Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Viresh Kumar | 1192 | 29.40% | 67 | 33.33% |
Dominik Brodowski | 866 | 21.36% | 9 | 4.48% |
Dave Jones | 305 | 7.52% | 21 | 10.45% |
Rafael J. Wysocki | 282 | 6.96% | 29 | 14.43% |
Vincent Donnefort | 228 | 5.62% | 3 | 1.49% |
Hector.Yuan | 209 | 5.16% | 2 | 1.00% |
Venkatesh Pallipadi | 115 | 2.84% | 6 | 2.99% |
Hector Martin | 72 | 1.78% | 1 | 0.50% |
Nishanth Menon | 72 | 1.78% | 4 | 1.99% |
Lukasz Majewski | 69 | 1.70% | 2 | 1.00% |
Aaro Koskinen | 66 | 1.63% | 1 | 0.50% |
Borislav Petkov | 58 | 1.43% | 2 | 1.00% |
Andrew Morton | 49 | 1.21% | 1 | 0.50% |
Satyam Sharma | 39 | 0.96% | 1 | 0.50% |
Stratos Karafotis | 34 | 0.84% | 4 | 1.99% |
Srivatsa S. Bhat | 28 | 0.69% | 2 | 1.00% |
Ionela Voinescu | 26 | 0.64% | 3 | 1.49% |
Daniel Lezcano | 26 | 0.64% | 1 | 0.50% |
Daniel Vetter | 22 | 0.54% | 1 | 0.50% |
Chumbalkar Nagananda | 21 | 0.52% | 1 | 0.50% |
Thomas Renninger | 19 | 0.47% | 3 | 1.49% |
Dietmar Eggemann | 16 | 0.39% | 1 | 0.50% |
Steve Muckle | 16 | 0.39% | 1 | 0.50% |
Quentin Perret | 16 | 0.39% | 1 | 0.50% |
Konrad Rzeszutek Wilk | 15 | 0.37% | 1 | 0.50% |
Liao Chang | 15 | 0.37% | 2 | 1.00% |
Amit Kucheria | 15 | 0.37% | 2 | 1.00% |
Patrick Mochel | 13 | 0.32% | 1 | 0.50% |
Guan Xuetao | 13 | 0.32% | 1 | 0.50% |
Markus Mayer | 13 | 0.32% | 1 | 0.50% |
Randy Dunlap | 12 | 0.30% | 1 | 0.50% |
Fabio Baltieri | 11 | 0.27% | 1 | 0.50% |
Jesse Barnes | 11 | 0.27% | 1 | 0.50% |
Rickard Andersson | 11 | 0.27% | 1 | 0.50% |
Len Brown | 8 | 0.20% | 1 | 0.50% |
Björn Andersson | 8 | 0.20% | 1 | 0.50% |
Benjamin Herrenschmidt | 8 | 0.20% | 1 | 0.50% |
Thomas Petazzoni | 7 | 0.17% | 1 | 0.50% |
Shawn Guo | 7 | 0.17% | 1 | 0.50% |
Rusty Russell | 6 | 0.15% | 1 | 0.50% |
Bartlomiej Zolnierkiewicz | 5 | 0.12% | 1 | 0.50% |
Srinivas Pandruvada | 5 | 0.12% | 1 | 0.50% |
Deepak Sikri | 5 | 0.12% | 1 | 0.50% |
Darrick J. Wong | 3 | 0.07% | 1 | 0.50% |
Linus Torvalds | 2 | 0.05% | 1 | 0.50% |
Tim Schmielau | 2 | 0.05% | 1 | 0.50% |
Brian W Hart | 2 | 0.05% | 1 | 0.50% |
Thomas Gleixner | 2 | 0.05% | 1 | 0.50% |
Lan Tianyu | 2 | 0.05% | 1 | 0.50% |
Thiago Farina | 1 | 0.02% | 1 | 0.50% |
Jie Zhan | 1 | 0.02% | 1 | 0.50% |
Wyes Karny | 1 | 0.02% | 1 | 0.50% |
Saravana Kannan | 1 | 0.02% | 1 | 0.50% |
Uwe Kleine-König | 1 | 0.02% | 1 | 0.50% |
Wang Wenhu | 1 | 0.02% | 1 | 0.50% |
Valentin Schneider | 1 | 0.02% | 1 | 0.50% |
Total | 4054 | 201 |
/* SPDX-License-Identifier: GPL-2.0-only */ /* * linux/include/linux/cpufreq.h * * Copyright (C) 2001 Russell King * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> */ #ifndef _LINUX_CPUFREQ_H #define _LINUX_CPUFREQ_H #include <linux/clk.h> #include <linux/cpu.h> #include <linux/cpumask.h> #include <linux/completion.h> #include <linux/kobject.h> #include <linux/notifier.h> #include <linux/of.h> #include <linux/pm_opp.h> #include <linux/pm_qos.h> #include <linux/spinlock.h> #include <linux/sysfs.h> #include <linux/minmax.h> /********************************************************************* * CPUFREQ INTERFACE * *********************************************************************/ /* * Frequency values here are CPU kHz * * Maximum transition latency is in nanoseconds - if it's unknown, * CPUFREQ_ETERNAL shall be used. */ #define CPUFREQ_ETERNAL (-1) #define CPUFREQ_NAME_LEN 16 /* Print length for names. Extra 1 space for accommodating '\n' in prints */ #define CPUFREQ_NAME_PLEN (CPUFREQ_NAME_LEN + 1) struct cpufreq_governor; enum cpufreq_table_sorting { CPUFREQ_TABLE_UNSORTED, CPUFREQ_TABLE_SORTED_ASCENDING, CPUFREQ_TABLE_SORTED_DESCENDING }; struct cpufreq_cpuinfo { unsigned int max_freq; unsigned int min_freq; /* in 10^(-9) s = nanoseconds */ unsigned int transition_latency; }; struct cpufreq_policy { /* CPUs sharing clock, require sw coordination */ cpumask_var_t cpus; /* Online CPUs only */ cpumask_var_t related_cpus; /* Online + Offline CPUs */ cpumask_var_t real_cpus; /* Related and present */ unsigned int shared_type; /* ACPI: ANY or ALL affected CPUs should set cpufreq */ unsigned int cpu; /* cpu managing this policy, must be online */ struct clk *clk; struct cpufreq_cpuinfo cpuinfo;/* see above */ unsigned int min; /* in kHz */ unsigned int max; /* in kHz */ unsigned int cur; /* in kHz, only needed if cpufreq * governors are used */ unsigned int suspend_freq; /* freq to set during suspend */ unsigned int policy; /* see above */ unsigned int last_policy; /* policy before unplug */ struct cpufreq_governor *governor; /* see below */ void *governor_data; char last_governor[CPUFREQ_NAME_LEN]; /* last governor used */ struct work_struct