Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Tero Kristo | 523 | 53.97% | 51 | 52.58% |
Paul Walmsley | 121 | 12.49% | 16 | 16.49% |
Rajendra Nayak | 102 | 10.53% | 8 | 8.25% |
Arnd Bergmann | 46 | 4.75% | 1 | 1.03% |
Tony Lindgren | 44 | 4.54% | 4 | 4.12% |
Dario Binacchi | 36 | 3.72% | 1 | 1.03% |
Russell King | 21 | 2.17% | 3 | 3.09% |
Jon Hunter | 18 | 1.86% | 2 | 2.06% |
Russ Dill | 16 | 1.65% | 1 | 1.03% |
Michael Turquette | 15 | 1.55% | 2 | 2.06% |
Andrii Tseglytskyi | 7 | 0.72% | 1 | 1.03% |
Richard Woodruff | 5 | 0.52% | 1 | 1.03% |
Ranjith Lohithakshan | 4 | 0.41% | 1 | 1.03% |
Stephen Boyd | 3 | 0.31% | 1 | 1.03% |
Andreas Kemnade | 3 | 0.31% | 1 | 1.03% |
Thomas Gleixner | 2 | 0.21% | 1 | 1.03% |
Tomi Valkeinen | 2 | 0.21% | 1 | 1.03% |
Benoît Cousson | 1 | 0.10% | 1 | 1.03% |
Total | 969 | 97 |
/* SPDX-License-Identifier: GPL-2.0-only */ /* * TI clock drivers support * * Copyright (C) 2013 Texas Instruments, Inc. */ #ifndef __LINUX_CLK_TI_H__ #define __LINUX_CLK_TI_H__ #include <linux/clk-provider.h> #include <linux/clkdev.h> /** * struct clk_omap_reg - OMAP register declaration * @offset: offset from the master IP module base address * @index: index of the master IP module */ struct clk_omap_reg { void __iomem *ptr; u16 offset; u8 index; u8 flags; }; /** * struct dpll_data - DPLL registers and integration data * @mult_div1_reg: register containing the DPLL M and N bitfields * @mult_mask: mask of the DPLL M bitfield in @mult_div1_reg * @div1_mask: mask of the DPLL N bitfield in @mult_div1_reg * @clk_bypass: struct clk_hw pointer to the clock's bypass clock input * @clk_ref: struct clk_hw pointer to the clock's reference clock input * @control_reg: register containing the DPLL mode bitfield * @enable_mask: mask of the DPLL mode bitfield in @control_reg * @last_rounded_rate: cache of the last rate result of omap2_dpll_round_rate() * @last_rounded_m: cache of the last M result of omap2_dpll_round_rate() * @last_rounded_m4xen: cache of the last M4X result of * omap4_dpll_regm4xen_round_rate() * @last_rounded_lpmode: cache of the last lpmode result of * omap4_dpll_lpmode_recalc() * @max_multiplier: maximum valid non-bypass multiplier value (actual) * @last_rounded_n: cache of the last N result of omap2_dpll_round_rate() * @min_divider: minimum valid non-bypass divider value (actual) * @max_divider: maximum valid non-bypass divider value (actual) * @max_rate: maximum clock rate for the DPLL * @modes: possible values of @enable_mask * @autoidle_reg: register containing the DPLL autoidle mode bitfield * @idlest_reg: register containing the DPLL idle status bitfield * @autoidle_mask: mask of the DPLL autoidle mode bitfield in @autoidle_reg * @freqsel_mask: mask of the DPLL jitter correction bitfield in @control_reg * @dcc_mask: mask of the DPLL DCC correction bitfield @mult_div1_reg * @dcc_rate: rate atleast which DCC @dcc_mask must be set * @idlest_mask: mask of the DPLL idle status bitfield in @idlest_reg * @lpmode_mask: mask of the DPLL low-power mode bitfield in @control_reg * @m4xen_mask: mask of the DPLL M4X multiplier bitfield in @control_reg * @auto_recal_bit: bitshift of the driftguard enable bit in @control_reg * @recal_en_bit: bitshift of the PRM_IRQENABLE_* bit