Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Colin Cross | 1527 | 49.58% | 6 | 9.52% |
Anton Vorontsov | 400 | 12.99% | 16 | 25.40% |
Greg Kroah-Hartman | 259 | 8.41% | 1 | 1.59% |
Kees Cook | 248 | 8.05% | 11 | 17.46% |
Mark Salyzyn | 173 | 5.62% | 1 | 1.59% |
Arve Hjönnevåg | 129 | 4.19% | 3 | 4.76% |
Rob Herring | 85 | 2.76% | 2 | 3.17% |
Joel A Fernandes | 72 | 2.34% | 3 | 4.76% |
Tony Lindgren | 48 | 1.56% | 1 | 1.59% |
Mukesh Ojha | 42 | 1.36% | 1 | 1.59% |
Peng Wang | 29 | 0.94% | 1 | 1.59% |
Fabian Frederick | 19 | 0.62% | 2 | 3.17% |
Bin Yang | 10 | 0.32% | 1 | 1.59% |
Jiasheng Jiang | 10 | 0.32% | 1 | 1.59% |
Enlin Mu | 7 | 0.23% | 1 | 1.59% |
Yuxiao Zhang | 5 | 0.16% | 1 | 1.59% |
Stephen Boyd | 3 | 0.10% | 1 | 1.59% |
Sebastian Andrzej Siewior | 2 | 0.06% | 1 | 1.59% |
Thomas Gleixner | 2 | 0.06% | 1 | 1.59% |
Vincent Whitchurch | 2 | 0.06% | 1 | 1.59% |
Andrew Bresticker | 2 | 0.06% | 1 | 1.59% |
Al Viro | 1 | 0.03% | 1 | 1.59% |
Gustavo A. R. Silva | 1 | 0.03% | 1 | 1.59% |
Furquan Shaikh | 1 | 0.03% | 1 | 1.59% |
Dmitry Osipenko | 1 | 0.03% | 1 | 1.59% |
Liu ShuoX | 1 | 0.03% | 1 | 1.59% |
Matthew Wilcox | 1 | 0.03% | 1 | 1.59% |
Total | 3080 | 63 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2012 Google, Inc. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/device.h> #include <linux/err.h> #include <linux/errno.h> #include <linux/init.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/list.h> #include <linux/memblock.h> #include <linux/rslib.h> #include <linux/slab.h> #include <linux/uaccess.h> #include <linux/vmalloc.h> #include <linux/mm.h> #include <asm/page.h> #include "ram_internal.h" /** * struct persistent_ram_buffer - persistent circular RAM buffer * * @sig: Signature to indicate header (PERSISTENT_RAM_SIG xor PRZ-type value) * @start: First valid byte in the buffer. * @size: Number of valid bytes in the buffer. * @data: The contents of the buffer. */ struct persistent_ram_buffer { uint32_t sig; atomic_t start; atomic_t size; uint8_t data[]; }; #define PERSISTENT_RAM_SIG (0x43474244) /* DBGC */ static inline size_t buffer_size(struct persistent_ram_zone *prz) { return atomic_read(&prz->buffer->size); } static inline size_t buffer_start(struct persistent_ram_zone *prz) { return atomic_read(&prz->buffer->start); } /* increase and wrap the start pointer, returning the old value */ static size_t buffer_start_add(struct persistent_ram_zone *prz, size_t a) { int old; int new; unsigned long flags = 0; if (!(prz->flags & PRZ_FLAG_NO_LOCK)) raw_spin_lock_irqsave(&prz->buffer_lock, flags); old = atomic_read(&prz->buffer->start); new = old + a; while (unlikely(new >= prz->buffer_size)) new -= prz->buffer_size; atomic_set(&prz->buffer->start, new); if (!(prz->flags & PRZ_FLAG_NO_LOCK)) raw_spin_unlock_irqrestore(&prz->buffer_lock, flags); return old; } /* increase the size counter until it hits the max size */ static void buffer_size_add(struct persistent_ram_zone *prz, size_t a) { size_t old; size_t new; unsigned long flags = 0; if (!(prz->flags & PRZ_FLAG_NO_LOCK)) raw_spin_lock_irqsave(&prz->buffer_lock, flags); old = atomic_read(&prz->buffer->size); if (old == prz->buffer_size) goto exit; new = old + a; if (new > prz->buffer_size) new = prz->buffer_size; atomic_set(&prz->buffer->size, new); exit: if (!