Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Steve French | 1809 | 30.25% | 78 | 34.82% |
Paulo Alcantara | 1166 | 19.50% | 27 | 12.05% |
Rohith Surabattula | 688 | 11.50% | 8 | 3.57% |
Aurelien Aptel | 683 | 11.42% | 5 | 2.23% |
Pavel Shilovsky | 454 | 7.59% | 20 | 8.93% |
Sachin S. Prabhu | 227 | 3.80% | 2 | 0.89% |
Jeff Layton | 201 | 3.36% | 25 | 11.16% |
Joe Perches | 112 | 1.87% | 4 | 1.79% |
Shyam Prasad N | 102 | 1.71% | 8 | 3.57% |
Ronnie Sahlberg | 90 | 1.50% | 9 | 4.02% |
Bharath SM | 81 | 1.35% | 2 | 0.89% |
Enzo Matsumiya | 71 | 1.19% | 3 | 1.34% |
Shirish Pargaonkar | 61 | 1.02% | 6 | 2.68% |
David Howells | 41 | 0.69% | 4 | 1.79% |
Dan Carpenter | 41 | 0.69% | 1 | 0.45% |
Al Viro | 29 | 0.48% | 4 | 1.79% |
Jérôme Glisse | 26 | 0.43% | 1 | 0.45% |
Thomas Gleixner | 19 | 0.32% | 1 | 0.45% |
ZhangXiaoxu | 15 | 0.25% | 1 | 0.45% |
Tim Gardner | 14 | 0.23% | 1 | 0.45% |
Andy Shevchenko | 10 | 0.17% | 1 | 0.45% |
Winston Wen | 7 | 0.12% | 1 | 0.45% |
Miklos Szeredi | 6 | 0.10% | 1 | 0.45% |
Suresh Jayaraman | 5 | 0.08% | 2 | 0.89% |
Eric W. Biedermann | 4 | 0.07% | 1 | 0.45% |
Waiman Long | 4 | 0.07% | 1 | 0.45% |
Mateusz Guzik | 4 | 0.07% | 1 | 0.45% |
Eric Sesterhenn / Snakebyte | 3 | 0.05% | 1 | 0.45% |
Christoph Hellwig | 3 | 0.05% | 1 | 0.45% |
Christoph Lameter | 2 | 0.03% | 1 | 0.45% |
Dave Wysochanski | 1 | 0.02% | 1 | 0.45% |
Jiangshan Yi | 1 | 0.02% | 1 | 0.45% |
Thiago Rafael Becker | 1 | 0.02% | 1 | 0.45% |
Total | 5981 | 224 |
// SPDX-License-Identifier: LGPL-2.1 /* * * Copyright (C) International Business Machines Corp., 2002,2008 * Author(s): Steve French (sfrench@us.ibm.com) * */ #include <linux/slab.h> #include <linux/ctype.h> #include <linux/mempool.h> #include <linux/vmalloc.h> #include "cifspdu.h" #include "cifsglob.h" #include "cifsproto.h" #include "cifs_debug.h" #include "smberr.h" #include "nterr.h" #include "cifs_unicode.h" #include "smb2pdu.h" #include "cifsfs.h" #ifdef CONFIG_CIFS_DFS_UPCALL #include "dns_resolve.h" #include "dfs_cache.h" #include "dfs.h" #endif #include "fs_context.h" #include "cached_dir.h" extern mempool_t *cifs_sm_req_poolp; extern mempool_t *cifs_req_poolp; /* The xid serves as a useful identifier for each incoming vfs request, in a similar way to the mid which is useful to track each sent smb, and CurrentXid can also provide a running counter (although it will eventually wrap past zero) of the total vfs operations handled since the cifs fs was mounted */ unsigned int _get_xid(void) { unsigned int xid; spin_lock(&GlobalMid_Lock); GlobalTotalActiveXid++; /* keep high water mark for number of simultaneous ops in filesystem */ if (GlobalTotalActiveXid > GlobalMaxActiveXid) GlobalMaxActiveXid = GlobalTotalActiveXid; if (GlobalTotalActiveXid > 65000) cifs_dbg(FYI, "warning: more than 65000 requests active\n"); xid = GlobalCurrentXid++; spin_unlock(&GlobalMid_Lock); return xid; } void _free_xid(unsigned int xid) { spin_lock(&GlobalMid_Lock); /* if (GlobalTotalActiveXid == 0) BUG(); */ GlobalTotalActiveXid--; spin_unlock(&GlobalMid_Lock); } struct cifs_ses * sesInfoAlloc(void) { struct cifs_ses *ret_buf; ret_buf = kzalloc(sizeof(struct cifs_ses), GFP_KERNEL); if (ret_buf) { atomic_inc(&sesInfoAllocCount); spin_lock_init(&ret_buf->ses_lock); ret_buf->ses_status = SES_NEW; ++ret_buf->ses_count; INIT_LIST_HEAD(&ret_buf->smb_ses_list); INIT_LIST_HEAD(&ret_buf->tcon_list); mutex_init(&ret_buf->session_mutex); spin_lock_init(&ret_buf->iface_lock); INIT_LIST_HEAD(&ret_buf->iface_list); spin_lock_init(&ret_buf->chan_lock); } return ret_buf; } void sesInfoFree(struct cifs_ses *buf_to_free) { struct cifs_server_iface *iface = NULL, *niface = NULL; if (buf_to_free == NULL) { cifs_dbg(FYI, "Null buffer passed to sesInfoFree\n"); return; } unload_nls(buf_to_free->local_nls); atomic_dec(&sesInfoAllocCount); kfree(buf_to_free->serverOS); kfree(buf_to_free->serverDomain); kfree(buf_to_free->serverNOS); kfree_sensitive(buf_to_free->password); kfree(buf_to_free->user_name); kfree(buf_to_free->domainName); kfree_sensitive(buf_to_free->auth_key.response); spin_lock(&buf_to_free->iface_lock); list_for_each_entry_safe(iface, niface, &buf_to_free->iface_list, iface_head) kref_put(&iface->refcount, release_iface); spin_unlock(&buf_to_free->iface_lock); kfree_sensitive(buf_to_free); } struct cifs_tcon * tcon_info_alloc(bool dir_leases_enabled) { struct cifs_tcon *ret_buf; ret_buf = kzalloc(sizeof(*ret_buf), GFP_KERNEL); if (!ret_buf) return NULL; if (dir_leases_enabled == true) { ret_buf->cfids = init_cached_dirs(); if (!ret_buf->cfids) { kfree(ret_buf); return NULL; } } /* else ret_buf->cfids is already set to NULL above */ atomic_inc(&tconInfoAllocCount); ret_buf->status = TID_NEW; ++ret_buf->tc_count; spin_lock_init(&ret_buf->tc_lock); INIT_LIST_HEAD(&ret_buf->openFileList); INIT_LIST_HEAD(&ret_buf->tcon_list); spin_lock_init(&ret_buf->open_file_lock); spin_lock_init(&ret_buf->stat_lock); atomic_set(&ret_buf->num_local_opens, 0); atomic_set(&ret_buf->num_remote_opens, 0); #ifdef CONFIG_CIFS_DFS_UPCALL INIT_LIST_HEAD(&ret_buf->dfs_ses_list); #endif return ret_buf; } void tconInfoFree(struct cifs_tcon *tcon) { if (tcon == NULL) { cifs_dbg(FYI, "Null buffer passed to tconInfoFree\n"); return; } free_cached_dirs(tcon->cfids); atomic_dec(&tconInfoAllocCount); kfree(tcon->nativeFileSystem); kfree_sensitive(tcon->password); #ifdef CONFIG_CIFS_DFS_UPCALL dfs_put_root_smb_sessions(&tcon->dfs_ses_list); #endif kfree(tcon->origin_fullpath); kfree(tcon); } struct smb_hdr * cifs_buf_get(void) { struct smb_hdr *ret_buf = NULL; /* * SMB2 header is bigger than CIFS one - no problems to clean some * more bytes for CIFS. */ size_t buf_size = sizeof(struct smb2_hdr); /* * We could use negotiated size instead of max_msgsize - * but it may be more efficient to always alloc same size * albeit slightly larger than necessary and maxbuffersize * defaults to this and can not be bigger. */ ret_buf = mempool_alloc(cifs_req_poolp, GFP_NOFS); /* clear the first few header bytes */ /* for most paths, more is cleared in header_assemble */ memset(ret_buf, 0, buf_size + 3); atomic_inc(&buf_alloc_count); #ifdef CONFIG_CIFS_STATS2 atomic_inc(&total_buf_alloc_count); #endif /* CONFIG_CIFS_STATS2 */ return ret_buf; } void cifs_buf_release(void *buf_to_free) { if (buf_to_free == NULL) { /* cifs_dbg(FYI, "Null buffer passed to cifs_buf_release\n");*/ return; } mempool_free(buf_to_free, cifs_req_poolp); atomic_dec(&buf_alloc_count); return; } struct smb_hdr * cifs_small_buf_get(void) { struct smb_hdr *ret_buf = NULL; /* We could use negotiated size instead of max_msgsize - but it may be more efficient to always alloc same size albeit slightly larger than necessary and maxbuffersize defaults to this and can not be bigger */ ret_buf = mempool_alloc(cifs_sm_req_poolp, GFP_NOFS); /* No need to clear memory here, cleared in header assemble */ /* memset(ret_buf, 0, sizeof(struct smb_hdr) + 27);*/ atomic_inc(&small_buf_alloc_count); #ifdef CONFIG_CIFS_STATS2 atomic_inc(&total_small_buf_alloc_count); #endif /* CONFIG_CIFS_STATS2 */ return ret_buf; } void cifs_small_buf_release(void *buf_to_free) { if (buf_to_free == NULL) { cifs_dbg(FYI, "Null buffer passed to cifs_small_buf_release\n"); return; } mempool_free(buf_to_free, cifs_sm_req_poolp); atomic_dec(&small_buf_alloc_count); return; } void free_rsp_buf(int resp_buftype, void *rsp) { if (resp_buftype == CIFS_SMALL_BUFFER) cifs_small_buf_release(rsp); else if (resp_buftype == CIFS_LARGE_BUFFER) cifs_buf_release(rsp); } /* NB: MID can not be set if treeCon not passed in, in that case it is responsbility of caller to set the mid */ void header_assemble(struct smb_hdr *buffer, char smb_command /* command */ , const struct cifs_tcon *treeCon, int word_count /* length of fixed section (word count) in two byte units */) { char *temp = (char *) buffer; memset(temp, 0, 256); /* bigger than MAX_CIFS_HDR_SIZE */ buffer->smb_buf_length = cpu_to_be32( (2 * word_count) + sizeof(struct smb_hdr) - 4 /* RFC 1001 length field does not count */ + 2 /* for bcc field itself */) ; buffer->Protocol[0] = 0xFF; buffer->Protocol[1] = 'S'; buffer->Protocol[2] = 'M'; buffer->Protocol[3] = 'B'; buffer->Command = smb_command; buffer->Flags = 0x00; /* case sensitive */ buffer->Flags2 = SMBFLG2_KNOWS_LONG_NAMES; buffer->Pid = cpu_to_le16((__u16)current->tgid); buffer->PidHigh = cpu_to_le16((__u16)(current->tgid >> 16)); if (treeCon) { buffer->Tid = treeCon->tid; if (treeCon->ses) { if (treeCon->ses->capabilities & CAP_UNICODE) buffer->Flags2 |= SMBFLG2_UNICODE; if (treeCon->ses->capabilities & CAP_STATUS32) buffer->Flags2 |= SMBFLG2_ERR_STATUS; /* Uid is not converted */ buffer->Uid = treeCon->ses->Suid; if (treeCon->ses->server) buffer->Mid = get_next_mid(treeCon->ses->server); } if (treeCon->Flags & SMB_SHARE_IS_IN_DFS) buffer->Flags2 |= SMBFLG2_DFS; if (treeCon->nocase) buffer->Flags |= SMBFLG_CASELESS; if ((treeCon->ses) && (treeCon->ses->server)) if (treeCon->ses->server->sign) buffer->Flags2 |= SMBFLG2_SECURITY_SIGNATURE; } /* endian