for recalibration IRQs * @recal_st_bit: bitshift of the PRM_IRQSTATUS_* bit for recalibration IRQs * @ssc_deltam_reg: register containing the DPLL SSC frequency spreading * @ssc_modfreq_reg: register containing the DPLL SSC modulation frequency * @ssc_modfreq_mant_mask: mask of the mantissa component in @ssc_modfreq_reg * @ssc_modfreq_exp_mask: mask of the exponent component in @ssc_modfreq_reg * @ssc_enable_mask: mask of the DPLL SSC enable bit in @control_reg * @ssc_downspread_mask: mask of the DPLL SSC low frequency only bit in * @control_reg * @ssc_modfreq: the DPLL SSC frequency modulation in kHz * @ssc_deltam: the DPLL SSC frequency spreading in permille (10th of percent) * @ssc_downspread: require the only low frequency spread of the DPLL in SSC * mode * @flags: DPLL type/features (see below) * * Possible values for @flags: * DPLL_J_TYPE: "J-type DPLL" (only some 36xx, 4xxx DPLLs) * * @freqsel_mask is only used on the OMAP34xx family and AM35xx. * * XXX Some DPLLs have multiple bypass inputs, so it's not technically * correct to only have one @clk_bypass pointer. * * XXX The runtime-variable fields (@last_rounded_rate, @last_rounded_m, * @last_rounded_n) should be separated from the runtime-fixed fields * and placed into a different structure, so that the runtime-fixed data * can be placed into read-only space. */ struct dpll_data { struct clk_omap_reg mult_div1_reg; u32 mult_mask; u32 div1_mask; struct clk_hw *clk_bypass; struct clk_hw *clk_ref; struct clk_omap_reg control_reg; u32 enable_mask; unsigned long last_rounded_rate; u16 last_rounded_m; u8 last_rounded_m4xen; u8 last_rounded_lpmode; u16 max_multiplier; u8 last_rounded_n; u8 min_divider; u16 max_divider; unsigned long max_rate; u8 modes; struct clk_omap_reg autoidle_reg; struct clk_omap_reg idlest_reg; u32 autoidle_mask; u32 freqsel_mask; u32 idlest_mask; u32 dco_mask; u32 sddiv_mask; u32 dcc_mask; unsigned long dcc_rate; u32 lpmode_mask; u32 m4xen_mask; u8 auto_recal_bit; u8 recal_en_bit; u8 recal_st_bit; struct clk_omap_reg ssc_deltam_reg; struct clk_omap_reg ssc_modfreq_reg; u32 ssc_deltam_int_mask; u32 ssc_deltam_frac_mask; u32 ssc_modfreq_mant_mask; u32 ssc_modfreq_exp_mask; u32 ssc_enable_mask; u32 ssc_downspread_mask; u32 ssc_modfreq; u32 ssc_deltam; bool ssc_downspread; u8 flags; }; struct clk_hw_omap; /** * struct clk_hw_omap_ops - OMAP clk ops * @find_idlest: find idlest register information for a clock * @find_companion: find companion clock register information for a clock, * basically converts CM_ICLKEN* <-> CM_FCLKEN* * @allow_idle: enables autoidle hardware functionality for a clock * @deny_idle: prevent autoidle hardware functionality for a clock */ struct clk_hw_omap_ops { void (*find_idlest)(struct clk_hw_omap *oclk, struct clk_omap_reg *idlest_reg, u8 *idlest_bit, u8 *idlest_val); void (*find_companion)(struct clk_hw_omap *oclk, struct clk_omap_reg *other_reg, u8 *other_bit); void (*allow_idle)(struct clk_hw_omap *oclk); void (*deny_idle)(struct clk_hw_omap *oclk); }; /** * struct clk_hw_omap - OMAP struct clk * @node: list_head connecting this clock into the full clock list * @enable_reg: register to write to enable the clock (see @enable_bit) * @enable_bit: bitshift to write to