_mirror_bhs(sb, fatent->bhs, fatent->nr_bhs); } static inline int fat_ent_next(struct msdos_sb_info *sbi, struct fat_entry *fatent) { if (sbi->fatent_ops->ent_next(fatent)) { if (fatent->entry < sbi->max_cluster) return 1; } return 0; } static inline int fat_ent_read_block(struct super_block *sb, struct fat_entry *fatent) { const struct fatent_operations *ops = MSDOS_SB(sb)->fatent_ops; sector_t blocknr; int offset; fatent_brelse(fatent); ops->ent_blocknr(sb, fatent->entry, &offset, &blocknr); return ops->ent_bread(sb, fatent, offset, blocknr); } static void fat_collect_bhs(struct buffer_head **bhs, int *nr_bhs, struct fat_entry *fatent) { int n, i; for (n = 0; n < fatent->nr_bhs; n++) { for (i = 0; i < *nr_bhs; i++) { if (fatent->bhs[n] == bhs[i]) break; } if (i == *nr_bhs) { get_bh(fatent->bhs[n]); bhs[i] = fatent->bhs[n]; (*nr_bhs)++; } } } int fat_alloc_clusters(struct inode *inode, int *cluster, int nr_cluster) { struct super_block *sb = inode->i_sb; struct msdos_sb_info *sbi = MSDOS_SB(sb); const struct fatent_operations *ops = sbi->fatent_ops; struct fat_entry fatent, prev_ent; struct buffer_head *bhs[MAX_BUF_PER_PAGE]; int i, count, err, nr_bhs, idx_clus; BUG_ON(nr_cluster > (MAX_BUF_PER_PAGE / 2)); /* fixed limit */ lock_fat(sbi); if (sbi->free_clusters != -1 && sbi->free_clus_valid && sbi->free_clusters < nr_cluster) { unlock_fat(sbi); return -ENOSPC; } err = nr_bhs = idx_clus = 0; count = FAT_START_ENT; fatent_init(&prev_ent); fatent_init(&fatent); fatent_set_entry(&fatent, sbi->prev_free + 1); while (count < sbi->max_cluster) { if (fatent.entry >= sbi->max_cluster) fatent.entry = FAT_START_ENT; fatent_set_entry(&fatent, fatent.entry); err = fat_ent_read_block(sb, &fatent); if (err) goto out; /* Find the free entries in a block */ do { if (ops->ent_get(&fatent) == FAT_ENT_FREE) { int entry = fatent.entry; /* make the cluster chain */ ops->ent_put(&fatent, FAT_ENT_EOF); if (prev_ent.nr_bhs) ops->ent_put(&prev_ent, entry); fat_collect_bhs(bhs, &nr_bhs, &fatent); sbi->prev_free = entry; if (sbi->free_clusters != -1) sbi->free_clusters--; cluster[idx_clus] = entry; idx_clus++; if (idx_clus == nr_cluster) goto out; /* * fat_collect_bhs() gets ref-count of bhs, * so we can still use the prev_ent. */ prev_ent = fatent; } count++; if (count == sbi->max_cluster) break; } while (fat_ent_next(sbi, &fatent)); } /* Couldn't allocate the free entries */ sbi->free_clusters = 0; sbi->free_clus_valid = 1; err = -ENOSPC; out: unlock_fat(sbi); mark_fsinfo_dirty(sb); fatent_brelse(&fatent); if (!err) { if (inode_needs_sync(inode)) err = fat_sync_bhs(bhs, nr_bhs); if (!err) err = fat_mirror_bhs(sb, bhs, nr_bhs); } for (i = 0; i < nr_bhs; i++) brelse(bhs[i]); if (err && idx_clus) fat_free_clusters(inode, cluster[0]); return err; } int fat_free_clusters(struct inode *inode, int cluster) { struct super_block *sb = inode->i_sb; struct msdos_sb_info *sbi = MSDOS_SB(sb); const struct fatent_operations *ops = sbi->fatent_ops; struct fat_entry fatent; struct buffer_head *bhs[MAX_BUF_PER_PAGE]; int i, err, nr_bhs; int first_cl = cluster, dirty_fsinfo = 0; nr_bhs = 0; fatent_init(&fatent); lock_fat(sbi); do { cluster = fat_ent_read(inode, &fatent, cluster); if (cluster < 0) { err = cluster; goto