update; /* if update_policy() needs to be * called, but you're in IRQ context */ struct freq_constraints constraints; struct freq_qos_request *min_freq_req; struct freq_qos_request *max_freq_req; struct cpufreq_frequency_table *freq_table; enum cpufreq_table_sorting freq_table_sorted; struct list_head policy_list; struct kobject kobj; struct completion kobj_unregister; /* * The rules for this semaphore: * - Any routine that wants to read from the policy structure will * do a down_read on this semaphore. * - Any routine that will write to the policy structure and/or may take away * the policy altogether (eg. CPU hotplug), will hold this lock in write * mode before doing so. */ struct rw_semaphore rwsem; /* * Fast switch flags: * - fast_switch_possible should be set by the driver if it can * guarantee that frequency can be changed on any CPU sharing the * policy and that the change will affect all of the policy CPUs then. * - fast_switch_enabled is to be set by governors that support fast * frequency switching with the help of cpufreq_enable_fast_switch(). */ bool fast_switch_possible; bool fast_switch_enabled; /* * Set if the CPUFREQ_GOV_STRICT_TARGET flag is set for the current * governor. */ bool strict_target; /* * Set if inefficient frequencies were found in the frequency table. * This indicates if the relation flag CPUFREQ_RELATION_E can be * honored. */ bool efficiencies_available; /* * Preferred average time interval between consecutive invocations of * the driver to set the frequency for this policy. To be set by the * scaling driver (0, which is the default, means no preference). */ unsigned int transition_delay_us; /* * Remote DVFS flag (Not added to the driver structure as we don't want * to access another structure from scheduler hotpath). * * Should be set if CPUs can do DVFS on behalf of other CPUs from * different cpufreq policies. */ bool dvfs_possible_from_any_cpu; /* Per policy boost enabled flag. */ bool boost_enabled; /* Cached frequency lookup from cpufreq_driver_resolve_freq. */ unsigned int cached_target_freq; unsigned int cached_resolved_idx; /* Synchronization for frequency transitions */ bool transition_ongoing; /* Tracks transition status */ spinlock_t transition_lock; wait_queue_head_t transition_wait; struct task_struct *transition_task; /* Task which is doing the transition */ /* cpufreq-stats */ struct cpufreq_stats *stats; /* For cpufreq driver's internal use */ void *driver_data; /* Pointer to the cooling device if used for thermal mitigation */ struct thermal_cooling_device *cdev; struct notifier_block nb_min; struct notifier_block nb_max; }; /* * Used for passing new cpufreq policy data to the cpufreq driver's ->verify() * callback for sanitization. That callback is only expected to modify the min * and max values, if necessary, and specifically it must not update the * frequency table. */ struct cpufreq_policy_data { struct cpufreq_cpuinfo cpuinfo; struct cpufreq_frequency_table *freq_table; unsigned int cpu; unsigned int min; /* in kHz */ unsigned int max; /* in kHz */ }; struct cpufreq_freqs { struct cpufreq_policy *policy; unsigned int old; unsigned int new; u8 flags; /* flags of cpufreq_driver, see below. */ }; /* Only for ACPI */ #define CPUFREQ_SHARED_TYPE_NONE (0) /* None */ #define CPUFREQ_SHARED_TYPE_HW (1) /* HW does needed coordination */ #define CPUFREQ_SHARED_TYPE_ALL (2) /* All dependent CPUs should set freq */ #define CPUFREQ_SHARED_TYPE_ANY (3) /* Freq can be set from any dependent CPU*/ #ifdef CONFIG_CPU_FREQ struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu); struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu); void cpufreq_cpu_put(struct cpufreq_policy *policy); #else static inline struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu) { return NULL; } static inline struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu) { return NULL; } static inline void cpufreq_cpu_put(struct cpufreq_policy *policy) { } #endif static inline bool policy_is_inactive(struct cpufreq_policy *policy) { return cpumask_empty(policy->cpus); } static inline bool policy_is_shared(struct cpufreq_policy *policy) { return cpumask_weight(policy->cpus) > 1; } #ifdef CONFIG_CPU_FREQ unsigned int cpufreq_get(unsigned int cpu); unsigned int cpufreq_quick_get(unsigned int cpu); unsigned int cpufreq_quick_get_max(unsigned int cpu); unsigned int cpufreq_get_hw_max_freq(unsigned int cpu); void disable_cpufreq(void); u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy); struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu); void cpufreq_cpu_release(struct cpufreq_policy *policy); int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu); void refresh_frequency_limits(struct cpufreq_policy *policy); void cpufreq_update_policy(unsigned int cpu); void cpufreq_update_limits(unsigned int cpu); bool have_governor_per_policy(void); bool cpufreq_supports_freq_invariance(void); struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy); void cpufreq_enable_fast_switch(struct cpufreq_policy *policy); void cpufreq_disable_fast_switch(struct cpufreq_policy *policy); bool has_target_index(void); #else static inline unsigned int cpufreq_get(unsigned int cpu) { return 0; } static inline unsigned int cpufreq_quick_get(unsigned int cpu) { return 0; } static inline unsigned int cpufreq_quick_get_max(unsigned int cpu) { return 0; } static inline unsigned int cpufreq_get_hw_max_freq(unsigned int cpu) { return 0; } static inline bool cpufreq_supports_freq_invariance(void) { return false; } static inline void disable_cpufreq(void) { } #endif #ifdef CONFIG_CPU_FREQ_STAT void cpufreq_stats_create_table(struct cpufreq_policy *policy); void cpufreq_stats_free_table(struct cpufreq_policy *policy); void cpufreq_stats_record_transition(struct cpufreq_policy *policy, unsigned int new_freq); #else static inline void cpufreq_stats_create_table(struct cpufreq_policy *policy) { } static inline void cpufreq_stats_free_table(struct cpufreq_policy *policy) { } static inline void cpufreq_stats_record_transition(struct cpufreq_policy *policy, unsigned int new_freq) { } #endif /* CONFIG_CPU_FREQ_STAT */ /********************************************************************* * CPUFREQ DRIVER INTERFACE * *********************************************************************/ #define CPUFREQ_RELATION_L 0 /* lowest frequency at or above target */ #define CPUFREQ_RELATION_H 1 /* highest frequency below or at target */ #define CPUFREQ_RELATION_C 2 /* closest frequency to target */ /* relation flags */ #define CPUFREQ_RELATION_E BIT(2) /* Get if possible an efficient frequency */ #define CPUFREQ_RELATION_LE (CPUFREQ_RELATION_L | CPUFREQ_RELATION_E) #define CPUFREQ_RELATION_HE (CPUFREQ_RELATION_H | CPUFREQ_RELATION_E) #define CPUFREQ_RELATION_CE (CPUFREQ_RELATION_C | CPUFREQ_RELATION_E) struct freq_attr { struct attribute attr; ssize_t (*show)(struct cpufreq_policy *, char *); ssize_t (*store)(struct cpufreq_policy *, const char *, size_t count); }; #define cpufreq_freq_attr_ro(_name) \ static struct freq_attr _name = \ __ATTR(_name, 0444, show_##_name, NULL) #define cpufreq_freq_attr_ro_perm(_name, _perm) \ static struct freq_attr _name = \ __ATTR(_name, _perm, show_##_name, NULL) #define cpufreq_freq_attr_rw(_name) \ static struct freq_attr _name = \ __ATTR(_name, 0644, show_##_name, store_##_name) #define cpufreq_freq_attr_wo(_name) \ static struct freq_attr _name = \ __ATTR(_name, 0200, NULL, store_##_name) #define define_one_global_ro(_name) \ static struct kobj_attribute _name = \ __ATTR(_name, 0444, show_##_name, NULL) #define define_one_global_rw(_name) \ static struct kobj_attribute _name = \ __ATTR(_name, 0644, show_##_name, store_##_name) struct cpufreq_driver { char name[CPUFREQ_NAME_LEN]; u16 flags; void *driver_data; /* needed by all drivers */ int (*init)(struct cpufreq_policy *policy); int (*verify)(struct cpufreq_policy_data *policy); /* define one out of two */ int (*setpolicy)(struct cpufreq_policy *policy); int (*target)(struct cpufreq_policy *policy, unsigned int target_freq, unsigned int relation); /* Deprecated */ int (*target_index)(struct cpufreq_policy *policy, unsigned int index); unsigned int (*fast_switch)(struct cpufreq_policy *policy, unsigned int target_freq); /* * ->fast_switch() replacement for drivers that use an internal * representation of performance levels and can pass hints other than * the target performance level to the hardware. This can only be set * if ->fast_switch is set too, because in those cases (under specific * conditions) scale invariance can be disabled, which causes the * schedutil governor to fall back to the latter. */ void (*adjust_perf)(unsigned int cpu, unsigned long min_perf, unsigned long target_perf, unsigned long capacity); /* * Only for drivers with target_index() and CPUFREQ_ASYNC_NOTIFICATION * unset. * * get_intermediate should return a stable intermediate frequency * platform wants to switch to and target_intermediate() should set CPU * to that frequency, before jumping to the frequency corresponding * to 'index'. Core will take care of sending notifications and driver * doesn't have to handle them in target_intermediate() or * target_index(). * * Drivers can return '0' from get_intermediate() in