Contributors: 60
Author |
Tokens |
Token Proportion |
Commits |
Commit Proportion |
Thomas Gleixner |
206 |
18.56% |
14 |
12.07% |
Ashok Raj |
64 |
5.77% |
3 |
2.59% |
Qais Yousef |
63 |
5.68% |
7 |
6.03% |
Andrew Morton |
62 |
5.59% |
8 |
6.90% |
Rafael J. Wysocki |
56 |
5.05% |
4 |
3.45% |
Nicholas Piggin |
53 |
4.77% |
3 |
2.59% |
Sudeep Holla |
48 |
4.32% |
4 |
3.45% |
Andi Kleen |
47 |
4.23% |
4 |
3.45% |
Rusty Russell |
41 |
3.69% |
7 |
6.03% |
Kay Sievers |
31 |
2.79% |
1 |
0.86% |
Christian Krafft |
26 |
2.34% |
1 |
0.86% |
Nathan Fontenot |
25 |
2.25% |
1 |
0.86% |
Daniel Lezcano |
24 |
2.16% |
2 |
1.72% |
Toshi Kani |
23 |
2.07% |
1 |
0.86% |
Liu Shuo |
23 |
2.07% |
1 |
0.86% |
Mike Travis |
22 |
1.98% |
1 |
0.86% |
Gautham R. Shenoy |
18 |
1.62% |
3 |
2.59% |
Vivek Goyal |
18 |
1.62% |
1 |
0.86% |
Linus Torvalds (pre-git) |
18 |
1.62% |
4 |
3.45% |
Rik Van Riel |
16 |
1.44% |
1 |
0.86% |
Peter Zijlstra |
15 |
1.35% |
3 |
2.59% |
Pawan Gupta |
15 |
1.35% |
2 |
1.72% |
Josh Poimboeuf |
15 |
1.35% |
2 |
1.72% |
Oleg Nesterov |
14 |
1.26% |
1 |
0.86% |
David S. Miller |
13 |
1.17% |
1 |
0.86% |
Patrick Mochel |
12 |
1.08% |
2 |
1.72% |
Len Brown |
11 |
0.99% |
1 |
0.86% |
Waiman Long |
10 |
0.90% |
1 |
0.86% |
Srivatsa S. Bhat |
8 |
0.72% |
1 |
0.86% |
Josh Triplett |
8 |
0.72% |
1 |
0.86% |
Benjamin Herrenschmidt |
8 |
0.72% |
1 |
0.86% |
Chris Metcalf |
8 |
0.72% |
1 |
0.86% |
Jiri Kosina |
7 |
0.63% |
1 |
0.86% |
Vineela Tummalapalli |
6 |
0.54% |
1 |
0.86% |
Paul E. McKenney |
6 |
0.54% |
1 |
0.86% |
Nico Pitre |
5 |
0.45% |
1 |
0.86% |
Igor Mammedov |
4 |
0.36% |
1 |
0.86% |
Ingo Molnar |
4 |
0.36% |
1 |
0.86% |
Andy Grover |
4 |
0.36% |
1 |
0.86% |
Tyler Hicks |
4 |
0.36% |
1 |
0.86% |
Manfred Spraul |
4 |
0.36% |
1 |
0.86% |
Michael Ellerman |
3 |
0.27% |
1 |
0.86% |
Jonathan Corbet |
3 |
0.27% |
1 |
0.86% |
Russell King |
3 |
0.27% |
1 |
0.86% |
Frédéric Weisbecker |
3 |
0.27% |
1 |
0.86% |
Konrad Rzeszutek Wilk |
3 |
0.27% |
1 |
0.86% |
Alexandre Chartre |
3 |
0.27% |
1 |
0.86% |
Borislav Petkov |
3 |
0.27% |
1 |
0.86% |
Arnd Bergmann |
3 |
0.27% |
1 |
0.86% |
Anton Vorontsov |
3 |
0.27% |
1 |
0.86% |
Joe Perches |
3 |
0.27% |
1 |
0.86% |
Pavel Machek |
3 |
0.27% |
1 |
0.86% |
Kamezawa Hiroyuki |
3 |
0.27% |
1 |
0.86% |
James Morse |
2 |
0.18% |
1 |
0.86% |
Suresh B. Siddha |
2 |
0.18% |
1 |
0.86% |
Robert P. J. Day |
1 |
0.09% |
1 |
0.86% |
Guenter Roeck |
1 |
0.09% |
1 |
0.86% |
Linus Torvalds |
1 |
0.09% |
1 |
0.86% |
Greg Kroah-Hartman |
1 |
0.09% |
1 |
0.86% |
Nicolas Iooss |
1 |
0.09% |
1 |
0.86% |
Total |
1110 |
|
116 |
|
/* SPDX-License-Identifier: GPL-2.0 */
/*
* include/linux/cpu.h - generic cpu definition
*
* This is mainly for topological representation. We define the
* basic 'struct cpu' here, which can be embedded in per-arch
* definitions of processors.
