Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Rusty Russell | 1531 | 48.56% | 17 | 15.32% |
Yury Norov | 311 | 9.86% | 12 | 10.81% |
Peter Zijlstra | 231 | 7.33% | 7 | 6.31% |
Andrew Morton | 140 | 4.44% | 6 | 5.41% |
Linus Torvalds | 112 | 3.55% | 5 | 4.50% |
Mike Travis | 94 | 2.98% | 4 | 3.60% |
Thomas Gleixner | 86 | 2.73% | 4 | 3.60% |
Rasmus Villemoes | 84 | 2.66% | 5 | 4.50% |
Sander Vanheule | 68 | 2.16% | 5 | 4.50% |
Sudeep Holla | 59 | 1.87% | 1 | 0.90% |
Randy Dunlap | 41 | 1.30% | 1 | 0.90% |
Tian Tao | 40 | 1.27% | 1 | 0.90% |
Tejun Heo | 40 | 1.27% | 4 | 3.60% |
Xiao Guangrong | 36 | 1.14% | 1 | 0.90% |
Tetsuo Handa | 31 | 0.98% | 1 | 0.90% |
Matthias Kaehlcke | 28 | 0.89% | 1 | 0.90% |
Yinghai Lu | 26 | 0.82% | 1 | 0.90% |
Paul Turner | 25 | 0.79% | 1 | 0.90% |
Amir Vadai | 22 | 0.70% | 1 | 0.90% |
Amritha Nambiar | 15 | 0.48% | 1 | 0.90% |
Rakib Mullick | 15 | 0.48% | 1 | 0.90% |
Christoph Lameter | 14 | 0.44% | 1 | 0.90% |
David Chinner | 13 | 0.41% | 1 | 0.90% |
Alexey Dobriyan | 10 | 0.32% | 4 | 3.60% |
Phil Auld | 9 | 0.29% | 2 | 1.80% |
Rafael J. Wysocki | 9 | 0.29% | 2 | 1.80% |
Borislav Petkov | 9 | 0.29% | 2 | 1.80% |
Waiman Long | 7 | 0.22% | 1 | 0.90% |
Clement Courbet | 7 | 0.22% | 1 | 0.90% |
Kamezawa Hiroyuki | 6 | 0.19% | 1 | 0.90% |
Tobias Klauser | 4 | 0.13% | 1 | 0.90% |
Valentin Schneider | 4 | 0.13% | 1 | 0.90% |
Heiko Carstens | 4 | 0.13% | 1 | 0.90% |
Petr Holasek | 3 | 0.10% | 1 | 0.90% |
Nadia Yvette Chambers | 3 | 0.10% | 1 | 0.90% |
Paul Gortmaker | 3 | 0.10% | 1 | 0.90% |
Linus Torvalds (pre-git) | 3 | 0.10% | 2 | 1.80% |
Maksim Krasnyanskiy | 2 | 0.06% | 1 | 0.90% |
Harvey Harrison | 2 | 0.06% | 1 | 0.90% |
Matthew Dobson | 1 | 0.03% | 1 | 0.90% |
Motohiro Kosaki | 1 | 0.03% | 1 | 0.90% |
Zhen Lei | 1 | 0.03% | 1 | 0.90% |
Andy Shevchenko | 1 | 0.03% | 1 | 0.90% |
Greg Kroah-Hartman | 1 | 0.03% | 1 | 0.90% |
Mark Rutland | 1 | 0.03% | 1 | 0.90% |
Total | 3153 | 111 |
/* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_CPUMASK_H #define __LINUX_CPUMASK_H /* * Cpumasks provide a bitmap suitable for representing the * set of CPUs in a system, one bit position per CPU number. In general, * only nr_cpu_ids (<= NR_CPUS) bits are valid. */ #include <linux/kernel.h> #include <linux/threads.h> #include <linux/bitmap.h> #include <linux/atomic.h> #include <linux/bug.h> #include <linux/gfp_types.h> #include <linux/numa.h> /* Don't assign or return these: may not be this big! */ typedef struct cpumask { DECLARE_BITMAP(bits, NR_CPUS); } cpumask_t; /** * cpumask_bits - get the bits in a cpumask * @maskp: the struct cpumask * * * You should only assume nr_cpu_ids bits of this mask are valid. This is * a macro so it's const-correct. */ #define cpumask_bits(maskp) ((maskp)->bits) /** * cpumask_pr_args - printf args to output a cpumask * @maskp: cpumask to be printed * * Can be used to provide arguments for '%*pb[l]' when printing a cpumask. */ #define cpumask_pr_args(maskp) nr_cpu_ids, cpumask_bits(maskp) #if (NR_CPUS == 1) || defined(CONFIG_FORCE_NR_CPUS) #define nr_cpu_ids ((unsigned int)NR_CPUS) #else extern unsigned int nr_cpu_ids; #endif static inline void set_nr_cpu_ids(unsigned int nr) { #if (NR_CPUS == 1) || defined(CONFIG_FORCE_NR_CPUS) WARN_ON(nr != nr_cpu_ids); #else nr_cpu_ids = nr; #endif } /* * We have several different "preferred sizes" for the cpumask * operations, depending on operation. * * For example, the bitmap scanning and operating operations have * optimized routines that work for the single-word case, but only when * the size is constant. So if NR_CPUS fits in one single word, we are * better off using that small constant, in order to trigger the * optimized bit finding. That is 'small_cpumask_size'. * * The clearing and copying operations will similarly perform better * with a constant size, but we limit that size arbitrarily to four * words. We call this 'large_cpumask_size'. * * Finally, some operations just want the exact limit, either because * they set bits or just don't have any faster fixed-sized versions. We * call this just 'nr_cpumask_bits'. * * Note that these optional constants are always guaranteed to be at * least as big as 'nr_cpu_ids' itself is, and all our cpumask * allocations are at least that size (see cpumask_size()). The * optimization comes from being able to potentially use a compile-time * constant instead of a run-time generated exact number of CPUs. */ #if NR_CPUS <= BITS_PER_LONG #define small_cpumask_bits ((unsigned int)NR_CPUS) #define large_cpumask_bits ((unsigned int)NR_CPUS) #elif NR_CPUS <= 4*BITS_PER_LONG #define small_cpumask_bits nr_cpu_ids #define large_cpumask_bits ((unsigned int)NR_CPUS) #else #define small_cpumask_bits