conversion of flags is now done just before sending */ buffer->WordCount = (char) word_count; return; } static int check_smb_hdr(struct smb_hdr *smb) { /* does it have the right SMB "signature" ? */ if (*(__le32 *) smb->Protocol != cpu_to_le32(0x424d53ff)) { cifs_dbg(VFS, "Bad protocol string signature header 0x%x\n", *(unsigned int *)smb->Protocol); return 1; } /* if it's a response then accept */ if (smb->Flags & SMBFLG_RESPONSE) return 0; /* only one valid case where server sends us request */ if (smb->Command == SMB_COM_LOCKING_ANDX) return 0; cifs_dbg(VFS, "Server sent request, not response. mid=%u\n", get_mid(smb)); return 1; } int checkSMB(char *buf, unsigned int total_read, struct TCP_Server_Info *server) { struct smb_hdr *smb = (struct smb_hdr *)buf; __u32 rfclen = be32_to_cpu(smb->smb_buf_length); __u32 clc_len; /* calculated length */ cifs_dbg(FYI, "checkSMB Length: 0x%x, smb_buf_length: 0x%x\n", total_read, rfclen); /* is this frame too small to even get to a BCC? */ if (total_read < 2 + sizeof(struct smb_hdr)) { if ((total_read >= sizeof(struct smb_hdr) - 1) && (smb->Status.CifsError != 0)) { /* it's an error return */ smb->WordCount = 0; /* some error cases do not return wct and bcc */ return 0; } else if ((total_read == sizeof(struct smb_hdr) + 1) && (smb->WordCount == 0)) { char *tmp = (char *)smb; /* Need to work around a bug in two servers here */ /* First, check if the part of bcc they sent was zero */ if (tmp[sizeof(struct smb_hdr)] == 0) { /* some servers return only half of bcc * on simple responses (wct, bcc both zero) * in particular have seen this on * ulogoffX and FindClose. This leaves * one byte of bcc potentially unitialized */ /* zero rest of bcc */ tmp[sizeof(struct smb_hdr)+1] = 0; return 0; } cifs_dbg(VFS, "rcvd invalid byte count (bcc)\n"); } else { cifs_dbg(VFS, "Length less than smb header size\n"); } return -EIO; } else if (total_read < sizeof(*smb) + 2 * smb->WordCount) { cifs_dbg(VFS, "%s: can't read BCC due to invalid WordCount(%u)\n", __func__, smb->WordCount); return -EIO; } /* otherwise, there is enough to get to the BCC */ if (check_smb_hdr(smb)) return -EIO; clc_len = smbCalcSize(smb); if (4 + rfclen != total_read) { cifs_dbg(VFS, "Length read does not match RFC1001 length %d\n", rfclen); return -EIO; } if (4 + rfclen != clc_len) { __u16 mid = get_mid(smb); /* check if bcc wrapped around for large read responses */ if ((rfclen > 64 * 1024) && (rfclen > clc_len)) { /* check if lengths match mod 64K */ if (((4 + rfclen) & 0xFFFF) == (clc_len & 0xFFFF)) return 0; /* bcc wrapped */ } cifs_dbg(FYI, "Calculated size %u vs length %u mismatch for mid=%u\n", clc_len, 4 + rfclen, mid); if (4 + rfclen < clc_len) { cifs_dbg(VFS, "RFC1001 size %u smaller than SMB for mid=%u\n", rfclen, mid); return -EIO; } else if (rfclen > clc_len + 512) { /* * Some servers (Windows XP in particular) send more * data than the lengths in the SMB packet would * indicate on certain calls (byte range locks and * trans2 find first calls in particular). While the * client can handle such a frame by ignoring the * trailing data, we choose limit the amount of extra * data to 512 bytes. */ cifs_dbg(VFS, "RFC1001 size %u more than 512 bytes larger than SMB for mid=%u\n", rfclen, mid); return -EIO; } } return 0; } bool is_valid_oplock_break(char *buffer, struct TCP_Server_Info *srv) { struct smb_hdr *buf = (struct smb_hdr *)buffer; struct smb_com_lock_req *pSMB = (struct smb_com_lock_req *)buf; struct TCP_Server_Info *pserver; struct cifs_ses *ses; struct cifs_tcon *tcon; struct cifsInodeInfo *pCifsInode; struct cifsFileInfo *netfile; cifs_dbg(FYI, "Checking for oplock break or dnotify response\n"); if ((pSMB->hdr.Command == SMB_COM_NT_TRANSACT) && (pSMB->hdr.Flags & SMBFLG_RESPONSE)) { struct smb_com_transaction_change_notify_rsp *pSMBr = (struct smb_com_transaction_change_notify_rsp *)buf; struct file_notify_information *pnotify; __u32 data_offset = 0; size_t len = srv->total_read - sizeof(pSMBr->hdr.smb_buf_length); if (get_bcc(buf) > sizeof(struct file_notify_information)) { data_offset = le32_to_cpu(pSMBr->DataOffset); if (data_offset > len - sizeof(struct file_notify_information)) { cifs_dbg(FYI, "Invalid data_offset %u\n", data_offset); return true; } pnotify = (struct file_notify_information *) ((char *)&pSMBr->hdr.Protocol + data_offset); cifs_dbg(FYI, "dnotify on %s Action: 0x%x\n", pnotify->FileName, pnotify->Action); /* cifs_dump_mem("Rcvd notify Data: ",buf, sizeof(struct smb_hdr)+60); */ return true; } if (pSMBr->hdr.Status.CifsError) { cifs_dbg(FYI, "notify err 0x%x\n", pSMBr->hdr.Status.CifsError); return true; } return false; } if (pSMB->hdr.Command != SMB_COM_LOCKING_ANDX) return false; if (pSMB->hdr.Flags & SMBFLG_RESPONSE) { /* no sense logging error on invalid handle on oplock break - harmless race between close request and oplock break response is expected from time to time writing out large dirty files cached on the client */ if ((NT_STATUS_INVALID_HANDLE) == le32_to_cpu(pSMB->hdr.Status.CifsError)) { cifs_dbg(FYI, "Invalid handle on oplock break\n"); return true; } else if (ERRbadfid == le16_to_cpu(pSMB->hdr.Status.DosError.Error)) { return true; } else { return false; /* on valid oplock brk we get "request" */ } } if (pSMB->hdr.WordCount != 8) return false; cifs_dbg(FYI, "oplock type 0x%x level 0x%x\n", pSMB->LockType, pSMB->OplockLevel); if (!(pSMB->LockType & LOCKING_ANDX_OPLOCK_RELEASE)) return false; /* If server is a channel, select the primary channel */ pserver = SERVER_IS_CHAN(srv) ? srv->primary_server : srv; /* look up tcon based on tid & uid */ spin_lock(&cifs_tcp_ses_lock); list_for_each_entry(ses, &pserver->smb_ses_list, smb_ses_list) { list_for_each_entry(tcon, &ses->tcon_list, tcon_list) { if (tcon->tid != buf->Tid) continue; cifs_stats_inc(&tcon->stats.cifs_stats.num_oplock_brks); spin_lock(&tcon->open_file_lock); list_for_each_entry(netfile, &tcon->openFileList, tlist) { if (pSMB->Fid != netfile->fid.netfid) continue; cifs_dbg(FYI, "file id match, oplock break\n"); pCifsInode = CIFS_I(d_inode(netfile->dentry)); set_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &pCifsInode->flags); netfile->oplock_epoch = 0; netfile->oplock_level = pSMB->OplockLevel; netfile->oplock_break_cancelled = false; cifs_queue_oplock_break(netfile); spin_unlock(&tcon->open_file_lock); spin_unlock(&cifs_tcp_ses_lock); return true; } spin_unlock(&tcon->open_file_lock); spin_unlock(&cifs_tcp_ses_lock); cifs_dbg(FYI, "No matching file for oplock break\n"); return true; } } spin_unlock(&cifs_tcp_ses_lock); cifs_dbg(FYI, "Can not process oplock break for non-existent connection\n"); return true; } void dump_smb(void *buf, int smb_buf_length) { if (traceSMB == 0) return; print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_NONE, 8, 2, buf, smb_buf_length, true); } void cifs_autodisable_serverino(struct cifs_sb_info *cifs_sb) { if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_SERVER_INUM) { struct cifs_tcon *tcon = NULL; if (cifs_sb->master_tlink) tcon = cifs_sb_master_tcon(cifs_sb); cifs_sb->mnt_cifs_flags &= ~CIFS_MOUNT_SERVER_INUM; cifs_sb->mnt_cifs_serverino_autodisabled = true; cifs_dbg(VFS, "Autodisabling the use of server inode numbers on %s\n", tcon ? tcon->tree_name : "new server"); cifs_dbg(VFS, "The server doesn't seem to support them properly or the files might be on different servers (DFS)\n"); cifs_dbg(VFS, "Hardlinks will not be recognized on this mount. Consider mounting with the \"noserverino\" option to silence this message.\n"); } } void cifs_set_oplock_level(struct cifsInodeInfo *cinode, __u32 oplock) { oplock &= 0xF; if (oplock == OPLOCK_EXCLUSIVE) { cinode->oplock = CIFS_CACHE_WRITE_FLG | CIFS_CACHE_READ_FLG; cifs_dbg(FYI, "Exclusive Oplock granted on inode %p\n", &cinode->netfs.inode); } else if (oplock == OPLOCK_READ) { cinode->oplock = CIFS_CACHE_READ_FLG; cifs_dbg(FYI, "Level II Oplock granted on inode %p\n", &cinode->netfs.inode); } else cinode->oplock = 0; } /* * We wait for oplock breaks to be processed before we attempt to perform * writes. */ int cifs_get_writer(struct cifsInodeInfo *cinode) { int rc; start: rc = wait_on_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK, TASK_KILLABLE); if (rc) return rc; spin_lock(&cinode->writers_lock); if (!cinode->writers) set_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags); cinode->writers++; /* Check to see if we have started servicing an oplock break */ if (test_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags)) { cinode->writers--; if (cinode->writers == 0) { clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags); wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS); } spin_unlock(&cinode->writers_lock); goto start; } spin_unlock(&cinode->writers_lock); return 0; } void cifs_put_writer(struct cifsInodeInfo *cinode) { spin_lock(&cinode->writers_lock); cinode->writers--; if (cinode->writers == 0) { clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags); wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS); } spin_unlock(&cinode->writers_lock); } /** * cifs_queue_oplock_break - queue the oplock break handler for cfile * @cfile: The file to break the oplock on * * This function is called from the demultiplex thread when it * receives an oplock break for @cfile. * * Assumes the tcon->open_file_lock is held. * Assumes cfile->file_info_lock is NOT held. */ void cifs_queue_oplock_break(struct cifsFileInfo *cfile) { /* * Bump the handle refcount now while we hold the * open_file_lock to enforce the validity of it for the oplock * break handler. The matching put is done at the end of the * handler. */ cifsFileInfo_get(cfile); queue_work(cifsoplockd_wq, &cfile->oplock_break); } void cifs_done_oplock_break(struct cifsInodeInfo *cinode) { clear_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags); wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK); } bool backup_cred(struct cifs_sb_info *cifs_sb) { if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPUID) { if (uid_eq(cifs_sb->ctx->backupuid, current_fsuid())) return true; } if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPGID) { if (in_group_p(cifs_sb->ctx->backupgid)) return true; } return false; } void cifs_del_pending_open(struct cifs_pending_open *open) { spin_lock(&tlink_tcon(open->tlink)->open_file_lock); list_del(&open->olist); spin_unlock(&tlink_tcon(open->tlink)->open_file_lock); } void cifs_add_pending_open_locked(struct cifs_fid *fid, struct tcon_link *tlink, struct cifs_pending_open *open) { memcpy(open->lease_key, fid->lease_key, SMB2_LEASE_KEY_SIZE); open->oplock = CIFS_OPLOCK_NO_CHANGE; open->tlink = tlink; fid->pending_open = open; list_add_tail(&open->olist, &tlink_tcon(tlink)->pending_opens); } void cifs_add_pending_open(struct cifs_fid *fid, struct tcon_link *tlink, struct cifs_pending_open *open) { spin_lock(&tlink_tcon(tlink)->open_file_lock); cifs_add_pending_open_locked(fid, tlink, open); spin_unlock(&tlink_tcon(open->tlink)->open_file_lock); } /* * Critical section which runs after acquiring deferred_lock. * As there is no reference count on cifs_deferred_close, pdclose * should not be used outside deferred_lock. */ bool cifs_is_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close **pdclose) { struct cifs_deferred_close *dclose; list_for_each_entry(dclose, &CIFS_I(d_inode(cfile->dentry))->deferred_closes, dlist) { if ((dclose->netfid == cfile->fid.netfid) && (dclose->persistent_fid == cfile->fid.persistent_fid) && (dclose->volatile_fid == cfile->fid.volatile_fid)) { *pdclose = dclose; return true; } } return false; } /* * Critical section which runs after acquiring deferred_lock. */ void cifs_add_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close *dclose) { bool is_deferred = false; struct cifs_deferred_close *pdclose; is_deferred = cifs_is_deferred_close(cfile, &pdclose); if (is_deferred) { kfree(dclose); return; } dclose->tlink = cfile->tlink; dclose->netfid = cfile->fid.netfid; dclose->persistent_fid = cfile->fid.persistent_fid; dclose->volatile_fid = cfile->fid.volatile_fid; list_add_tail(&dclose->dlist, &CIFS_I(d_inode(cfile->dentry))->deferred_closes); } /* * Critical section which runs after acquiring deferred_lock. */ void cifs_del_deferred_close(struct cifsFileInfo *cfile) { bool is_deferred = false; struct cifs_deferred_close *dclose; is_deferred = cifs_is_deferred_close(cfile, &dclose); if (!is_deferred) return; list_del(&dclose->dlist); kfree(dclose); } void cifs_close_deferred_file(struct cifsInodeInfo *cifs_inode) { struct cifsFileInfo *cfile = NULL; struct file_list *tmp_list, *tmp_next_list; struct list_head file_head; if (cifs_inode == NULL) return; INIT_LIST_HEAD(&file_head); spin_lock(&cifs_inode->open_file_lock); list_for_each_entry(cfile, &cifs_inode->openFileList, flist) { if (delayed_work_pending(&cfile->deferred)) { if (cancel_delayed_work(&cfile->deferred)) { spin_lock(&cifs_inode->deferred_lock); cifs_del_deferred_close(cfile); spin_unlock(&cifs_inode->deferred_lock); tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC); if (tmp_list == NULL) break; tmp_list->cfile = cfile; list_add_tail(&tmp_list->list, &file_head); } } } spin_unlock(&cifs_inode->open_file_lock); list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) { _cifsFileInfo_put(tmp_list->cfile, false, false); list_del(&tmp_list->list); kfree(tmp_list); } } void cifs_close_all_deferred_files(struct cifs_tcon *tcon) { struct cifsFileInfo *cfile; struct file_list *tmp_list, *tmp_next_list; struct list_head