case they don't * wish to switch to intermediate frequency for some target frequency. * In that case core will directly call ->target_index(). */ unsigned int (*get_intermediate)(struct cpufreq_policy *policy, unsigned int index); int (*target_intermediate)(struct cpufreq_policy *policy, unsigned int index); /* should be defined, if possible, return 0 on error */ unsigned int (*get)(unsigned int cpu); /* Called to update policy limits on firmware notifications. */ void (*update_limits)(unsigned int cpu); /* optional */ int (*bios_limit)(int cpu, unsigned int *limit); int (*online)(struct cpufreq_policy *policy); int (*offline)(struct cpufreq_policy *policy); int (*exit)(struct cpufreq_policy *policy); int (*suspend)(struct cpufreq_policy *policy); int (*resume)(struct cpufreq_policy *policy); /* Will be called after the driver is fully initialized */ void (*ready)(struct cpufreq_policy *policy); struct freq_attr **attr; /* platform specific boost support code */ bool boost_enabled; int (*set_boost)(struct cpufreq_policy *policy, int state); /* * Set by drivers that want to register with the energy model after the * policy is properly initialized, but before the governor is started. */ void (*register_em)(struct cpufreq_policy *policy); }; /* flags */ /* * Set by drivers that need to update internal upper and lower boundaries along * with the target frequency and so the core and governors should also invoke * the diver if the target frequency does not change, but the policy min or max * may have changed. */ #define CPUFREQ_NEED_UPDATE_LIMITS BIT(0) /* loops_per_jiffy or other kernel "constants" aren't affected by frequency transitions */ #define CPUFREQ_CONST_LOOPS BIT(1) /* * Set by drivers that want the core to automatically register the cpufreq * driver as a thermal cooling device. */ #define CPUFREQ_IS_COOLING_DEV BIT(2) /* * This should be set by platforms having multiple clock-domains, i.e. * supporting multiple policies. With this sysfs directories of governor would * be created in cpu/cpu<num>/cpufreq/ directory and so they can use the same * governor with different tunables for different clusters. */ #define CPUFREQ_HAVE_GOVERNOR_PER_POLICY BIT(3) /* * Driver will do POSTCHANGE notifications from outside of their ->target() * routine and so must set cpufreq_driver->flags with this flag, so that core * can handle them specially. */ #define CPUFREQ_ASYNC_NOTIFICATION BIT(4) /* * Set by drivers which want cpufreq core to check if CPU is running at a * frequency present in freq-table exposed by the driver. For these drivers if * CPU is found running at an out of table freq, we will try to set it to a freq * from the table. And if that fails, we will stop further boot process by * issuing a BUG_ON(). */ #define CPUFREQ_NEED_INITIAL_FREQ_CHECK BIT(5) /* * Set by drivers to disallow use of governors with "dynamic_switching" flag * set. */ #define CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING BIT(6) int cpufreq_register_driver(struct cpufreq_driver *driver_data); void cpufreq_unregister_driver(struct cpufreq_driver *driver_data); bool cpufreq_driver_test_flags(u16 flags); const char *cpufreq_get_current_driver(void); void *cpufreq_get_driver_data(void); static inline int cpufreq_thermal_control_enabled(struct cpufreq_driver *drv) { return IS_ENABLED(CONFIG_CPU_THERMAL) && (drv->flags & CPUFREQ_IS_COOLING_DEV); } static inline void cpufreq_verify_within_limits(struct cpufreq_policy_data *policy, unsigned int min, unsigned int max) { policy->max = clamp(policy->max, min, max); policy->min = clamp(policy->min, min, policy->max); } static inline void cpufreq_verify_within_cpu_limits(struct cpufreq_policy_data *policy) { cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq, policy->cpuinfo.max_freq); } #ifdef CONFIG_CPU_FREQ void cpufreq_suspend(void); void cpufreq_resume(void); int cpufreq_generic_suspend(struct cpufreq_policy *policy); #else static inline void cpufreq_suspend(void) {} static inline void cpufreq_resume(void) {} #endif /********************************************************************* * CPUFREQ NOTIFIER INTERFACE * *********************************************************************/ #define CPUFREQ_TRANSITION_NOTIFIER (0) #define CPUFREQ_POLICY_NOTIFIER (1) /* Transition notifiers */ #define CPUFREQ_PRECHANGE (0) #define CPUFREQ_POSTCHANGE (1) /* Policy Notifiers */ #define CPUFREQ_CREATE_POLICY (0) #define CPUFREQ_REMOVE_POLICY (1) #ifdef CONFIG_CPU_FREQ int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list); int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list); void