nr_cpu_ids #define large_cpumask_bits nr_cpu_ids #endif #define nr_cpumask_bits nr_cpu_ids /* * The following particular system cpumasks and operations manage * possible, present, active and online cpus. * * cpu_possible_mask- has bit 'cpu' set iff cpu is populatable * cpu_present_mask - has bit 'cpu' set iff cpu is populated * cpu_online_mask - has bit 'cpu' set iff cpu available to scheduler * cpu_active_mask - has bit 'cpu' set iff cpu available to migration * * If !CONFIG_HOTPLUG_CPU, present == possible, and active == online. * * The cpu_possible_mask is fixed at boot time, as the set of CPU IDs * that it is possible might ever be plugged in at anytime during the * life of that system boot. The cpu_present_mask is dynamic(*), * representing which CPUs are currently plugged in. And * cpu_online_mask is the dynamic subset of cpu_present_mask, * indicating those CPUs available for scheduling. * * If HOTPLUG is enabled, then cpu_present_mask varies dynamically, * depending on what ACPI reports as currently plugged in, otherwise * cpu_present_mask is just a copy of cpu_possible_mask. * * (*) Well, cpu_present_mask is dynamic in the hotplug case. If not * hotplug, it's a copy of cpu_possible_mask, hence fixed at boot. * * Subtleties: * 1) UP ARCHes (NR_CPUS == 1, CONFIG_SMP not defined) hardcode * assumption that their single CPU is online. The UP * cpu_{online,possible,present}_masks are placebos. Changing them * will have no useful affect on the following num_*_cpus() * and cpu_*() macros in the UP case. This ugliness is a UP * optimization - don't waste any instructions or memory references * asking if you're online or how many CPUs there are if there is * only one CPU. */ extern struct cpumask __cpu_possible_mask; extern struct cpumask __cpu_online_mask; extern struct cpumask __cpu_present_mask; extern struct cpumask __cpu_active_mask; extern struct cpumask __cpu_dying_mask; #define cpu_possible_mask ((const struct cpumask *)&__cpu_possible_mask) #define cpu_online_mask ((const struct cpumask *)&__cpu_online_mask) #define cpu_present_mask ((const struct cpumask *)&__cpu_present_mask) #define cpu_active_mask ((const struct cpumask *)&__cpu_active_mask) #define cpu_dying_mask ((const struct cpumask *)&__cpu_dying_mask) extern atomic_t __num_online_cpus; extern cpumask_t cpus_booted_once_mask; static __always_inline void cpu_max_bits_warn(unsigned int cpu, unsigned int bits) { #ifdef CONFIG_DEBUG_PER_CPU_MAPS WARN_ON_ONCE(cpu >= bits); #endif /* CONFIG_DEBUG_PER_CPU_MAPS */ } /* verify cpu argument to cpumask_* operators */ static __always_inline unsigned int cpumask_check(unsigned int cpu) { cpu_max_bits_warn(cpu, small_cpumask_bits); return cpu; } /** * cpumask_first - get the first cpu in a cpumask * @srcp: the cpumask pointer * * Return: >= nr_cpu_ids if no cpus set. */ static inline unsigned int cpumask_first(const struct cpumask *srcp) { return find_first_bit(cpumask_bits(srcp), small_cpumask_bits); } /** * cpumask_first_zero - get the first unset cpu in a cpumask * @srcp: the cpumask pointer * * Return: >= nr_cpu_ids if all cpus are set. */ static inline unsigned int cpumask_first_zero(const struct cpumask *srcp) { return find_first_zero_bit(cpumask_bits(srcp), small_cpumask_bits); } /** * cpumask_first_and - return the first cpu from *srcp1 & *srcp2 * @srcp1: the first input * @srcp2: the second input * * Return: >= nr_cpu_ids if no cpus set in both. See also cpumask_next_and(). */ static inline unsigned int cpumask_first_and(const struct cpumask *srcp1, const struct cpumask *srcp2) { return find_first_and_bit(cpumask_bits(srcp1), cpumask_bits(srcp2), small_cpumask_bits); } /** * cpumask_last - get the last CPU in a cpumask * @srcp: - the cpumask pointer * * Return: >= nr_cpumask_bits if no CPUs set. */ static inline unsigned int cpumask_last(const struct cpumask *srcp) { return find_last_bit(cpumask_bits(srcp), small_cpumask_bits); } /** * cpumask_next - get the next cpu in a cpumask * @n: the cpu prior to the place to search (i.e. return will be > @n) * @srcp: the cpumask pointer * * Return: >= nr_cpu_ids if no further cpus set. */ static inline unsigned int cpumask_next(int n, const struct cpumask *srcp) { /* -1 is a legal arg here. */ if (n != -1) cpumask_check(n); return find_next_bit(cpumask_bits(srcp), small_cpumask_bits, n + 1); } /** * cpumask_next_zero - get the next unset cpu in a cpumask * @n: the cpu prior to the place to search (i.e. return will be > @n) * @srcp: the cpumask pointer * * Return: >= nr_cpu_ids if no further cpus unset. */ static inline unsigned int cpumask_next_zero(int n, const struct cpumask *srcp) { /* -1 is a legal arg here. */ if (n != -1) cpumask_check(n); return