enable/disable the clock (see @enable_reg) * @flags: see "struct clk.flags possibilities" above * @clksel_reg: for clksel clks, register va containing src/divisor select * @dpll_data: for DPLLs, pointer to struct dpll_data for this clock * @clkdm_name: clockdomain name that this clock is contained in * @clkdm: pointer to struct clockdomain, resolved from @clkdm_name at runtime * @ops: clock ops for this clock */ struct clk_hw_omap { struct clk_hw hw; struct list_head node; unsigned long fixed_rate; u8 fixed_div; struct clk_omap_reg enable_reg; u8 enable_bit; unsigned long flags; struct clk_omap_reg clksel_reg; struct dpll_data *dpll_data; const char *clkdm_name; struct clockdomain *clkdm; const struct clk_hw_omap_ops *ops; u32 context; int autoidle_count; }; /* * struct clk_hw_omap.flags possibilities * * XXX document the rest of the clock flags here * * ENABLE_REG_32BIT: (OMAP1 only) clock control register must be accessed * with 32bit ops, by default OMAP1 uses 16bit ops. * CLOCK_IDLE_CONTROL: (OMAP1 only) clock has autoidle support. * CLOCK_NO_IDLE_PARENT: (OMAP1 only) when clock is enabled, its parent * clock is put to no-idle mode. * ENABLE_ON_INIT: Clock is enabled on init. * INVERT_ENABLE: By default, clock enable bit behavior is '1' enable, '0' * disable. This inverts the behavior making '0' enable and '1' disable. * CLOCK_CLKOUTX2: (OMAP4 only) DPLL CLKOUT and CLKOUTX2 GATE_CTRL * bits share the same register. This flag allows the * omap4_dpllmx*() code to determine which GATE_CTRL bit field * should be used. This is a temporary solution - a better approach * would be to associate clock type-specific data with the clock, * similar to the struct dpll_data approach. */ #define ENABLE_REG_32BIT (1 << 0) /* Use 32-bit access */ #define CLOCK_IDLE_CONTROL (1 << 1) #define CLOCK_NO_IDLE_PARENT (1 << 2) #define ENABLE_ON_INIT (1 << 3) /* Enable upon framework init */ #define INVERT_ENABLE (1 << 4) /* 0 enables, 1 disables */ #define CLOCK_CLKOUTX2 (1 << 5) /* CM_CLKEN_PLL*.EN* bit values - not all are available for every DPLL */ #define DPLL_LOW_POWER_STOP 0x1 #define DPLL_LOW_POWER_BYPASS 0x5 #define DPLL_LOCKED 0x7 /* DPLL Type and DCO Selection Flags */ #define DPLL_J_TYPE 0x1 /* Static memmap indices */ enum { TI_CLKM_CM = 0, TI_CLKM_CM2, TI_CLKM_PRM, TI_CLKM_SCRM, TI_CLKM_CTRL, TI_CLKM_CTRL_AUX, TI_CLKM_PLLSS, CLK_MAX_MEMMAPS }; /** * struct ti_clk_ll_ops - low-level ops for clocks * @clk_readl: pointer to register read function * @clk_writel: pointer to register write function * @clk_rmw: pointer to register read-modify-write function * @clkdm_clk_enable: pointer to clockdomain enable function * @clkdm_clk_disable: pointer to clockdomain disable function * @clkdm_lookup: pointer to clockdomain lookup function * @cm_wait_module_ready: pointer to CM module wait ready function * @cm_split_idlest_reg: pointer to CM module function to split idlest reg * * Low-level ops are generally used by the basic clock types (clk-gate, * clk-mux, clk-divider etc.) to provide support for various low-level * hadrware interfaces (direct MMIO, regmap etc.), and is initialized * by board code. Low-level ops also contain some other platform specific * operations not provided directly by clock