cpufreq_freq_transition_begin(struct cpufreq_policy *policy, struct cpufreq_freqs *freqs); void cpufreq_freq_transition_end(struct cpufreq_policy *policy, struct cpufreq_freqs *freqs, int transition_failed); #else /* CONFIG_CPU_FREQ */ static inline int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list) { return 0; } static inline int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list) { return 0; } #endif /* !CONFIG_CPU_FREQ */ /** * cpufreq_scale - "old * mult / div" calculation for large values (32-bit-arch * safe) * @old: old value * @div: divisor * @mult: multiplier * * * new = old * mult / div */ static inline unsigned long cpufreq_scale(unsigned long old, u_int div, u_int mult) { #if BITS_PER_LONG == 32 u64 result = ((u64) old) * ((u64) mult); do_div(result, div); return (unsigned long) result; #elif BITS_PER_LONG == 64 unsigned long result = old * ((u64) mult); result /= div; return result; #endif } /********************************************************************* * CPUFREQ GOVERNORS * *********************************************************************/ #define CPUFREQ_POLICY_UNKNOWN (0) /* * If (cpufreq_driver->target) exists, the ->governor decides what frequency * within the limits is used. If (cpufreq_driver->setpolicy> exists, these * two generic policies are available: */ #define CPUFREQ_POLICY_POWERSAVE (1) #define CPUFREQ_POLICY_PERFORMANCE (2) /* * The polling frequency depends on the capability of the processor. Default * polling frequency is 1000 times the transition latency of the processor. The * ondemand governor will work on any processor with transition latency <= 10ms, * using appropriate sampling rate. */ #define LATENCY_MULTIPLIER (1000) struct cpufreq_governor { char name[CPUFREQ_NAME_LEN]; int (*init)(struct cpufreq_policy *policy); void (*exit)(struct cpufreq_policy *policy); int (*start)(struct cpufreq_policy *policy); void (*stop)(struct cpufreq_policy *policy); void (*limits)(struct cpufreq_policy *policy); ssize_t (*show_setspeed) (struct cpufreq_policy *policy, char *buf); int (*store_setspeed) (struct cpufreq_policy *policy, unsigned int freq); struct list_head governor_list; struct module *owner; u8 flags; }; /* Governor flags */ /* For governors which change frequency dynamically by themselves */ #define CPUFREQ_GOV_DYNAMIC_SWITCHING BIT(0) /* For governors wanting the target frequency to be set exactly */ #define CPUFREQ_GOV_STRICT_TARGET BIT(1) /* Pass a target to the cpufreq driver */ unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy, unsigned int target_freq); void cpufreq_driver_adjust_perf(unsigned int cpu, unsigned long min_perf, unsigned long target_perf, unsigned long capacity); bool cpufreq_driver_has_adjust_perf(void); int cpufreq_driver_target(struct cpufreq_policy *policy, unsigned int target_freq, unsigned int relation); int __cpufreq_driver_target(struct cpufreq_policy *policy, unsigned int target_freq, unsigned int relation); unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy, unsigned int target_freq); unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy); int cpufreq_register_governor(struct cpufreq_governor *governor); void cpufreq_unregister_governor(struct cpufreq_governor *governor); int cpufreq_start_governor(struct cpufreq_policy *policy); void cpufreq_stop_governor(struct cpufreq_policy *policy); #define cpufreq_governor_init(__governor) \ static int __init __governor##_init(void) \ { \ return cpufreq_register_governor(&__governor); \ } \ core_initcall(__governor##_init) #define cpufreq_governor_exit(__governor) \ static void __exit __governor##_exit(void) \ { \ return cpufreq_unregister_governor(&__governor); \ } \ module_exit(__governor##_exit) struct cpufreq_governor *cpufreq_default_governor(void); struct cpufreq_governor *cpufreq_fallback_governor(void); static inline void cpufreq_policy_apply_limits(struct cpufreq_policy *policy) { if (policy->max < policy->cur) __cpufreq_driver_target(policy, policy->max, CPUFREQ_RELATION_HE); else if (policy->min > policy->cur) __cpufreq_driver_target(policy, policy->min, CPUFREQ_RELATION_LE); } /* Governor attribute set */ struct gov_attr_set { struct kobject kobj; struct list_head policy_list; struct mutex update_lock; int usage_count; }; /* sysfs ops for cpufreq governors */ extern const struct sysfs_ops governor_sysfs_ops; static inline struct gov_attr_set *to_gov_attr_set(struct kobject *kobj) { return container_of(kobj, struct gov_attr_set, kobj); } void gov_attr_set_init(struct gov_attr_set *attr_set, struct list_head *list_node); void gov_attr_set_get(struct gov_attr_set *attr_set, struct