find_next_zero_bit(cpumask_bits(srcp), small_cpumask_bits, n+1); } #if NR_CPUS == 1 /* Uniprocessor: there is only one valid CPU */ static inline unsigned int cpumask_local_spread(unsigned int i, int node) { return 0; } static inline unsigned int cpumask_any_and_distribute(const struct cpumask *src1p, const struct cpumask *src2p) { return cpumask_first_and(src1p, src2p); } static inline unsigned int cpumask_any_distribute(const struct cpumask *srcp) { return cpumask_first(srcp); } #else unsigned int cpumask_local_spread(unsigned int i, int node); unsigned int cpumask_any_and_distribute(const struct cpumask *src1p, const struct cpumask *src2p); unsigned int cpumask_any_distribute(const struct cpumask *srcp); #endif /* NR_CPUS */ /** * cpumask_next_and - get the next cpu in *src1p & *src2p * @n: the cpu prior to the place to search (i.e. return will be > @n) * @src1p: the first cpumask pointer * @src2p: the second cpumask pointer * * Return: >= nr_cpu_ids if no further cpus set in both. */ static inline unsigned int cpumask_next_and(int n, const struct cpumask *src1p, const struct cpumask *src2p) { /* -1 is a legal arg here. */ if (n != -1) cpumask_check(n); return find_next_and_bit(cpumask_bits(src1p), cpumask_bits(src2p), small_cpumask_bits, n + 1); } /** * for_each_cpu - iterate over every cpu in a mask * @cpu: the (optionally unsigned) integer iterator * @mask: the cpumask pointer * * After the loop, cpu is >= nr_cpu_ids. */ #define for_each_cpu(cpu, mask) \ for_each_set_bit(cpu, cpumask_bits(mask), small_cpumask_bits) #if NR_CPUS == 1 static inline unsigned int cpumask_next_wrap(int n, const struct cpumask *mask, int start, bool wrap) { cpumask_check(start); if (n != -1) cpumask_check(n); /* * Return the first available CPU when wrapping, or when starting before cpu0, * since there is only one valid option. */ if (wrap && n >= 0) return nr_cpumask_bits; return cpumask_first(mask); } #else unsigned int __pure cpumask_next_wrap(int n, const struct cpumask *mask, int start, bool wrap); #endif /** * for_each_cpu_wrap - iterate over every cpu in a mask, starting at a specified location * @cpu: the (optionally unsigned) integer iterator * @mask: the cpumask pointer * @start: the start location * * The implementation does not assume any bit in @mask is set (including @start). * * After the loop, cpu is >= nr_cpu_ids. */ #define for_each_cpu_wrap(cpu, mask, start) \ for_each_set_bit_wrap(cpu, cpumask_bits(mask), small_cpumask_bits, start) /** * for_each_cpu_and - iterate over every cpu in both masks * @cpu: the (optionally unsigned) integer iterator * @mask1: the first cpumask pointer * @mask2: the second cpumask pointer * * This saves a temporary CPU mask in many places. It is equivalent to: * struct cpumask tmp; * cpumask_and(&tmp, &mask1, &mask2); * for_each_cpu(cpu, &tmp) * ... * * After the loop, cpu is >= nr_cpu_ids. */ #define for_each_cpu_and(cpu, mask1, mask2) \ for_each_and_bit(cpu, cpumask_bits(mask1), cpumask_bits(mask2), small_cpumask_bits) /** * for_each_cpu_andnot - iterate over every cpu present in one mask, excluding * those present in another. * @cpu: the (optionally unsigned) integer iterator * @mask1: the first cpumask pointer * @mask2: the second cpumask pointer * * This saves a temporary CPU mask in many places. It is equivalent to: * struct cpumask tmp; * cpumask_andnot(&tmp, &mask1, &mask2); * for_each_cpu(cpu, &tmp) * ... * * After the loop, cpu is >= nr_cpu_ids. */ #define for_each_cpu_andnot(cpu, mask1, mask2) \ for_each_andnot_bit(cpu, cpumask_bits(mask1), cpumask_bits(mask2), small_cpumask_bits) /** * for_each_cpu_or - iterate over every cpu present in either mask * @cpu: the (optionally unsigned) integer iterator * @mask1: the first cpumask pointer * @mask2: the second cpumask pointer * * This saves a temporary CPU mask in many places. It is equivalent to: * struct cpumask tmp; * cpumask_or(&tmp, &mask1, &mask2); * for_each_cpu(cpu, &tmp) * ... * * After the loop, cpu is >= nr_cpu_ids. */ #define for_each_cpu_or(cpu, mask1, mask2) \ for_each_or_bit(cpu, cpumask_bits(mask1), cpumask_bits(mask2), small_cpumask_bits) /** * cpumask_any_but - return a "random" in a cpumask, but not this one. * @mask: the cpumask to search * @cpu: the cpu to ignore. * * Often used to find any cpu but smp_processor_id() in a mask. * Return: >= nr_cpu_ids if no cpus set. */ static inline unsigned int cpumask_any_but(const struct cpumask *mask, unsigned int cpu) { unsigned int i; cpumask_check(cpu); for_each_cpu(i, mask) if (i != cpu) break; return i; } /** * cpumask_nth - get the Nth cpu in a cpumask * @srcp: the cpumask pointer * @cpu: the Nth cpu to find, starting from 0 * * Return: >= nr_cpu_ids if such cpu doesn't