(prz->flags & PRZ_FLAG_NO_LOCK)) raw_spin_unlock_irqrestore(&prz->buffer_lock, flags); } static void notrace persistent_ram_encode_rs8(struct persistent_ram_zone *prz, uint8_t *data, size_t len, uint8_t *ecc) { int i; /* Initialize the parity buffer */ memset(prz->ecc_info.par, 0, prz->ecc_info.ecc_size * sizeof(prz->ecc_info.par[0])); encode_rs8(prz->rs_decoder, data, len, prz->ecc_info.par, 0); for (i = 0; i < prz->ecc_info.ecc_size; i++) ecc[i] = prz->ecc_info.par[i]; } static int persistent_ram_decode_rs8(struct persistent_ram_zone *prz, void *data, size_t len, uint8_t *ecc) { int i; for (i = 0; i < prz->ecc_info.ecc_size; i++) prz->ecc_info.par[i] = ecc[i]; return decode_rs8(prz->rs_decoder, data, prz->ecc_info.par, len, NULL, 0, NULL, 0, NULL); } static void notrace persistent_ram_update_ecc(struct persistent_ram_zone *prz, unsigned int start, unsigned int count) { struct persistent_ram_buffer *buffer = prz->buffer; uint8_t *buffer_end = buffer->data + prz->buffer_size; uint8_t *block; uint8_t *par; int ecc_block_size = prz->ecc_info.block_size; int ecc_size = prz->ecc_info.ecc_size; int size = ecc_block_size; if (!ecc_size) return; block = buffer->data + (start & ~(ecc_block_size - 1)); par = prz->par_buffer + (start / ecc_block_size) * ecc_size; do { if (block + ecc_block_size > buffer_end) size = buffer_end - block; persistent_ram_encode_rs8(prz, block, size, par); block += ecc_block_size; par += ecc_size; } while (block < buffer->data + start + count); } static void persistent_ram_update_header_ecc(struct persistent_ram_zone *prz) { struct persistent_ram_buffer *buffer = prz->buffer; if (!prz->ecc_info.ecc_size) return; persistent_ram_encode_rs8(prz, (uint8_t *)buffer, sizeof(*buffer), prz->par_header); } static void persistent_ram_ecc_old(struct persistent_ram_zone *prz) { struct persistent_ram_buffer *buffer = prz->buffer; uint8_t *block; uint8_t *par; if (!prz->ecc_info.ecc_size) return; block = buffer->data; par = prz->par_buffer; while (block < buffer->data + buffer_size(prz)) { int numerr; int size = prz->ecc_info.block_size; if (block + size > buffer->data + prz->buffer_size) size = buffer->data + prz->buffer_size - block; numerr = persistent_ram_decode_rs8(prz, block, size, par); if (numerr > 0) { pr_devel("error in block %p, %d\n", block, numerr); prz->corrected_bytes += numerr; } else if (numerr < 0) { pr_devel("uncorrectable error in block %p\n", block); prz->bad_blocks++; } block += prz->ecc_info.block_size; par += prz->ecc_info.ecc_size; } } static int persistent_ram_init_ecc(struct persistent_ram_zone *prz, struct persistent_ram_ecc_info *ecc_info) { int numerr; struct persistent_ram_buffer *buffer = prz->buffer; int ecc_blocks; size_t ecc_total; if (!ecc_info || !ecc_info->ecc_size) return 0; prz->ecc_info.block_size = ecc_info->block_size ?: 128; prz->ecc_info.ecc_size = ecc_info->ecc_size ?: 16; prz->ecc_info.symsize = ecc_info->symsize ?: 8; prz->ecc_info.poly = ecc_info->poly ?: 0x11d; ecc_blocks = DIV_ROUND_UP(prz->buffer_size - prz->ecc_info.ecc_size, prz->ecc_info.block_size + prz->ecc_info.ecc_size); ecc_total = (ecc_blocks + 1) * prz->ecc_info.ecc_size; if (ecc_total >= prz->buffer_size) { pr_err("%s: invalid ecc_size %u (total %zu, buffer size %zu)\n", __func__, prz->ecc_info.ecc_size, ecc_total, prz->buffer_size); return -EINVAL; } prz->buffer_size -= ecc_total; prz->par_buffer = buffer->data + prz->buffer_size; prz->par_header = prz->par_buffer + ecc_blocks * prz->ecc_info.ecc_size; /* * first consecutive root is 0 * primitive element to generate roots = 1 */ prz->rs_decoder = init_rs(prz->ecc_info.symsize, prz->ecc_info.poly, 0, 1, prz->ecc_info.ecc_size); if (prz->rs_decoder == NULL) { pr_info("init_rs failed\n"); return -EINVAL; } /* allocate workspace instead of using stack VLA */ prz->ecc_info.par = kmalloc_array(prz->ecc_info.ecc_size, sizeof(*prz->ecc_info.par), GFP_KERNEL); if (!prz->ecc_info.par) { pr_err("cannot allocate ECC parity workspace\n"); return -ENOMEM; } prz->corrected_bytes = 0; prz->bad_blocks = 0; numerr = persistent_ram_decode_rs8(prz, buffer, sizeof(*buffer), prz->par_header); if (numerr > 0) { pr_info("error in header, %d\n", numerr); prz->corrected_bytes += numerr; } else if (numerr < 0) { pr_info_ratelimited("uncorrectable error in header\n"); prz->bad_blocks++; } return 0; } ssize_t persistent_ram_ecc_string(struct persistent_ram_zone *prz, char *str, size_t len) { ssize_t ret; if (!prz->ecc_info.ecc_size) return 0; if (prz->corrected_bytes || prz->bad_blocks) ret = snprintf(str, len, "" "\nECC: %d Corrected bytes, %d unrecoverable blocks\n", prz->corrected_bytes, prz->bad_blocks); else ret = snprintf(str, len, "\nECC: No errors detected\n"); return ret; } static void notrace persistent_ram_update(struct persistent_ram_zone *prz, const void *s, unsigned int start, unsigned int count) { struct persistent_ram_buffer *buffer = prz->buffer; memcpy_toio(buffer->data + start, s, count); persistent_ram_update_ecc(prz, start, count); } static int notrace persistent_ram_update_user(struct persistent_ram_zone *prz, const void __user *s, unsigned int start, unsigned int count) { struct persistent_ram_buffer *buffer = prz->buffer; int ret = unlikely(copy_from_user(buffer->data + start, s, count)) ? -EFAULT : 0; persistent_ram_update_ecc(prz, start, count); return ret; } void persistent_ram_save_old(struct persistent_ram_zone *prz) { struct persistent_ram_buffer *buffer = prz->buffer; size_t size = buffer_size(prz); size_t start = buffer_start(prz); if (!size) return; if (!prz->old_log) { persistent_ram_ecc_old(prz); prz->old_log = kvzalloc(size, GFP_KERNEL); } if (!prz->old_log) { pr_err("failed to allocate buffer\n"); return; } prz->old_log_size = size; memcpy_fromio(prz->old_log, &buffer->data[start], size - start); memcpy_fromio(prz->old_log + size - start, &buffer->data[0], start); } int notrace persistent_ram_write(struct persistent_ram_zone *prz, const void *s, unsigned int count) { int rem; int c = count; size_t start; if (unlikely(c > prz->buffer_size)) { s += c - prz->buffer_size; c = prz->buffer_size; } buffer_size_add(prz, c); start = buffer_start_add(prz, c); rem = prz->buffer_size - start; if (unlikely(rem < c)) { persistent_ram_update(prz, s, start, rem); s += rem; c -= rem; start = 