file_head; INIT_LIST_HEAD(&file_head); spin_lock(&tcon->open_file_lock); list_for_each_entry(cfile, &tcon->openFileList, tlist) { if (delayed_work_pending(&cfile->deferred)) { if (cancel_delayed_work(&cfile->deferred)) { spin_lock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock); cifs_del_deferred_close(cfile); spin_unlock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock); tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC); if (tmp_list == NULL) break; tmp_list->cfile = cfile; list_add_tail(&tmp_list->list, &file_head); } } } spin_unlock(&tcon->open_file_lock); list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) { _cifsFileInfo_put(tmp_list->cfile, true, false); list_del(&tmp_list->list); kfree(tmp_list); } } void cifs_close_deferred_file_under_dentry(struct cifs_tcon *tcon, const char *path) { struct cifsFileInfo *cfile; struct file_list *tmp_list, *tmp_next_list; struct list_head file_head; void *page; const char *full_path; INIT_LIST_HEAD(&file_head); page = alloc_dentry_path(); spin_lock(&tcon->open_file_lock); list_for_each_entry(cfile, &tcon->openFileList, tlist) { full_path = build_path_from_dentry(cfile->dentry, page); if (strstr(full_path, path)) { if (delayed_work_pending(&cfile->deferred)) { if (cancel_delayed_work(&cfile->deferred)) { spin_lock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock); cifs_del_deferred_close(cfile); spin_unlock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock); tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC); if (tmp_list == NULL) break; tmp_list->cfile = cfile; list_add_tail(&tmp_list->list, &file_head); } } } } spin_unlock(&tcon->open_file_lock); list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) { _cifsFileInfo_put(tmp_list->cfile, true, false); list_del(&tmp_list->list); kfree(tmp_list); } free_dentry_path(page); } /* parses DFS referral V3 structure * caller is responsible for freeing target_nodes * returns: * - on success - 0 * - on failure - errno */ int parse_dfs_referrals(struct get_dfs_referral_rsp *rsp, u32 rsp_size, unsigned int *num_of_nodes, struct dfs_info3_param **target_nodes, const struct nls_table *nls_codepage, int remap, const char *searchName, bool is_unicode) { int i, rc = 0; char *data_end; struct dfs_referral_level_3 *ref; *num_of_nodes = le16_to_cpu(rsp->NumberOfReferrals); if (*num_of_nodes < 1) { cifs_dbg(VFS, "num_referrals: must be at least > 0, but we get num_referrals = %d\n", *num_of_nodes); rc = -EINVAL; goto parse_DFS_referrals_exit; } ref = (struct dfs_referral_level_3 *) &(rsp->referrals); if (ref->VersionNumber != cpu_to_le16(3)) { cifs_dbg(VFS, "Referrals of V%d version are not supported, should be V3\n", le16_to_cpu(ref->VersionNumber)); rc = -EINVAL; goto parse_DFS_referrals_exit; } /* get the upper boundary of the resp buffer */ data_end = (char *)rsp + rsp_size; cifs_dbg(FYI, "num_referrals: %d dfs flags: 0x%x ...\n", *num_of_nodes, le32_to_cpu(rsp->DFSFlags)); *target_nodes = kcalloc(*num_of_nodes, sizeof(struct dfs_info3_param), GFP_KERNEL); if (*target_nodes == NULL) { rc = -ENOMEM; goto parse_DFS_referrals_exit; } /* collect necessary data from referrals */ for (i = 0; i < *num_of_nodes; i++) { char *temp; int max_len; struct dfs_info3_param *node = (*target_nodes)+i; node->flags = le32_to_cpu(rsp->DFSFlags); if (is_unicode) { __le16 *tmp = kmalloc(strlen(searchName)*2 + 2, GFP_KERNEL); if (tmp == NULL) { rc = -ENOMEM; goto parse_DFS_referrals_exit; } cifsConvertToUTF16((__le16 *) tmp, searchName, PATH_MAX, nls_codepage, remap); node->path_consumed = cifs_utf16_bytes(tmp, le16_to_cpu(rsp->PathConsumed), nls_codepage); kfree(tmp); } else node->path_consumed = le16_to_cpu(rsp->PathConsumed); node->server_type = le16_to_cpu(ref->ServerType); node->ref_flag = le16_to_cpu(ref->ReferralEntryFlags); /* copy DfsPath */ temp = (char *)ref + le16_to_cpu(ref->DfsPathOffset); max_len = data_end - temp; node->path_name = cifs_strndup_from_utf16(temp, max_len, is_unicode, nls_codepage); if (!node->path_name) { rc = -ENOMEM; goto parse_DFS_referrals_exit; } /* copy link target UNC */ temp = (char *)ref + le16_to_cpu(ref->NetworkAddressOffset); max_len = data_end - temp; node->node_name = cifs_strndup_from_utf16(temp, max_len, is_unicode, nls_codepage); if (!node->node_name) { rc = -ENOMEM; goto parse_DFS_referrals_exit; } node->ttl = le32_to_cpu(ref->TimeToLive); ref++; } parse_DFS_referrals_exit: if (rc) { free_dfs_info_array(*target_nodes, *num_of_nodes); *target_nodes = NULL; *num_of_nodes = 0; } return rc; } struct cifs_aio_ctx * cifs_aio_ctx_alloc(void) { struct cifs_aio_ctx *ctx; /* * Must use kzalloc to initialize ctx->bv to NULL and ctx->direct_io * to false so that we know when we have to unreference pages within * cifs_aio_ctx_release() */ ctx = kzalloc(sizeof(struct cifs_aio_ctx), GFP_KERNEL); if (!ctx) return NULL; INIT_LIST_HEAD(&ctx->list); mutex_init(&ctx->aio_mutex); init_completion(&ctx->done); kref_init(&ctx->refcount); return ctx; } void cifs_aio_ctx_release(struct kref *refcount) { struct cifs_aio_ctx *ctx = container_of(refcount, struct cifs_aio_ctx, refcount); cifsFileInfo_put(ctx->cfile); /* * ctx->bv is only set if setup_aio_ctx_iter() was call successfuly * which means that iov_iter_extract_pages() was a success and thus * that we may have references or pins on pages that we need to * release. */ if (ctx->bv) { if (ctx->should_dirty || ctx->bv_need_unpin) { unsigned int i; for (i = 0; i < ctx->nr_pinned_pages; i++) { struct page *page = ctx->bv[i].bv_page; if (ctx->should_dirty) set_page_dirty(page); if (ctx->bv_need_unpin) unpin_user_page(page); } } kvfree(ctx->bv); } kfree(ctx); } /** * cifs_alloc_hash - allocate hash and hash context together * @name: The name of the crypto hash algo * @sdesc: SHASH descriptor where to put the pointer to the hash TFM * * The caller has to make sure @sdesc is initialized to either NULL or * a valid context. It can be freed via cifs_free_hash(). */ int cifs_alloc_hash(const char *name, struct shash_desc **sdesc) { int rc = 0; struct crypto_shash *alg = NULL; if (*sdesc) return 0; alg = crypto_alloc_shash(name, 0, 0); if (IS_ERR(alg)) { cifs_dbg(VFS, "Could not allocate shash TFM '%s'\n", name); rc = PTR_ERR(alg); *sdesc = NULL; return rc; } *sdesc = kmalloc(sizeof(struct shash_desc) + crypto_shash_descsize(alg), GFP_KERNEL); if (*sdesc == NULL) { cifs_dbg(VFS, "no memory left to allocate shash TFM '%s'\n", name); crypto_free_shash(alg); return -ENOMEM; } (*sdesc)->tfm = alg; return 0; } /** * cifs_free_hash - free hash and hash context together * @sdesc: Where to find the pointer to the hash TFM * * Freeing a NULL descriptor is safe. */ void cifs_free_hash(struct shash_desc **sdesc) { if (unlikely(!sdesc) || !*sdesc) return; if ((*sdesc)->tfm) { crypto_free_shash((*sdesc)->tfm); (*sdesc)->tfm = NULL; } kfree_sensitive(*sdesc); *sdesc = NULL; } void extract_unc_hostname(const char *unc, const char **h, size_t *len) { const char *end; /* skip initial slashes */ while (*unc && (*unc == '\\' || *unc == '/')) unc++; end = unc; while (*end && !(*end == '\\' || *end == '/')) end++; *h = unc; *len = end - unc; } /** * copy_path_name - copy src path to dst, possibly truncating * @dst: The destination buffer * @src: The source name * * returns number of bytes written (including trailing nul) */ int copy_path_name(char *dst, const char *src) { int name_len; /* * PATH_MAX includes nul, so if strlen(src) >= PATH_MAX it * will truncate and strlen(dst) will be PATH_MAX-1 */ name_len = strscpy(dst, src, PATH_MAX); if (WARN_ON_ONCE(name_len < 0)) name_len = PATH_MAX-1; /* we count the trailing nul */ name_len++; return name_len; } struct super_cb_data { void *data; struct super_block *sb; }; static void tcon_super_cb(struct super_block *sb, void *arg) { struct super_cb_data *sd = arg; struct cifs_sb_info *cifs_sb; struct cifs_tcon *t1 = sd->data, *t2; if (sd->sb) return; cifs_sb = CIFS_SB(sb); t2 = cifs_sb_master_tcon(cifs_sb); spin_lock(&t2->tc_lock); if (t1->ses == t2->ses && t1->ses->server == t2->ses->server && t2->origin_fullpath && dfs_src_pathname_equal(t2->origin_fullpath, t1->origin_fullpath)) sd->sb = sb; spin_unlock(&t2->tc_lock); } static struct super_block *__cifs_get_super(void (*f)(struct super_block *, void *), void *data) { struct super_cb_data sd = { .data = data, .sb = NULL, }; struct file_system_type **fs_type = (struct file_system_type *[]) { &cifs_fs_type, &smb3_fs_type, NULL, }; for (; *fs_type; fs_type++) { iterate_supers_type(*fs_type, f, &sd); if (sd.sb) { /* * Grab an active reference in order to prevent automounts (DFS links) * of expiring and then freeing up our cifs superblock pointer while * we're doing failover. */ cifs_sb_active(sd.sb); return sd.sb; } } pr_warn_once("%s: could not find dfs superblock\n", __func__); return ERR_PTR(-EINVAL); } static void __cifs_put_super(struct super_block *sb) { if (!IS_ERR_OR_NULL(sb)) cifs_sb_deactive(sb); } struct super_block *cifs_get_dfs_tcon_super(struct cifs_tcon *tcon) { spin_lock(&tcon->tc_lock); if (!tcon->origin_fullpath) { spin_unlock(&tcon->tc_lock); return ERR_PTR(-ENOENT); } spin_unlock(&tcon->tc_lock); return __cifs_get_super(tcon_super_cb, tcon); } void cifs_put_tcp_super(struct super_block *sb) { __cifs_put_super(sb); } #ifdef CONFIG_CIFS_DFS_UPCALL int match_target_ip(struct TCP_Server_Info *server, const char *share, size_t share_len, bool *result) { int rc; char *target; struct sockaddr_storage ss; *result = false; target = kzalloc(share_len + 3, GFP_KERNEL); if (!target) return -ENOMEM; scnprintf(target, share_len + 3, "\\\\%.