*
* Basic handling of the devices is done in drivers/base/cpu.c
*
* CPUs are exported via sysfs in the devices/system/cpu
* directory.
*/
#ifndef _LINUX_CPU_H_
#define _LINUX_CPU_H_
#include <linux/node.h>
#include <linux/compiler.h>
#include <linux/cpumask.h>
#include <linux/cpuhotplug.h>
#include <linux/cpu_smt.h>
struct device;
struct device_node;
struct attribute_group;
struct cpu {
int node_id; /* The node which contains the CPU */
int hotpluggable; /* creates sysfs control file if hotpluggable */
struct device dev;
};
extern void boot_cpu_init(void);
extern void boot_cpu_hotplug_init(void);
extern void cpu_init(void);
extern void trap_init(void);
extern int register_cpu(struct cpu *cpu, int num);
extern struct device *get_cpu_device(unsigned cpu);
extern bool cpu_is_hotpluggable(unsigned cpu);
extern bool arch_match_cpu_phys_id(int cpu, u64 phys_id);
extern bool arch_find_n_match_cpu_physical_id(struct device_node *cpun,
int cpu, unsigned int *thread);
extern int cpu_add_dev_attr(struct device_attribute *attr);
extern void cpu_remove_dev_attr(struct device_attribute *attr);
extern int cpu_add_dev_attr_group(struct attribute_group *attrs);
extern void cpu_remove_dev_attr_group(struct attribute_group *attrs);
extern ssize_t cpu_show_meltdown(struct device *dev,
struct device_attribute *attr, char *buf);
extern ssize_t cpu_show_spectre_v1(struct device *dev,
struct device_attribute *attr, char *buf);
extern ssize_t cpu_show_spectre_v2(struct device *dev,
struct device_attribute *attr, char *buf);
extern ssize_t cpu_show_spec_store_bypass(struct device *dev,
struct device_attribute *attr, char *buf);
extern ssize_t cpu_show_l1tf(struct device *dev,
struct device_attribute *attr, char *buf);
extern ssize_t cpu_show_mds(struct device *dev,
struct device_attribute *attr, char *buf);
extern ssize_t cpu_show_tsx_async_abort(struct device *dev,
struct device_attribute *attr,
char *buf);
extern ssize_t cpu_show_itlb_multihit(struct device *dev,
struct device_attribute *attr, char *buf);
extern ssize_t cpu_show_srbds(struct device *dev, struct device_attribute *attr, char *buf);
extern ssize_t cpu_show_mmio_stale_data(struct device *dev,
struct device_attribute *attr,
char *buf);
extern ssize_t cpu_show_retbleed(struct device *dev,
struct device_attribute *attr, char *buf);
extern ssize_t cpu_show_spec_rstack_overflow(struct device *dev,
struct device_attribute *attr, char *buf);
extern ssize_t cpu_show_gds(struct device *dev,
struct device_attribute *attr, char *buf);
extern __printf(4, 5)
struct device *cpu_device_create(struct device *parent, void *drvdata,
const struct attribute_group **groups,
const char *fmt, ...);
extern int arch_register_cpu(int cpu);
extern void arch_unregister_cpu(int cpu);
#ifdef CONFIG_HOTPLUG_CPU
extern void unregister_cpu(struct cpu *cpu);
extern ssize_t arch_cpu_probe(const char *, size_t);
extern ssize_t arch_cpu_release(const char *, size_t);
#endif
/*
* These states are not related to the core CPU hotplug mechanism. They are
* used by various (sub)architectures to track internal state
*/
#define CPU_ONLINE 0x0002 /* CPU is up */
#define CPU_UP_PREPARE 0x0003 /* CPU coming up */
#define CPU_DEAD 0x0007 /* CPU dead */
#define CPU_DEAD_FROZEN 0x0008 /* CPU timed out on unplug */
#define CPU_POST_DEAD 0x0009 /* CPU successfully unplugged */
#define CPU_BROKEN 0x000B /* CPU did not die properly */