0; } persistent_ram_update(prz, s, start, c); persistent_ram_update_header_ecc(prz); return count; } int notrace persistent_ram_write_user(struct persistent_ram_zone *prz, const void __user *s, unsigned int count) { int rem, ret = 0, c = count; size_t start; if (unlikely(c > prz->buffer_size)) { s += c - prz->buffer_size; c = prz->buffer_size; } buffer_size_add(prz, c); start = buffer_start_add(prz, c); rem = prz->buffer_size - start; if (unlikely(rem < c)) { ret = persistent_ram_update_user(prz, s, start, rem); s += rem; c -= rem; start = 0; } if (likely(!ret)) ret = persistent_ram_update_user(prz, s, start, c); persistent_ram_update_header_ecc(prz); return unlikely(ret) ? ret : count; } size_t persistent_ram_old_size(struct persistent_ram_zone *prz) { return prz->old_log_size; } void *persistent_ram_old(struct persistent_ram_zone *prz) { return prz->old_log; } void persistent_ram_free_old(struct persistent_ram_zone *prz) { kvfree(prz->old_log); prz->old_log = NULL; prz->old_log_size = 0; } void persistent_ram_zap(struct persistent_ram_zone *prz) { atomic_set(&prz->buffer->start, 0); atomic_set(&prz->buffer->size, 0); persistent_ram_update_header_ecc(prz); } #define MEM_TYPE_WCOMBINE 0 #define MEM_TYPE_NONCACHED 1 #define MEM_TYPE_NORMAL 2 static void *persistent_ram_vmap(phys_addr_t start, size_t size, unsigned int memtype) { struct page **pages; phys_addr_t page_start; unsigned int page_count; pgprot_t prot; unsigned int i; void *vaddr; page_start = start - offset_in_page(start); page_count = DIV_ROUND_UP(size + offset_in_page(start), PAGE_SIZE); switch (memtype) { case MEM_TYPE_NORMAL: prot = PAGE_KERNEL; break; case MEM_TYPE_NONCACHED: prot = pgprot_noncached(PAGE_KERNEL); break; case MEM_TYPE_WCOMBINE: prot = pgprot_writecombine(PAGE_KERNEL); break; default: pr_err("invalid mem_type=%d\n", memtype); return NULL; } pages = kmalloc_array(page_count, sizeof(struct page *), GFP_KERNEL); if (!pages) { pr_err("%s: Failed to allocate array for %u pages\n", __func__, page_count); return NULL; } for (i = 0; i < page_count; i++) { phys_addr_t addr = page_start + i * PAGE_SIZE; pages[i] = pfn_to_page(addr >> PAGE_SHIFT); } /* * VM_IOREMAP used here to bypass this region during vread() * and kmap_atomic() (i.e. kcore) to avoid __va() failures. */ vaddr = vmap(pages, page_count, VM_MAP | VM_IOREMAP, prot); kfree(pages); /* * Since vmap() uses page granularity, we must add the offset * into the page here, to get the byte granularity address * into the mapping to represent the actual "start" location. */ return vaddr + offset_in_page(start); } static void *persistent_ram_iomap(phys_addr_t start, size_t size, unsigned int memtype, char *label) { void *va; if (!request_mem_region(start, size, label ?: "ramoops")) { pr_err("request mem region (%s 0x%llx@0x%llx) failed\n", label ?: "ramoops", (unsigned long long)size, (unsigned long long)start); return NULL; } if (memtype) va = ioremap(start, size); else va = ioremap_wc(start, size); /* * Since request_mem_region() and ioremap() are byte-granularity * there is no need handle anything special like we do when the * vmap() case in persistent_ram_vmap() above. */ return va; } static int persistent_ram_buffer_map(phys_addr_t start, phys_addr_t