list_head *list_node); unsigned int gov_attr_set_put(struct gov_attr_set *attr_set, struct list_head *list_node); /* Governor sysfs attribute */ struct governor_attr { struct attribute attr; ssize_t (*show)(struct gov_attr_set *attr_set, char *buf); ssize_t (*store)(struct gov_attr_set *attr_set, const char *buf, size_t count); }; /********************************************************************* * FREQUENCY TABLE HELPERS * *********************************************************************/ /* Special Values of .frequency field */ #define CPUFREQ_ENTRY_INVALID ~0u #define CPUFREQ_TABLE_END ~1u /* Special Values of .flags field */ #define CPUFREQ_BOOST_FREQ (1 << 0) #define CPUFREQ_INEFFICIENT_FREQ (1 << 1) struct cpufreq_frequency_table { unsigned int flags; unsigned int driver_data; /* driver specific data, not used by core */ unsigned int frequency; /* kHz - doesn't need to be in ascending * order */ }; #if defined(CONFIG_CPU_FREQ) && defined(CONFIG_PM_OPP) int dev_pm_opp_init_cpufreq_table(struct device *dev, struct cpufreq_frequency_table **table); void dev_pm_opp_free_cpufreq_table(struct device *dev, struct cpufreq_frequency_table **table); #else static inline int dev_pm_opp_init_cpufreq_table(struct device *dev, struct cpufreq_frequency_table **table) { return -EINVAL; } static inline void dev_pm_opp_free_cpufreq_table(struct device *dev, struct cpufreq_frequency_table **table) { } #endif /* * cpufreq_for_each_entry - iterate over a cpufreq_frequency_table * @pos: the cpufreq_frequency_table * to use as a loop cursor. * @table: the cpufreq_frequency_table * to iterate over. */ #define cpufreq_for_each_entry(pos, table) \ for (pos = table; pos->frequency != CPUFREQ_TABLE_END; pos++) /* * cpufreq_for_each_entry_idx - iterate over a cpufreq_frequency_table * with index * @pos: the cpufreq_frequency_table * to use as a loop cursor. * @table: the cpufreq_frequency_table * to iterate over. * @idx: the table entry currently being processed */ #define cpufreq_for_each_entry_idx(pos, table, idx) \ for (pos = table, idx = 0; pos->frequency != CPUFREQ_TABLE_END; \ pos++, idx++) /* * cpufreq_for_each_valid_entry - iterate over a cpufreq_frequency_table * excluding CPUFREQ_ENTRY_INVALID frequencies. * @pos: the cpufreq_frequency_table * to use as a loop cursor. * @table: the cpufreq_frequency_table * to iterate over. */ #define cpufreq_for_each_valid_entry(pos, table) \ for (pos = table; pos->frequency != CPUFREQ_TABLE_END; pos++) \ if (pos->frequency == CPUFREQ_ENTRY_INVALID) \ continue; \ else /* * cpufreq_for_each_valid_entry_idx - iterate with index over a cpufreq * frequency_table excluding CPUFREQ_ENTRY_INVALID frequencies. * @pos: the cpufreq_frequency_table * to use as a loop cursor. * @table: the cpufreq_frequency_table * to iterate over. * @idx: the table entry currently being processed */ #define cpufreq_for_each_valid_entry_idx(pos, table, idx) \ cpufreq_for_each_entry_idx(pos, table, idx) \ if (pos->frequency == CPUFREQ_ENTRY_INVALID) \ continue; \ else /** * cpufreq_for_each_efficient_entry_idx - iterate with index over a cpufreq * frequency_table excluding CPUFREQ_ENTRY_INVALID and * CPUFREQ_INEFFICIENT_FREQ frequencies. * @pos: the &struct cpufreq_frequency_table to use as a loop cursor. * @table: the &struct cpufreq_frequency_table to iterate over. * @idx: the table entry currently being processed. * @efficiencies: set to true to only iterate over efficient frequencies. */ #define cpufreq_for_each_efficient_entry_idx(pos, table, idx, efficiencies) \ cpufreq_for_each_valid_entry_idx(pos, table, idx) \ if (efficiencies && (pos->flags & CPUFREQ_INEFFICIENT_FREQ)) \ continue; \ else int cpufreq_frequency_table_cpuinfo(struct cpufreq_policy *policy, struct cpufreq_frequency_table *table); int cpufreq_frequency_table_verify(struct cpufreq_policy_data *policy, struct cpufreq_frequency_table *table); int cpufreq_generic_frequency_table_verify(struct cpufreq_policy_data *policy); int cpufreq_table_index_unsorted(struct cpufreq_policy *policy, unsigned int target_freq, unsigned int relation); int cpufreq_frequency_table_get_index(struct cpufreq_policy *policy, unsigned int freq); ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf); #ifdef CONFIG_CPU_FREQ int cpufreq_boost_trigger_state(int state); int cpufreq_boost_enabled(void); int cpufreq_enable_boost_support(void); bool policy_has_boost_freq(struct cpufreq_policy *policy); /* Find lowest freq at or above target in a table in ascending order */ static inline int cpufreq_table_find_index_al(struct cpufreq_policy *policy, unsigned int target_freq, bool efficiencies) { struct