drivers. */ struct ti_clk_ll_ops { u32 (*clk_readl)(const struct clk_omap_reg *reg); void (*clk_writel)(u32 val, const struct clk_omap_reg *reg); void (*clk_rmw)(u32 val, u32 mask, const struct clk_omap_reg *reg); int (*clkdm_clk_enable)(struct clockdomain *clkdm, struct clk *clk); int (*clkdm_clk_disable)(struct clockdomain *clkdm, struct clk *clk); struct clockdomain * (*clkdm_lookup)(const char *name); int (*cm_wait_module_ready)(u8 part, s16 prcm_mod, u16 idlest_reg, u8 idlest_shift); int (*cm_split_idlest_reg)(struct clk_omap_reg *idlest_reg, s16 *prcm_inst, u8 *idlest_reg_id); }; #define to_clk_hw_omap(_hw) container_of(_hw, struct clk_hw_omap, hw) bool omap2_clk_is_hw_omap(struct clk_hw *hw); int omap2_clk_disable_autoidle_all(void); int omap2_clk_enable_autoidle_all(void); int omap2_clk_allow_idle(struct clk *clk); int omap2_clk_deny_idle(struct clk *clk); unsigned long omap2_dpllcore_recalc(struct clk_hw *hw, unsigned long parent_rate); int omap2_reprogram_dpllcore(struct clk_hw *clk, unsigned long rate, unsigned long parent_rate); void omap2xxx_clkt_dpllcore_init(struct clk_hw *hw); void omap2xxx_clkt_vps_init(void); unsigned long omap2_get_dpll_rate(struct clk_hw_omap *clk); void ti_dt_clk_init_retry_clks(void); void ti_dt_clockdomains_setup(void); int ti_clk_setup_ll_ops(struct ti_clk_ll_ops *ops); struct regmap; int omap2_clk_provider_init(struct device_node *parent, int index, struct regmap *syscon, void __iomem *mem); void omap2_clk_legacy_provider_init(int index, void __iomem *mem); int omap3430_dt_clk_init(void); int omap3630_dt_clk_init(void); int am35xx_dt_clk_init(void); int dm814x_dt_clk_init(void); int dm816x_dt_clk_init(void); int omap4xxx_dt_clk_init(void); int omap5xxx_dt_clk_init(void); int dra7xx_dt_clk_init(void); int am33xx_dt_clk_init(void); int am43xx_dt_clk_init(void); int omap2420_dt_clk_init(void); int omap2430_dt_clk_init(void); struct ti_clk_features { u32 flags; long fint_min; long fint_max; long fint_band1_max; long fint_band2_min; u8 dpll_bypass_vals; u8 cm_idlest_val; }; #define TI_CLK_DPLL_HAS_FREQSEL BIT(0) #define TI_CLK_DPLL4_DENY_REPROGRAM BIT(1) #define TI_CLK_DISABLE_CLKDM_CONTROL BIT(2) #define TI_CLK_ERRATA_I810 BIT(3) #define TI_CLK_CLKCTRL_COMPAT BIT(4) #define TI_CLK_DEVICE_TYPE_GP BIT(5) void ti_clk_setup_features(struct ti_clk_features *features); const struct ti_clk_features *ti_clk_get_features(void); bool ti_clk_is_in_standby(struct clk *clk); int omap3_noncore_dpll_save_context(struct clk_hw *hw); void omap3_noncore_dpll_restore_context(struct clk_hw *hw); int omap3_core_dpll_save_context(struct clk_hw *hw); void omap3_core_dpll_restore_context(struct clk_hw *hw); extern const struct clk_hw_omap_ops clkhwops_omap2xxx_dpll; #ifdef CONFIG_ATAGS int omap3430_clk_legacy_init(void); int omap3430es1_clk_legacy_init(void); int omap36xx_clk_legacy_init(void); int am35xx_clk_legacy_init(void); #else static inline int omap3430_clk_legacy_init(void) { return -ENXIO; } static inline int omap3430es1_clk_legacy_init(void) { return -ENXIO; } static inline int omap36xx_clk_legacy_init(void) { return -ENXIO; } static inline int am35xx_clk_legacy_init(void) { return -ENXIO; } #endif #endif
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1