size, struct persistent_ram_zone *prz, int memtype) { prz->paddr = start; prz->size = size; if (pfn_valid(start >> PAGE_SHIFT)) prz->vaddr = persistent_ram_vmap(start, size, memtype); else prz->vaddr = persistent_ram_iomap(start, size, memtype, prz->label); if (!prz->vaddr) { pr_err("%s: Failed to map 0x%llx pages at 0x%llx\n", __func__, (unsigned long long)size, (unsigned long long)start); return -ENOMEM; } prz->buffer = prz->vaddr; prz->buffer_size = size - sizeof(struct persistent_ram_buffer); return 0; } static int persistent_ram_post_init(struct persistent_ram_zone *prz, u32 sig, struct persistent_ram_ecc_info *ecc_info) { int ret; bool zap = !!(prz->flags & PRZ_FLAG_ZAP_OLD); ret = persistent_ram_init_ecc(prz, ecc_info); if (ret) { pr_warn("ECC failed %s\n", prz->label); return ret; } sig ^= PERSISTENT_RAM_SIG; if (prz->buffer->sig == sig) { if (buffer_size(prz) == 0 && buffer_start(prz) == 0) { pr_debug("found existing empty buffer\n"); return 0; } if (buffer_size(prz) > prz->buffer_size || buffer_start(prz) > buffer_size(prz)) { pr_info("found existing invalid buffer, size %zu, start %zu\n", buffer_size(prz), buffer_start(prz)); zap = true; } else { pr_debug("found existing buffer, size %zu, start %zu\n", buffer_size(prz), buffer_start(prz)); persistent_ram_save_old(prz); } } else { pr_debug("no valid data in buffer (sig = 0x%08x)\n", prz->buffer->sig); prz->buffer->sig = sig; zap = true; } /* Reset missing, invalid, or single-use memory area. */ if (zap) persistent_ram_zap(prz); return 0; } void persistent_ram_free(struct persistent_ram_zone **_prz) { struct persistent_ram_zone *prz; if (!_prz) return; prz = *_prz; if (!prz) return; if (prz->vaddr) { if (pfn_valid(prz->paddr >> PAGE_SHIFT)) { /* We must vunmap() at page-granularity. */ vunmap(prz->vaddr - offset_in_page(prz->paddr)); } else { iounmap(prz->vaddr); release_mem_region(prz->paddr, prz->size); } prz->vaddr = NULL; } if (prz->rs_decoder) { free_rs(prz->rs_decoder); prz->rs_decoder = NULL; } kfree(prz->ecc_info.par); prz->ecc_info.par = NULL; persistent_ram_free_old(prz); kfree(prz->label); kfree(prz); *_prz = NULL; } struct persistent_ram_zone *persistent_ram_new(phys_addr_t start, size_t size, u32 sig, struct persistent_ram_ecc_info *ecc_info, unsigned int memtype, u32 flags, char *label) { struct persistent_ram_zone *prz; int ret = -ENOMEM; prz = kzalloc(sizeof(struct persistent_ram_zone), GFP_KERNEL); if (!prz) { pr_err("failed to allocate persistent ram zone\n"); goto err; } /* Initialize general buffer state. */ raw_spin_lock_init(&prz->buffer_lock); prz->flags = flags; prz->label = kstrdup(label, GFP_KERNEL); if (!prz->label) goto err; ret = persistent_ram_buffer_map(start, size, prz, memtype); if (ret) goto err; ret = persistent_ram_post_init(prz, sig, ecc_info); if (ret) goto err; pr_debug("attached %s 0x%zx@0x%llx: %zu header, %zu data, %zu ecc (%d/%d)\n", prz->label, prz->size, (unsigned long long)prz->paddr, sizeof(*prz->buffer), prz->buffer_size, prz->size - sizeof(*prz->buffer) - prz->buffer_size, prz->ecc_info.ecc_size, prz->ecc_info.block_size); return prz; err: persistent_ram_free(&prz); return ERR_PTR(ret); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1