error; } else if (cluster == FAT_ENT_FREE) { fat_fs_error(sb, "%s: deleting FAT entry beyond EOF", __func__); err = -EIO; goto error; } if (sbi->options.discard) { /* * Issue discard for the sectors we no longer * care about, batching contiguous clusters * into one request */ if (cluster != fatent.entry + 1) { int nr_clus = fatent.entry - first_cl + 1; sb_issue_discard(sb, fat_clus_to_blknr(sbi, first_cl), nr_clus * sbi->sec_per_clus, GFP_NOFS, 0); first_cl = cluster; } } ops->ent_put(&fatent, FAT_ENT_FREE); if (sbi->free_clusters != -1) { sbi->free_clusters++; dirty_fsinfo = 1; } if (nr_bhs + fatent.nr_bhs > MAX_BUF_PER_PAGE) { if (sb->s_flags & SB_SYNCHRONOUS) { err = fat_sync_bhs(bhs, nr_bhs); if (err) goto error; } err = fat_mirror_bhs(sb, bhs, nr_bhs); if (err) goto error; for (i = 0; i < nr_bhs; i++) brelse(bhs[i]); nr_bhs = 0; } fat_collect_bhs(bhs, &nr_bhs, &fatent); } while (cluster != FAT_ENT_EOF); if (sb->s_flags & SB_SYNCHRONOUS) { err = fat_sync_bhs(bhs, nr_bhs); if (err) goto error; } err = fat_mirror_bhs(sb, bhs, nr_bhs); error: fatent_brelse(&fatent); for (i = 0; i < nr_bhs; i++) brelse(bhs[i]); unlock_fat(sbi); if (dirty_fsinfo) mark_fsinfo_dirty(sb); return err; } EXPORT_SYMBOL_GPL(fat_free_clusters); struct fatent_ra { sector_t cur; sector_t limit; unsigned int ra_blocks; sector_t ra_advance; sector_t ra_next; sector_t ra_limit; }; static void fat_ra_init(struct super_block *sb, struct fatent_ra *ra, struct fat_entry *fatent, int ent_limit) { struct msdos_sb_info *sbi = MSDOS_SB(sb); const struct fatent_operations *ops = sbi->fatent_ops; sector_t blocknr, block_end; int offset; /* * This is the sequential read, so ra_pages * 2 (but try to * align the optimal hardware IO size). * [BTW, 128kb covers the whole sectors for FAT12 and FAT16] */ unsigned long ra_pages = sb->s_bdi->ra_pages; unsigned int reada_blocks; if (fatent->entry >= ent_limit) return; if (ra_pages > sb->s_bdi->io_pages) ra_pages = rounddown(ra_pages, sb->s_bdi->io_pages); reada_blocks = ra_pages << (PAGE_SHIFT - sb->s_blocksize_bits + 1); /* Initialize the range for sequential read */ ops->ent_blocknr(sb, fatent->entry, &offset, &blocknr); ops->ent_blocknr(sb, ent_limit - 1, &offset, &block_end); ra->cur = 0; ra->limit = (block_end + 1) - blocknr; /* Advancing the window at half size */ ra->ra_blocks = reada_blocks >> 1; ra->ra_advance = ra->cur; ra->ra_next = ra->cur; ra->ra_limit = ra->cur + min_t(sector_t, reada_blocks, ra->limit); } /* Assuming to be called before reading a new block (increments ->cur). */ static void fat_ent_reada(struct super_block *sb, struct fatent_ra *ra, struct fat_entry *fatent) { if (ra->ra_next >= ra->ra_limit) return; if (ra->cur >= ra->ra_advance) { struct msdos_sb_info *sbi = MSDOS_SB(sb); const struct fatent_operations *ops = sbi->fatent_ops; struct blk_plug plug; sector_t blocknr, diff; int offset; ops->ent_blocknr(sb, fatent->entry, &offset, &blocknr); diff = blocknr - ra->cur; blk_start_plug(&plug); /* * FIXME: we would want to directly use the bio with * pages to reduce the number of segments. */ for (; ra->ra_next < ra->ra_limit; ra->ra_next++) sb_breadahead(sb, ra->ra_next + diff); blk_finish_plug(&plug); /* Advance the readahead window */ ra->ra_advance += ra->ra_blocks; ra->ra_limit += min_t(sector_t, ra->ra_blocks, ra->limit - ra->ra_limit); } ra->cur++; } int fat_count_free_clusters(struct super_block *sb) { struct msdos_sb_info *sbi = MSDOS_SB(sb); const struct fatent_operations *ops = sbi->fatent_ops; struct fat_entry fatent; struct fatent_ra fatent_ra; int err = 0, free; lock_fat(sbi); if (sbi->free_clusters != -1 && sbi->free_clus_valid) goto out; free = 0; fatent_init(&fatent); fatent_set_entry(&fatent, FAT_START_ENT); fat_ra_init(sb, &fatent_ra, &fatent, sbi->max_cluster); while (fatent.entry < sbi->max_cluster) { /* readahead of fat blocks */ fat_ent_reada(sb, &fatent_ra, &fatent); err = fat_ent_read_block(sb, &fatent); if (err) goto out; do { if (ops->ent_get(&fatent) == FAT_ENT_FREE) free++; } while (fat_ent_next(sbi, &fatent)); cond_resched(); } sbi->free_clusters = free; sbi->free_clus_valid = 1; mark_fsinfo_dirty(sb); fatent_brelse(&fatent); out: unlock_fat(sbi); return err; } static int fat_trim_clusters(struct super_block *sb, u32 clus, u32 nr_clus) { struct msdos_sb_info *sbi = MSDOS_SB(sb); return sb_issue_discard(sb, fat_clus_to_blknr(sbi, clus), nr_clus * sbi->sec_per_clus, GFP_NOFS, 0); } int fat_trim_fs(struct inode *inode, struct fstrim_range *range) { struct super_block *sb = inode->i_sb; struct msdos_sb_info *sbi = MSDOS_SB(sb); const struct fatent_operations *ops = sbi->fatent_ops; struct fat_entry fatent; struct fatent_ra fatent_ra; u64 ent_start, ent_end, minlen, trimmed = 0; u32 free = 0; int err = 0; /* * FAT data is organized as clusters, trim at the granulary of cluster. * * fstrim_range is in byte, convert values to cluster index. * Treat sectors before data region as all used, not to trim them. */ ent_start = max_t(u64, range->start>>sbi->cluster_bits, FAT_START_ENT); ent_end = ent_start + (range->len >> sbi->cluster_bits) - 1; minlen = range->minlen >> sbi->cluster_bits; if (ent_start >= sbi->max_cluster || range->len < sbi->cluster_size) return -EINVAL; if (ent_end >= sbi->max_cluster) ent_end = sbi->max_cluster - 1; fatent_init(&fatent); lock_fat(sbi); fatent_set_entry(&fatent, ent_start); fat_ra_init(sb, &fatent_ra, &fatent, ent_end + 1); while (fatent.entry <= ent_end) { /* readahead of fat blocks */ fat_ent_reada(sb, &fatent_ra, &fatent); err = fat_ent_read_block(sb, &fatent); if (err) goto error; do { if (ops->ent_get(&fatent) == FAT_ENT_FREE) { free++; } else if (free) { if (free >= minlen) { u32 clus = fatent.entry - free; err = fat_trim_clusters(sb, clus, free); if (err && err != -EOPNOTSUPP) goto error; if (!err) trimmed += free; err = 0; } free = 0; } } while (fat_ent_next(sbi, &fatent) && fatent.entry <= ent_end); if (fatal_signal_pending(current)) { err = -ERESTARTSYS; goto error; } if (need_resched()) { fatent_brelse(&fatent); unlock_fat(sbi); cond_resched(); lock_fat(sbi); } } /* handle scenario when tail entries are all free */ if (free && free >= minlen) { u32 clus = fatent.entry - free; err = fat_trim_clusters(sb, clus, free); if (err && err != -EOPNOTSUPP) goto error; if (!err) trimmed += free; err = 0; } error: fatent_brelse(&fatent); unlock_fat(sbi); range->len = trimmed << sbi->cluster_bits; return err; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1