cpufreq_frequency_table *table = policy->freq_table; struct cpufreq_frequency_table *pos; unsigned int freq; int idx, best = -1; cpufreq_for_each_efficient_entry_idx(pos, table, idx, efficiencies) { freq = pos->frequency; if (freq >= target_freq) return idx; best = idx; } return best; } /* Find lowest freq at or above target in a table in descending order */ static inline int cpufreq_table_find_index_dl(struct cpufreq_policy *policy, unsigned int target_freq, bool efficiencies) { struct cpufreq_frequency_table *table = policy->freq_table; struct cpufreq_frequency_table *pos; unsigned int freq; int idx, best = -1; cpufreq_for_each_efficient_entry_idx(pos, table, idx, efficiencies) { freq = pos->frequency; if (freq == target_freq) return idx; if (freq > target_freq) { best = idx; continue; } /* No freq found above target_freq */ if (best == -1) return idx; return best; } return best; } /* Works only on sorted freq-tables */ static inline int cpufreq_table_find_index_l(struct cpufreq_policy *policy, unsigned int target_freq, bool efficiencies) { target_freq = clamp_val(target_freq, policy->min, policy->max); if (policy->freq_table_sorted == CPUFREQ_TABLE_SORTED_ASCENDING) return cpufreq_table_find_index_al(policy, target_freq, efficiencies); else return cpufreq_table_find_index_dl(policy, target_freq, efficiencies); } /* Find highest freq at or below target in a table in ascending order */ static inline int cpufreq_table_find_index_ah(struct cpufreq_policy *policy, unsigned int target_freq, bool efficiencies) { struct cpufreq_frequency_table *table = policy->freq_table; struct cpufreq_frequency_table *pos; unsigned int freq; int idx, best = -1; cpufreq_for_each_efficient_entry_idx(pos, table, idx, efficiencies) { freq = pos->frequency; if (freq == target_freq) return idx; if (freq < target_freq) { best = idx; continue; } /* No freq found below target_freq */ if (best == -1) return idx; return best; } return best; } /* Find highest freq at or below target in a table in descending order */ static inline int cpufreq_table_find_index_dh(struct cpufreq_policy *policy, unsigned int target_freq, bool efficiencies) { struct cpufreq_frequency_table *table = policy->freq_table; struct cpufreq_frequency_table *pos; unsigned int freq; int idx, best = -1; cpufreq_for_each_efficient_entry_idx(pos, table, idx, efficiencies) { freq = pos->frequency; if (freq <= target_freq) return idx; best = idx; } return best; } /* Works only on sorted freq-tables */ static inline int cpufreq_table_find_index_h(struct cpufreq_policy *policy, unsigned int target_freq, bool efficiencies) { target_freq = clamp_val(target_freq, policy->min, policy->max); if (policy->freq_table_sorted == CPUFREQ_TABLE_SORTED_ASCENDING) return cpufreq_table_find_index_ah(policy, target_freq, efficiencies); else return cpufreq_table_find_index_dh(policy, target_freq, efficiencies); } /* Find closest freq to target in a table in ascending order */ static inline int cpufreq_table_find_index_ac(struct cpufreq_policy *policy, unsigned int target_freq, bool efficiencies) { struct cpufreq_frequency_table *table = policy->freq_table; struct cpufreq_frequency_table *pos; unsigned int freq; int idx, best = -1; cpufreq_for_each_efficient_entry_idx(pos, table, idx, efficiencies) { freq = pos->frequency; if (freq == target_freq) return idx; if (freq < target_freq) { best = idx; continue; } /* No freq found below target_freq */ if (best == -1) return idx; /* Choose the closest freq */ if (target_freq - table[best].frequency > freq - target_freq) return idx; return best; } return best; } /* Find closest freq to target in a table in descending order */ static inline int cpufreq_table_find_index_dc(struct cpufreq_policy *policy, unsigned int target_freq, bool efficiencies) { struct cpufreq_frequency_table *table = policy->freq_table; struct cpufreq_frequency_table *pos; unsigned int freq; int idx, best = -1; cpufreq_for_each_efficient_entry_idx(pos, table, idx, efficiencies) { freq = pos->frequency; if (freq == target_freq) return idx; if (freq > target_freq) { best = idx; continue; } /* No freq found above target_freq */ if (best == -1) return idx; /* Choose the closest freq */ if (table[best].frequency - target_freq > target_freq - freq) return idx; return best; } return best; } /* Works only on sorted freq-tables */ static inline int cpufreq_table_find_index_c(struct cpufreq_policy *policy, unsigned int target_freq, bool efficiencies) { target_freq = clamp_val(target_freq, policy->min, policy->max); if (policy->freq_table_sorted == CPUFREQ_TABLE_SORTED_ASCENDING) return