exist. */ static inline unsigned int cpumask_nth(unsigned int cpu, const struct cpumask *srcp) { return find_nth_bit(cpumask_bits(srcp), small_cpumask_bits, cpumask_check(cpu)); } /** * cpumask_nth_and - get the Nth cpu in 2 cpumasks * @srcp1: the cpumask pointer * @srcp2: the cpumask pointer * @cpu: the Nth cpu to find, starting from 0 * * Return: >= nr_cpu_ids if such cpu doesn't exist. */ static inline unsigned int cpumask_nth_and(unsigned int cpu, const struct cpumask *srcp1, const struct cpumask *srcp2) { return find_nth_and_bit(cpumask_bits(srcp1), cpumask_bits(srcp2), small_cpumask_bits, cpumask_check(cpu)); } /** * cpumask_nth_andnot - get the Nth cpu set in 1st cpumask, and clear in 2nd. * @srcp1: the cpumask pointer * @srcp2: the cpumask pointer * @cpu: the Nth cpu to find, starting from 0 * * Return: >= nr_cpu_ids if such cpu doesn't exist. */ static inline unsigned int cpumask_nth_andnot(unsigned int cpu, const struct cpumask *srcp1, const struct cpumask *srcp2) { return find_nth_andnot_bit(cpumask_bits(srcp1), cpumask_bits(srcp2), small_cpumask_bits, cpumask_check(cpu)); } /** * cpumask_nth_and_andnot - get the Nth cpu set in 1st and 2nd cpumask, and clear in 3rd. * @srcp1: the cpumask pointer * @srcp2: the cpumask pointer * @srcp3: the cpumask pointer * @cpu: the Nth cpu to find, starting from 0 * * Return: >= nr_cpu_ids if such cpu doesn't exist. */ static __always_inline unsigned int cpumask_nth_and_andnot(unsigned int cpu, const struct cpumask *srcp1, const struct cpumask *srcp2, const struct cpumask *srcp3) { return find_nth_and_andnot_bit(cpumask_bits(srcp1), cpumask_bits(srcp2), cpumask_bits(srcp3), small_cpumask_bits, cpumask_check(cpu)); } #define CPU_BITS_NONE \ { \ [0 ... BITS_TO_LONGS(NR_CPUS)-1] = 0UL \ } #define CPU_BITS_CPU0 \ { \ [0] = 1UL \ } /** * cpumask_set_cpu - set a cpu in a cpumask * @cpu: cpu number (< nr_cpu_ids) * @dstp: the cpumask pointer */ static __always_inline void cpumask_set_cpu(unsigned int cpu, struct cpumask *dstp) { set_bit(cpumask_check(cpu), cpumask_bits(dstp)); } static __always_inline void __cpumask_set_cpu(unsigned int cpu, struct cpumask *dstp) { __set_bit(cpumask_check(cpu), cpumask_bits(dstp)); } /** * cpumask_clear_cpu - clear a cpu in a cpumask * @cpu: cpu number (< nr_cpu_ids) * @dstp: the cpumask pointer */ static __always_inline void cpumask_clear_cpu(int cpu, struct cpumask *dstp) { clear_bit(cpumask_check(cpu), cpumask_bits(dstp)); } static __always_inline void __cpumask_clear_cpu(int cpu, struct cpumask *dstp) { __clear_bit(cpumask_check(cpu), cpumask_bits(dstp)); } /** * cpumask_test_cpu - test for a cpu in a cpumask * @cpu: cpu number (< nr_cpu_ids) * @cpumask: the cpumask pointer * * Return: true if @cpu is set in @cpumask, else returns false */ static __always_inline bool cpumask_test_cpu(int cpu, const struct cpumask *cpumask) { return test_bit(cpumask_check(cpu), cpumask_bits((cpumask))); } /** * cpumask_test_and_set_cpu - atomically test and set a cpu in a cpumask * @cpu: cpu number (< nr_cpu_ids) * @cpumask: the cpumask pointer * * test_and_set_bit wrapper for cpumasks. * * Return: true if @cpu is set in old bitmap of @cpumask, else returns false */ static __always_inline bool cpumask_test_and_set_cpu(int cpu, struct cpumask *cpumask) { return test_and_set_bit(cpumask_check(cpu), cpumask_bits(cpumask)); } /** * cpumask_test_and_clear_cpu - atomically test and clear a cpu in a cpumask * @cpu: cpu number (< nr_cpu_ids) * @cpumask: the cpumask pointer * * test_and_clear_bit wrapper for cpumasks. * * Return: true if @cpu is set in old bitmap of @cpumask, else returns false */ static __always_inline bool cpumask_test_and_clear_cpu(int cpu, struct cpumask *cpumask) { return test_and_clear_bit(cpumask_check(cpu), cpumask_bits(cpumask)); } /** * cpumask_setall - set all cpus (< nr_cpu_ids) in a cpumask * @dstp: the cpumask pointer */ static inline void cpumask_setall(struct cpumask *dstp) { if (small_const_nbits(small_cpumask_bits)) { cpumask_bits(dstp)[0] = BITMAP_LAST_WORD_MASK(nr_cpumask_bits); return; } bitmap_fill(cpumask_bits(dstp), nr_cpumask_bits); } /** * cpumask_clear - clear all cpus (< nr_cpu_ids) in a cpumask * @dstp: the cpumask pointer */ static inline void cpumask_clear(struct cpumask *dstp) { bitmap_zero(cpumask_bits(dstp), large_cpumask_bits); } /** * cpumask_and - *dstp = *src1p & *src2p * @dstp: the cpumask result * @src1p: the first input * @src2p: the second input * * Return: false if *@dstp is empty, else returns true */ static inline bool cpumask_and(struct cpumask *dstp, const struct cpumask *src1p, const struct cpumask *src2p) { return bitmap_and(cpumask_bits(dstp), cpumask_bits(src1p), cpumask_bits(src2p), small_cpumask_bits); } /** * cpumask_or - *dstp = *src1p | *src2p * @dstp: the cpumask result * @src1p: the first input * @src2p: the second input */ static inline void cpumask_or(struct cpumask *dstp, const struct cpumask *src1p, const struct cpumask *src2p) { bitmap_or(cpumask_bits(dstp), cpumask_bits(src1p), cpumask_bits(src2p), small_cpumask_bits); } /** * cpumask_xor - *dstp = *src1p ^ *src2p * @dstp: the cpumask result * @src1p: the first input * @src2p: the second input */ static inline void cpumask_xor(struct cpumask *dstp, const struct cpumask *src1p, const struct cpumask *src2p) { bitmap_xor(cpumask_bits(dstp), cpumask_bits(src1p), cpumask_bits(src2p), small_cpumask_bits); } /** * cpumask_andnot - *dstp = *src1p & ~*src2p * @dstp: the cpumask result * @src1p: the first input * @src2p: the second input * * Return: false if *@dstp is empty, else returns true */ static inline bool cpumask_andnot(struct cpumask *dstp, const struct cpumask *src1p, const struct cpumask *src2p) { return bitmap_andnot(cpumask_bits(dstp), cpumask_bits(src1p), cpumask_bits(src2p), small_cpumask_bits); } /** * cpumask_equal - *src1p == *src2p * @src1p: the first input * @src2p: the second input * * Return: true if the cpumasks are equal, false if not */ static inline bool cpumask_equal(const struct cpumask *src1p, const struct cpumask *src2p) { return bitmap_equal(cpumask_bits(src1p), cpumask_bits(src2p), small_cpumask_bits); } /** * cpumask_or_equal - *src1p | *src2p == *src3p * @src1p: the first input * @src2p: the second input * @src3p: the third input * * Return: true if first cpumask ORed with second cpumask == third cpumask, * otherwise false */ static inline bool cpumask_or_equal(const struct cpumask *src1p, const struct cpumask *src2p, const struct cpumask *src3p) { return bitmap_or_equal(cpumask_bits(src1p), cpumask_bits(src2p), cpumask_bits(src3p), small_cpumask_bits); } /** * cpumask_intersects - (*src1p & *src2p) != 0 * @src1p: the first input * @src2p: the second input * * Return: true if first cpumask ANDed with second cpumask is non-empty, * otherwise false */ static inline bool cpumask_intersects(const struct cpumask *src1p, const struct cpumask *src2p) { return bitmap_intersects(cpumask_bits(src1p), cpumask_bits(src2p), small_cpumask_bits); } /** * cpumask_subset - (*src1p & ~*src2p) == 0 * @src1p: the first input * @src2p: the second input * * Return: true if *@src1p is a subset of *@src2p, else returns false */ static inline bool cpumask_subset(const struct cpumask *src1p, const struct cpumask *src2p) { return bitmap_subset(cpumask_bits(src1p), cpumask_bits(src2p), small_cpumask_bits); } /** * cpumask_empty - *srcp == 0 * @srcp: the cpumask to that all cpus < nr_cpu_ids are clear. * * Return: true if srcp is empty (has no bits set), else false */ static inline bool cpumask_empty(const struct cpumask *srcp) { return bitmap_empty(cpumask_bits(srcp), small_cpumask_bits); } /** * cpumask_full - *srcp == 0xFFFFFFFF... * @srcp: the cpumask to that all cpus < nr_cpu_ids are set. * * Return: true if srcp is full (has all bits set), else false */ static inline bool cpumask_full(const struct cpumask *srcp) { return bitmap_full(cpumask_bits(srcp), nr_cpumask_bits); } /** * cpumask_weight - Count of bits in *srcp * @srcp: the cpumask to count bits (< nr_cpu_ids) in. * * Return: count of bits set in *srcp */ static inline unsigned int cpumask_weight(const struct cpumask *srcp) { return bitmap_weight(cpumask_bits(srcp), small_cpumask_bits); } /** * cpumask_weight_and - Count of bits in (*srcp1 & *srcp2) * @srcp1: the cpumask to count bits (< nr_cpu_ids) in. * @srcp2: the cpumask to count bits (< nr_cpu_ids) in. * * Return: count of bits set in both *srcp1 and *srcp2 */ static inline unsigned int cpumask_weight_and(const struct cpumask *srcp1, const struct cpumask *srcp2) { return bitmap_weight_and(cpumask_bits(srcp1), cpumask_bits(srcp2), small_cpumask_bits); } /** * cpumask_shift_right - *dstp = *srcp >> n * @dstp: the cpumask result * @srcp: the input to shift * @n: the number of bits to shift by */ static inline void cpumask_shift_right(struct cpumask *dstp, const struct cpumask *srcp, int n) { bitmap_shift_right(cpumask_bits(dstp), cpumask_bits(srcp), n, small_cpumask_bits); } /** * cpumask_shift_left - *dstp = *srcp << n * @dstp: the cpumask result * @srcp: the input to shift * @n: the number of bits to shift by */ static inline void cpumask_shift_left(struct cpumask *dstp, const struct cpumask *srcp, int n) { bitmap_shift_left(cpumask_bits(dstp), cpumask_bits(srcp), n, nr_cpumask_bits); } /** * cpumask_copy - *dstp = *srcp * @dstp: the result * @srcp: the input cpumask */ static inline void cpumask_copy(struct cpumask *dstp, const struct cpumask *srcp) { bitmap_copy(cpumask_bits(dstp), cpumask_bits(srcp), large_cpumask_bits); } /** * cpumask_any - pick a "random" cpu from *srcp * @srcp: the input cpumask * * Return: >= nr_cpu_ids if no cpus set. */ #define cpumask_any(srcp) cpumask_first(srcp) /** * cpumask_any_and - pick a "random" cpu from *mask1 & *mask2 * @mask1: the first input cpumask * @mask2: the second input cpumask * * Return: >= nr_cpu_ids if no cpus set. */ #define cpumask_any_and(mask1, mask2) cpumask_first_and((mask1), (mask2)) /** * cpumask_of - the cpumask containing just a given cpu * @cpu: the cpu (<= nr_cpu_ids) */ #define cpumask_of(cpu) (get_cpu_mask(cpu)) /** * cpumask_parse_user - extract a cpumask from a user string * @buf: the buffer to extract from * @len: the length of the buffer * @dstp: the cpumask to set. * * Return: -errno, or 0 for success. */ static inline int cpumask_parse_user(const char __user *buf, int len, struct cpumask *dstp) { return bitmap_parse_user(buf, len, cpumask_bits(dstp), nr_cpumask_bits); } /** * cpumask_parselist_user - extract a cpumask from a user string * @buf: the buffer to extract from * @len: the length of the buffer * @dstp: the cpumask to set. * * Return: -errno, or 0 for success. */ static inline int cpumask_parselist_user(const char __user *buf, int len, struct cpumask *dstp) { return bitmap_parselist_user(buf, len, cpumask_bits(dstp), nr_cpumask_bits); } /** * cpumask_parse - extract a cpumask from a string * @buf: the buffer to extract from * @dstp: the cpumask to set. * * Return: -errno, or 0 for success. */ static inline int cpumask_parse(const char *buf, struct cpumask *dstp) { return bitmap_parse(buf, UINT_MAX, cpumask_bits(dstp), nr_cpumask_bits); } /** * cpulist_parse - extract a cpumask from a user string of ranges * @buf: the buffer to extract from * @dstp: the cpumask to set. * * Return: -errno, or 0 for success. */ static inline int cpulist_parse(const char *buf, struct cpumask *dstp) { return bitmap_parselist(buf, cpumask_bits(dstp), nr_cpumask_bits); } /** * cpumask_size - calculate size to allocate for a 'struct cpumask' in bytes * * Return: size to allocate for a &struct cpumask in bytes */ static inline unsigned int cpumask_size(void) { return BITS_TO_LONGS(large_cpumask_bits) * sizeof(long); } /* * cpumask_var_t: struct cpumask for stack usage. * * Oh, the wicked games we play! In order to make kernel coding a * little more difficult, we typedef cpumask_var_t to an array or a * pointer: doing &mask on an array is a noop, so it still works. * * i.e. * cpumask_var_t tmpmask; * if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL)) * return -ENOMEM; * * ... use 'tmpmask' like a normal struct cpumask * ... * * free_cpumask_var(tmpmask); * * * However, one notable exception is there. alloc_cpumask_var() allocates * only nr_cpumask_bits bits (in the other hand, real cpumask_t always has * NR_CPUS bits). Therefore you don't have to dereference cpumask_var_t. * * cpumask_var_t tmpmask; * if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL)) * return -ENOMEM; * * var = *tmpmask; * * This code makes NR_CPUS length memcopy and brings to a memory corruption. * cpumask_copy() provide safe copy functionality. * * Note that there is another evil here: If you define a cpumask_var_t * as a percpu variable then the way to obtain the address of the cpumask * structure differently influences what this_cpu_* operation needs to be * used. Please use this_cpu_cpumask_var_t in those cases. The direct use * of this_cpu_ptr() or this_cpu_read() will lead to failures when the * other type of cpumask_var_t implementation is configured. * * Please also note that __cpumask_var_read_mostly can be used to declare * a cpumask_var_t variable itself (not its content) as read mostly. */ #ifdef CONFIG_CPUMASK_OFFSTACK typedef struct cpumask *cpumask_var_t; #define this_cpu_cpumask_var_ptr(x) this_cpu_read(x) #define __cpumask_var_read_mostly __read_mostly bool alloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node); static inline bool zalloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node) { return alloc_cpumask_var_node(mask, flags | __GFP_ZERO, node); } /** * alloc_cpumask_var - allocate a struct cpumask * @mask: pointer to cpumask_var_t where the cpumask is returned * @flags: GFP_ flags * * Only defined when CONFIG_CPUMASK_OFFSTACK=y, otherwise is * a nop returning a constant 1 (in <linux/cpumask.h>). * * See alloc_cpumask_var_node. * * Return: %true if allocation succeeded, %false if not */ static inline bool alloc_cpumask_var(cpumask_var_t *mask, gfp_t flags) { return alloc_cpumask_var_node(mask, flags, NUMA_NO_NODE); } static inline bool zalloc_cpumask_var(cpumask_var_t *mask, gfp_t