*s", (int)share_len, share); cifs_dbg(FYI, "%s: target name: %s\n", __func__, target + 2); rc = dns_resolve_server_name_to_ip(target, (struct sockaddr *)&ss, NULL); kfree(target); if (rc < 0) return rc; spin_lock(&server->srv_lock); *result = cifs_match_ipaddr((struct sockaddr *)&server->dstaddr, (struct sockaddr *)&ss); spin_unlock(&server->srv_lock); cifs_dbg(FYI, "%s: ip addresses match: %u\n", __func__, *result); return 0; } int cifs_update_super_prepath(struct cifs_sb_info *cifs_sb, char *prefix) { int rc; kfree(cifs_sb->prepath); cifs_sb->prepath = NULL; if (prefix && *prefix) { cifs_sb->prepath = cifs_sanitize_prepath(prefix, GFP_ATOMIC); if (IS_ERR(cifs_sb->prepath)) { rc = PTR_ERR(cifs_sb->prepath); cifs_sb->prepath = NULL; return rc; } if (cifs_sb->prepath) convert_delimiter(cifs_sb->prepath, CIFS_DIR_SEP(cifs_sb)); } cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_USE_PREFIX_PATH; return 0; } /* * Handle weird Windows SMB server behaviour. It responds with * STATUS_OBJECT_NAME_INVALID code to SMB2 QUERY_INFO request for * "\<server>\<dfsname>\<linkpath>" DFS reference, where <dfsname> contains * non-ASCII unicode symbols. */ int cifs_inval_name_dfs_link_error(const unsigned int xid, struct cifs_tcon *tcon, struct cifs_sb_info *cifs_sb, const char *full_path, bool *islink) { struct cifs_ses *ses = tcon->ses; size_t len; char *path; char *ref_path; *islink = false; /* * Fast path - skip check when @full_path doesn't have a prefix path to * look up or tcon is not DFS. */ if (strlen(full_path) < 2 || !cifs_sb || (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NO_DFS) || !is_tcon_dfs(tcon)) return 0; spin_lock(&tcon->tc_lock); if (!tcon->origin_fullpath) { spin_unlock(&tcon->tc_lock); return 0; } spin_unlock(&tcon->tc_lock); /* * Slow path - tcon is DFS and @full_path has prefix path, so attempt * to get a referral to figure out whether it is an DFS link. */ len = strnlen(tcon->tree_name, MAX_TREE_SIZE + 1) + strlen(full_path) + 1; path = kmalloc(len, GFP_KERNEL); if (!path) return -ENOMEM; scnprintf(path, len, "%s%s", tcon->tree_name, full_path); ref_path = dfs_cache_canonical_path(path + 1, cifs_sb->local_nls, cifs_remap(cifs_sb)); kfree(path); if (IS_ERR(ref_path)) { if (PTR_ERR(ref_path) != -EINVAL) return PTR_ERR(ref_path); } else { struct dfs_info3_param *refs = NULL; int num_refs = 0; /* * XXX: we are not using dfs_cache_find() here because we might * end up filling all the DFS cache and thus potentially * removing cached DFS targets that the client would eventually * need during failover. */ ses = CIFS_DFS_ROOT_SES(ses); if (ses->server->ops->get_dfs_refer && !ses->server->ops->get_dfs_refer(xid, ses, ref_path, &refs, &num_refs, cifs_sb->local_nls, cifs_remap(cifs_sb))) *islink = refs[0].server_type == DFS_TYPE_LINK; free_dfs_info_array(refs, num_refs); kfree(ref_path); } return 0; } #endif int cifs_wait_for_server_reconnect(struct TCP_Server_Info *server, bool retry) { int timeout = 10; int rc; spin_lock(&server->srv_lock); if (server->tcpStatus != CifsNeedReconnect) { spin_unlock(&server->srv_lock); return 0; } timeout *= server->nr_targets; spin_unlock(&server->srv_lock); /* * Give demultiplex thread up to 10 seconds to each target available for * reconnect -- should be greater than cifs socket timeout which is 7 * seconds. * * On "soft" mounts we wait once. Hard mounts keep retrying until * process is killed or server comes back on-line. */ do { rc = wait_event_interruptible_timeout(server->response_q, (server->tcpStatus != CifsNeedReconnect), timeout * HZ); if (rc < 0) { cifs_dbg(FYI, "%s: aborting reconnect due to received signal\n", __func__); return -ERESTARTSYS; } /* are we still trying to reconnect? */ spin_lock(&server->srv_lock); if (server->tcpStatus != CifsNeedReconnect) { spin_unlock(&server->srv_lock); return 0; } spin_unlock(&server->srv_lock); } while (retry); cifs_dbg(FYI, "%s: gave up waiting on reconnect\n", __func__); return -EHOSTDOWN; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1