cpufreq_table_find_index_ac(policy, target_freq, efficiencies); else return cpufreq_table_find_index_dc(policy, target_freq, efficiencies); } static inline int cpufreq_frequency_table_target(struct cpufreq_policy *policy, unsigned int target_freq, unsigned int relation) { bool efficiencies = policy->efficiencies_available && (relation & CPUFREQ_RELATION_E); int idx; /* cpufreq_table_index_unsorted() has no use for this flag anyway */ relation &= ~CPUFREQ_RELATION_E; if (unlikely(policy->freq_table_sorted == CPUFREQ_TABLE_UNSORTED)) return cpufreq_table_index_unsorted(policy, target_freq, relation); retry: switch (relation) { case CPUFREQ_RELATION_L: idx = cpufreq_table_find_index_l(policy, target_freq, efficiencies); break; case CPUFREQ_RELATION_H: idx = cpufreq_table_find_index_h(policy, target_freq, efficiencies); break; case CPUFREQ_RELATION_C: idx = cpufreq_table_find_index_c(policy, target_freq, efficiencies); break; default: WARN_ON_ONCE(1); return 0; } if (idx < 0 && efficiencies) { efficiencies = false; goto retry; } return idx; } static inline int cpufreq_table_count_valid_entries(const struct cpufreq_policy *policy) { struct cpufreq_frequency_table *pos; int count = 0; if (unlikely(!policy->freq_table)) return 0; cpufreq_for_each_valid_entry(pos, policy->freq_table) count++; return count; } /** * cpufreq_table_set_inefficient() - Mark a frequency as inefficient * @policy: the &struct cpufreq_policy containing the inefficient frequency * @frequency: the inefficient frequency * * The &struct cpufreq_policy must use a sorted frequency table * * Return: %0 on success or a negative errno code */ static inline int cpufreq_table_set_inefficient(struct cpufreq_policy *policy, unsigned int frequency) { struct cpufreq_frequency_table *pos; /* Not supported */ if (policy->freq_table_sorted == CPUFREQ_TABLE_UNSORTED) return -EINVAL; cpufreq_for_each_valid_entry(pos, policy->freq_table) { if (pos->frequency == frequency) { pos->flags |= CPUFREQ_INEFFICIENT_FREQ; policy->efficiencies_available = true; return 0; } } return -EINVAL; } static inline int parse_perf_domain(int cpu, const char *list_name, const char *cell_name, struct of_phandle_args *args) { struct device_node *cpu_np; int ret; cpu_np = of_cpu_device_node_get(cpu); if (!cpu_np) return -ENODEV; ret = of_parse_phandle_with_args(cpu_np, list_name, cell_name, 0, args); if (ret < 0) return ret; of_node_put(cpu_np); return 0; } static inline int of_perf_domain_get_sharing_cpumask(int pcpu, const char *list_name, const char *cell_name, struct cpumask *cpumask, struct of_phandle_args *pargs) { int cpu, ret; struct of_phandle_args args; ret = parse_perf_domain(pcpu, list_name, cell_name, pargs); if (ret < 0) return ret; cpumask_set_cpu(pcpu, cpumask); for_each_possible_cpu(cpu) { if (cpu == pcpu) continue; ret = parse_perf_domain(cpu, list_name, cell_name, &args); if (ret < 0) continue; if (pargs->np == args.np && pargs->args_count == args.args_count && !memcmp(pargs->args, args.args, sizeof(args.args[0]) * args.args_count)) cpumask_set_cpu(cpu, cpumask); of_node_put(args.np); } return 0; } #else static inline int cpufreq_boost_trigger_state(int state) { return 0; } static inline int cpufreq_boost_enabled(void) { return 0; } static inline int cpufreq_enable_boost_support(void) { return -EINVAL; } static inline bool policy_has_boost_freq(struct cpufreq_policy *policy) { return false; } static inline int cpufreq_table_set_inefficient(struct cpufreq_policy *policy, unsigned int frequency) { return -EINVAL; } static inline int of_perf_domain_get_sharing_cpumask(int pcpu, const char *list_name, const char *cell_name, struct cpumask *cpumask, struct of_phandle_args *pargs) { return -EOPNOTSUPP; } #endif extern unsigned int arch_freq_get_on_cpu(int cpu); #ifndef arch_set_freq_scale static __always_inline void arch_set_freq_scale(const struct cpumask *cpus, unsigned long cur_freq, unsigned long max_freq) { } #endif /* the following are really really optional */ extern struct freq_attr cpufreq_freq_attr_scaling_available_freqs; extern struct freq_attr cpufreq_freq_attr_scaling_boost_freqs; extern struct freq_attr *cpufreq_generic_attr[]; int cpufreq_table_validate_and_sort(struct cpufreq_policy *policy); unsigned int cpufreq_generic_get(unsigned int cpu); void cpufreq_generic_init(struct cpufreq_policy *policy, struct cpufreq_frequency_table *table, unsigned int transition_latency); static inline void cpufreq_register_em_with_opp(struct cpufreq_policy *policy) { dev_pm_opp_of_register_em(get_cpu_device(policy->cpu), policy->related_cpus); } #endif /* _LINUX_CPUFREQ_H */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1