flags) { return alloc_cpumask_var(mask, flags | __GFP_ZERO); } void alloc_bootmem_cpumask_var(cpumask_var_t *mask); void free_cpumask_var(cpumask_var_t mask); void free_bootmem_cpumask_var(cpumask_var_t mask); static inline bool cpumask_available(cpumask_var_t mask) { return mask != NULL; } #else typedef struct cpumask cpumask_var_t[1]; #define this_cpu_cpumask_var_ptr(x) this_cpu_ptr(x) #define __cpumask_var_read_mostly static inline bool alloc_cpumask_var(cpumask_var_t *mask, gfp_t flags) { return true; } static inline bool alloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node) { return true; } static inline bool zalloc_cpumask_var(cpumask_var_t *mask, gfp_t flags) { cpumask_clear(*mask); return true; } static inline bool zalloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node) { cpumask_clear(*mask); return true; } static inline void alloc_bootmem_cpumask_var(cpumask_var_t *mask) { } static inline void free_cpumask_var(cpumask_var_t mask) { } static inline void free_bootmem_cpumask_var(cpumask_var_t mask) { } static inline bool cpumask_available(cpumask_var_t mask) { return true; } #endif /* CONFIG_CPUMASK_OFFSTACK */ /* It's common to want to use cpu_all_mask in struct member initializers, * so it has to refer to an address rather than a pointer. */ extern const DECLARE_BITMAP(cpu_all_bits, NR_CPUS); #define cpu_all_mask to_cpumask(cpu_all_bits) /* First bits of cpu_bit_bitmap are in fact unset. */ #define cpu_none_mask to_cpumask(cpu_bit_bitmap[0]) #if NR_CPUS == 1 /* Uniprocessor: the possible/online/present masks are always "1" */ #define for_each_possible_cpu(cpu) for ((cpu) = 0; (cpu) < 1; (cpu)++) #define for_each_online_cpu(cpu) for ((cpu) = 0; (cpu) < 1; (cpu)++) #define for_each_present_cpu(cpu) for ((cpu) = 0; (cpu) < 1; (cpu)++) #else #define for_each_possible_cpu(cpu) for_each_cpu((cpu), cpu_possible_mask) #define for_each_online_cpu(cpu) for_each_cpu((cpu), cpu_online_mask) #define for_each_present_cpu(cpu) for_each_cpu((cpu), cpu_present_mask) #endif /* Wrappers for arch boot code to manipulate normally-constant masks */ void init_cpu_present(const struct cpumask *src); void init_cpu_possible(const struct cpumask *src); void init_cpu_online(const struct cpumask *src); static inline void reset_cpu_possible_mask(void) { bitmap_zero(cpumask_bits(&__cpu_possible_mask), NR_CPUS); } static inline void set_cpu_possible(unsigned int cpu, bool possible) { if (possible) cpumask_set_cpu(cpu, &__cpu_possible_mask); else cpumask_clear_cpu(cpu, &__cpu_possible_mask); } static inline void set_cpu_present(unsigned int cpu, bool present) { if (present) cpumask_set_cpu(cpu, &__cpu_present_mask); else cpumask_clear_cpu(cpu, &__cpu_present_mask); } void set_cpu_online(unsigned int cpu, bool online); static inline void set_cpu_active(unsigned int cpu, bool active) { if (active) cpumask_set_cpu(cpu, &__cpu_active_mask); else cpumask_clear_cpu(cpu, &__cpu_active_mask); } static inline void set_cpu_dying(unsigned int cpu, bool dying) { if (dying) cpumask_set_cpu(cpu, &__cpu_dying_mask); else cpumask_clear_cpu(cpu, &__cpu_dying_mask); } /** * to_cpumask - convert a NR_CPUS bitmap to a struct cpumask * * @bitmap: the bitmap * * There are a few places where cpumask_var_t isn't appropriate and * static cpumasks must be used (eg. very early boot), yet we don't * expose the definition of 'struct cpumask'. * * This does the conversion, and can be used as a constant initializer. */ #define to_cpumask(bitmap) \ ((struct cpumask *)(1 ? (bitmap) \ : (void *)sizeof(__check_is_bitmap(bitmap)))) static inline int __check_is_bitmap(const unsigned long *bitmap) { return 1; } /* * Special-case data structure for "single bit set only" constant CPU masks. * * We pre-generate all the 64 (or 32) possible bit positions, with enough * padding to the left and the right, and return the constant pointer * appropriately offset. */ extern const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)]; static inline const struct cpumask *get_cpu_mask(unsigned int cpu) { const unsigned long *p = cpu_bit_bitmap[1 + cpu % BITS_PER_LONG]; p -= cpu / BITS_PER_LONG; return to_cpumask(p); } #if NR_CPUS > 1 /** * num_online_cpus() - Read the number of online CPUs * * Despite the fact that __num_online_cpus is of type atomic_t, this * interface gives only a momentary snapshot and is not protected against * concurrent CPU hotplug operations unless invoked from a cpuhp_lock held * region. * * Return: momentary snapshot of the number of online CPUs */ static __always_inline unsigned int num_online_cpus(void) { return raw_atomic_read(&__num_online_cpus); } #define num_possible_cpus() cpumask_weight(cpu_possible_mask) #define