#ifdef CONFIG_SMP
extern bool cpuhp_tasks_frozen;
int add_cpu(unsigned int cpu);
int cpu_device_up(struct device *dev);
void notify_cpu_starting(unsigned int cpu);
extern void cpu_maps_update_begin(void);
extern void cpu_maps_update_done(void);
int bringup_hibernate_cpu(unsigned int sleep_cpu);
void bringup_nonboot_cpus(unsigned int setup_max_cpus);
#else /* CONFIG_SMP */
#define cpuhp_tasks_frozen 0
static inline void cpu_maps_update_begin(void)
{
}
static inline void cpu_maps_update_done(void)
{
}
static inline int add_cpu(unsigned int cpu) { return 0;}
#endif /* CONFIG_SMP */
extern struct bus_type cpu_subsys;
extern int lockdep_is_cpus_held(void);
#ifdef CONFIG_HOTPLUG_CPU
extern void cpus_write_lock(void);
extern void cpus_write_unlock(void);
extern void cpus_read_lock(void);
extern void cpus_read_unlock(void);
extern int cpus_read_trylock(void);
extern void lockdep_assert_cpus_held(void);
extern void cpu_hotplug_disable(void);
extern void cpu_hotplug_enable(void);
void clear_tasks_mm_cpumask(int cpu);
int remove_cpu(unsigned int cpu);
int cpu_device_down(struct device *dev);
extern void smp_shutdown_nonboot_cpus(unsigned int primary_cpu);
#else /* CONFIG_HOTPLUG_CPU */
static inline void cpus_write_lock(void) { }
static inline void cpus_write_unlock(void) { }
static inline void cpus_read_lock(void) { }
static inline void cpus_read_unlock(void) { }
static inline int cpus_read_trylock(void) { return true; }
static inline void lockdep_assert_cpus_held(void) { }
static inline void cpu_hotplug_disable(void) { }
static inline void cpu_hotplug_enable(void) { }
static inline int remove_cpu(unsigned int cpu) { return -EPERM; }
static inline void smp_shutdown_nonboot_cpus(unsigned int primary_cpu) { }
#endif /* !CONFIG_HOTPLUG_CPU */
DEFINE_LOCK_GUARD_0(cpus_read_lock, cpus_read_lock(), cpus_read_unlock())
#ifdef CONFIG_PM_SLEEP_SMP
extern int freeze_secondary_cpus(int primary);
extern void thaw_secondary_cpus(void);
static inline int suspend_disable_secondary_cpus(void)
{
int cpu = 0;
if (IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU))
cpu = -1;
return freeze_secondary_cpus(cpu);
}
static inline void suspend_enable_secondary_cpus(void)
{
return thaw_secondary_cpus();
}
#else /* !CONFIG_PM_SLEEP_SMP */
static inline void thaw_secondary_cpus(void) {}
static inline int suspend_disable_secondary_cpus(void) { return 0; }
static inline void suspend_enable_secondary_cpus(void) { }
#endif /* !CONFIG_PM_SLEEP_SMP */
void __noreturn cpu_startup_entry(enum cpuhp_state state);
void cpu_idle_poll_ctrl(bool enable);
bool cpu_in_idle(unsigned long pc);
void arch_cpu_idle(void);
void arch_cpu_idle_prepare(void);
void arch_cpu_idle_enter(void);
void arch_cpu_idle_exit(void);
void __noreturn arch_cpu_idle_dead(void);
#ifdef CONFIG_ARCH_HAS_CPU_FINALIZE_INIT
void arch_cpu_finalize_init(void);
#else
static inline void arch_cpu_finalize_init(void) { }
#endif
void play_idle_precise(u64 duration_ns, u64 latency_ns);
static inline void play_idle(unsigned long duration_us)
{
play_idle_precise(duration_us * NSEC_PER_USEC, U64_MAX);
}
#ifdef CONFIG_HOTPLUG_CPU
void cpuhp_report_idle_dead(void);
#else
static inline void cpuhp_report_idle_dead(void) { }
#endif /* #ifdef CONFIG_HOTPLUG_CPU */
extern bool cpu_mitigations_off(void);
extern bool cpu_mitigations_auto_nosmt(void);
#endif /* _LINUX_CPU_H_ */