num_present_cpus() cpumask_weight(cpu_present_mask) #define num_active_cpus() cpumask_weight(cpu_active_mask) static inline bool cpu_online(unsigned int cpu) { return cpumask_test_cpu(cpu, cpu_online_mask); } static inline bool cpu_possible(unsigned int cpu) { return cpumask_test_cpu(cpu, cpu_possible_mask); } static inline bool cpu_present(unsigned int cpu) { return cpumask_test_cpu(cpu, cpu_present_mask); } static inline bool cpu_active(unsigned int cpu) { return cpumask_test_cpu(cpu, cpu_active_mask); } static inline bool cpu_dying(unsigned int cpu) { return cpumask_test_cpu(cpu, cpu_dying_mask); } #else #define num_online_cpus() 1U #define num_possible_cpus() 1U #define num_present_cpus() 1U #define num_active_cpus() 1U static inline bool cpu_online(unsigned int cpu) { return cpu == 0; } static inline bool cpu_possible(unsigned int cpu) { return cpu == 0; } static inline bool cpu_present(unsigned int cpu) { return cpu == 0; } static inline bool cpu_active(unsigned int cpu) { return cpu == 0; } static inline bool cpu_dying(unsigned int cpu) { return false; } #endif /* NR_CPUS > 1 */ #define cpu_is_offline(cpu) unlikely(!cpu_online(cpu)) #if NR_CPUS <= BITS_PER_LONG #define CPU_BITS_ALL \ { \ [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \ } #else /* NR_CPUS > BITS_PER_LONG */ #define CPU_BITS_ALL \ { \ [0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL, \ [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \ } #endif /* NR_CPUS > BITS_PER_LONG */ /** * cpumap_print_to_pagebuf - copies the cpumask into the buffer either * as comma-separated list of cpus or hex values of cpumask * @list: indicates whether the cpumap must be list * @mask: the cpumask to copy * @buf: the buffer to copy into * * Return: the length of the (null-terminated) @buf string, zero if * nothing is copied. */ static inline ssize_t cpumap_print_to_pagebuf(bool list, char *buf, const struct cpumask *mask) { return bitmap_print_to_pagebuf(list, buf, cpumask_bits(mask), nr_cpu_ids); } /** * cpumap_print_bitmask_to_buf - copies the cpumask into the buffer as * hex values of cpumask * * @buf: the buffer to copy into * @mask: the cpumask to copy * @off: in the string from which we are copying, we copy to @buf * @count: the maximum number of bytes to print * * The function prints the cpumask into the buffer as hex values of * cpumask; Typically used by bin_attribute to export cpumask bitmask * ABI. * * Return: the length of how many bytes have been copied, excluding * terminating '\0'. */ static inline ssize_t cpumap_print_bitmask_to_buf(char *buf, const struct cpumask *mask, loff_t off, size_t count) { return bitmap_print_bitmask_to_buf(buf, cpumask_bits(mask), nr_cpu_ids, off, count) - 1; } /** * cpumap_print_list_to_buf - copies the cpumask into the buffer as * comma-separated list of cpus * @buf: the buffer to copy into * @mask: the cpumask to copy * @off: in the string from which we are copying, we copy to @buf * @count: the maximum number of bytes to print * * Everything is same with the above cpumap_print_bitmask_to_buf() * except the print format. * * Return: the length of how many bytes have been copied, excluding * terminating '\0'. */ static inline ssize_t cpumap_print_list_to_buf(char *buf, const struct cpumask *mask, loff_t off, size_t count) { return bitmap_print_list_to_buf(buf, cpumask_bits(mask), nr_cpu_ids, off, count) - 1; } #if NR_CPUS <= BITS_PER_LONG #define CPU_MASK_ALL \ (cpumask_t) { { \ [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \ } } #else #define CPU_MASK_ALL \ (cpumask_t) { { \ [0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL, \ [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \ } } #endif /* NR_CPUS > BITS_PER_LONG */ #define CPU_MASK_NONE \ (cpumask_t) { { \ [0 ... BITS_TO_LONGS(NR_CPUS)-1] = 0UL \ } } #define CPU_MASK_CPU0 \ (cpumask_t) { { \ [0] = 1UL \ } } /* * Provide a valid theoretical max size for cpumap and cpulist sysfs files * to avoid breaking userspace which may allocate a buffer based on the size * reported by e.g. fstat. * * for cpumap NR_CPUS * 9/32 - 1 should be an exact length. * * For cpulist 7 is (ceil(log10(NR_CPUS)) + 1) allowing for NR_CPUS to be up * to 2 orders of magnitude larger than 8192. And then we divide by 2 to * cover a worst-case of every other cpu being on one of two nodes for a * very large NR_CPUS. * * Use PAGE_SIZE as a minimum for smaller configurations while avoiding * unsigned comparison to -1. */ #define CPUMAP_FILE_MAX_BYTES (((NR_CPUS * 9)/32 > PAGE_SIZE) \ ? (NR_CPUS * 9)/32 - 1 : PAGE_SIZE) #define CPULIST_FILE_MAX_BYTES (((NR_CPUS * 7)/2 > PAGE_SIZE) ? (NR_CPUS * 7)/2 : PAGE_SIZE) #endif /* __LINUX_CPUMASK_H */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1