Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Yury Norov | 1477 | 63.97% | 18 | 42.86% |
Akinobu Mita | 367 | 15.89% | 11 | 26.19% |
David Howells | 186 | 8.06% | 1 | 2.38% |
Clement Courbet | 138 | 5.98% | 1 | 2.38% |
Shannon Nelson | 40 | 1.73% | 1 | 2.38% |
William Breathitt Gray | 35 | 1.52% | 1 | 2.38% |
David Chinner | 24 | 1.04% | 1 | 2.38% |
Valentin Schneider | 20 | 0.87% | 2 | 4.76% |
Andrew Morton | 13 | 0.56% | 1 | 2.38% |
Anna-Maria Gleixner | 3 | 0.13% | 1 | 2.38% |
Jiri Slaby | 2 | 0.09% | 1 | 2.38% |
Cody P Schafer | 2 | 0.09% | 1 | 2.38% |
Greg Kroah-Hartman | 1 | 0.04% | 1 | 2.38% |
Robert Richter | 1 | 0.04% | 1 | 2.38% |
Total | 2309 | 42 |
/* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_FIND_H_ #define __LINUX_FIND_H_ #ifndef __LINUX_BITMAP_H #error only <linux/bitmap.h> can be included directly #endif #include <linux/bitops.h> unsigned long _find_next_bit(const unsigned long *addr1, unsigned long nbits, unsigned long start); unsigned long _find_next_and_bit(const unsigned long *addr1, const unsigned long *addr2, unsigned long nbits, unsigned long start); unsigned long _find_next_andnot_bit(const unsigned long *addr1, const unsigned long *addr2, unsigned long nbits, unsigned long start); unsigned long _find_next_or_bit(const unsigned long *addr1, const unsigned long *addr2, unsigned long nbits, unsigned long start); unsigned long _find_next_zero_bit(const unsigned long *addr, unsigned long nbits, unsigned long start); extern unsigned long _find_first_bit(const unsigned long *addr, unsigned long size); unsigned long __find_nth_bit(const unsigned long *addr, unsigned long size, unsigned long n); unsigned long __find_nth_and_bit(const unsigned long *addr1, const unsigned long *addr2, unsigned long size, unsigned long n); unsigned long __find_nth_andnot_bit(const unsigned long *addr1, const unsigned long *addr2, unsigned long size, unsigned long n); unsigned long __find_nth_and_andnot_bit(const unsigned long *addr1, const unsigned long *addr2, const unsigned long *addr3, unsigned long size, unsigned long n); extern unsigned long _find_first_and_bit(const unsigned long *addr1, const unsigned long *addr2, unsigned long size); extern unsigned long _find_first_zero_bit(const unsigned long *addr, unsigned long size); extern unsigned long _find_last_bit(const unsigned long *addr, unsigned long size); #ifdef __BIG_ENDIAN unsigned long _find_first_zero_bit_le(const unsigned long *addr, unsigned long size); unsigned long _find_next_zero_bit_le(const unsigned long *addr, unsigned long size, unsigned long offset); unsigned long _find_next_bit_le(const unsigned long *addr, unsigned long size, unsigned long offset); #endif #ifndef find_next_bit /** * find_next_bit - find the next set bit in a memory region * @addr: The address to base the search on * @size: The bitmap size in bits * @offset: The bitnumber to start searching at * * Returns the bit number for the next set bit * If no bits are set, returns @size. */ static inline unsigned long find_next_bit(const unsigned long *addr, unsigned long size, unsigned long offset) { if (small_const_nbits(size)) { unsigned long val; if (unlikely(offset >= size)) return size; val = *addr & GENMASK(size - 1, offset); return val ? __ffs(val) : size; } return _find_next_bit(addr, size, offset); } #endif #ifndef find_next_and_bit /** * find_next_and_bit - find the next set bit in both memory regions * @addr1: The first address to base the search on * @addr2: The second address to base the search on * @size: The bitmap size in bits * @offset: The bitnumber to start searching at * * Returns the bit number for the next set bit * If no bits are set, returns @size. */ static inline unsigned long find_next_and_bit(const unsigned long *addr1, const unsigned long *addr2, unsigned long size, unsigned long offset) { if (small_const_nbits(size)) { unsigned long val; if (unlikely(offset >= size)) return size; val = *addr1 & *addr2 & GENMASK(size - 1, offset); return val ? __ffs(val) : size; } return _find_next_and_bit(addr1, addr2, size, offset); } #endif #ifndef find_next_andnot_bit /** * find_next_andnot_bit - find the next set bit in *addr1 excluding all the bits * in *addr2 * @addr1: The first address to base the search on * @addr2: The second address to base the search on * @size: The bitmap size in bits * @offset: The bitnumber to start searching at * * Returns the bit number for the next set bit * If no bits are set, returns @size. */ static inline unsigned long find_next_andnot_bit(const unsigned long *addr1, const unsigned long *addr2, unsigned long size, unsigned long offset) { if (small_const_nbits(size)) { unsigned long val; if (unlikely(offset >= size)) return size; val = *addr1 & ~*addr2 & GENMASK(size - 1, offset); return val ? __ffs(val) : size; } return _find_next_andnot_bit(addr1, addr2, size, offset); } #endif #ifndef find_next_or_bit /** * find_next_or_bit - find the next set bit in either memory regions * @addr1: The first address to base the search on * @addr2: The second address to base the search on * @size: The bitmap size in bits * @offset: The bitnumber to start searching at * * Returns the bit number for the next set bit * If no bits are set, returns @size. */ static inline unsigned long find_next_or_bit(const unsigned long *addr1, const unsigned long *addr2, unsigned long size, unsigned long offset) { if (small_const_nbits(size)) { unsigned long val; if (unlikely(offset >= size)) return size; val = (*addr1 | *addr2) & GENMASK(size - 1, offset); return val ? __ffs(val) : size; } return _find_next_or_bit(addr1, addr2, size, offset); } #endif #ifndef find_next_zero_bit /** * find_next_zero_bit - find the next cleared bit in a memory region * @addr: The address to base the search on * @size: The bitmap size in bits * @offset: The bitnumber to start searching at * * Returns the bit number of the next zero bit * If no bits are zero, returns @size. */ static inline unsigned long find_next_zero_bit(const unsigned long *addr, unsigned long size, unsigned long offset) { if (small_const_nbits(size)) { unsigned long val; if (unlikely(offset >= size)) return size; val = *addr | ~GENMASK(size - 1, offset); return val == ~0UL ? size : ffz(val); } return _find_next_zero_bit(addr, size, offset); } #endif #ifndef find_first_bit /** * find_first_bit - find the first set bit in a memory region * @addr: The address to start the search at * @size: The maximum number of bits to search * * Returns the bit number of the first set bit. * If no bits are set, returns @size. */ static inline unsigned long find_first_bit(const unsigned long *addr, unsigned long size) { if (small_const_nbits(size)) { unsigned long val = *addr & GENMASK(size - 1, 0); return val ? __ffs(val) : size; } return _find_first_bit(addr, size); } #endif /** * find_nth_bit - find N'th set bit in a memory region * @addr: The address to start the search at * @size: The maximum number of bits to search * @n: The number of set bit, which position is needed, counting from 0 * * The following is semantically equivalent: * idx = find_nth_bit(addr, size, 0); * idx = find_first_bit(addr, size); * * Returns the bit number of the N'th set bit. * If no such, returns @size. */ static inline unsigned long find_nth_bit(const unsigned long *addr, unsigned long size, unsigned long n) { if (n >= size) return size; if (small_const_nbits(size)) { unsigned long val = *addr & GENMASK(size - 1, 0); return val ? fns(val, n) : size; } return __find_nth_bit(addr, size, n); } /** * find_nth_and_bit - find N'th set bit in 2 memory regions * @addr1: The 1st address to start the search at * @addr2: The 2nd address to start the search at * @size: The maximum number of bits to search * @n: The number of set bit, which position is needed, counting from 0 * * Returns the bit number of the N'th set bit. * If no such, returns @size. */ static inline unsigned long find_nth_and_bit(const unsigned long *addr1, const unsigned long *addr2, unsigned long size, unsigned long n) { if (n >= size) return size; if (small_const_nbits(size)) { unsigned long val = *addr1 & *addr2 & GENMASK(size - 1, 0); return val ? fns(val, n) : size; } return __find_nth_and_bit(addr1, addr2, size, n); } /** * find_nth_andnot_bit - find N'th set bit in 2 memory regions, * flipping bits in 2nd region * @addr1: The 1st address to start the search at * @addr2: The 2nd address to start the search at * @size: The maximum number of bits to search * @n: The number of set bit, which position is needed, counting from 0 * * Returns the bit number of the N'th set bit. * If no such, returns @size. */ static inline unsigned long find_nth_andnot_bit(const unsigned long *addr1, const unsigned long *addr2, unsigned long size, unsigned long n) { if (n >= size) return size; if (small_const_nbits(size)) { unsigned long val = *addr1 & (~*addr2) & GENMASK(size - 1, 0); return val ? fns(val, n) : size; } return __find_nth_andnot_bit(addr1, addr2, size, n); } /** * find_nth_and_andnot_bit - find N'th set bit in 2 memory regions, * excluding those set in 3rd region * @addr1: The 1st address to start the search at * @addr2: The 2nd address to start the search at * @addr3: The 3rd address to start the search at * @size: The maximum number of bits to search * @n: The number of set bit, which position is needed, counting from 0 * * Returns the bit number of the N'th set bit. * If no such, returns @size. */ static __always_inline unsigned long find_nth_and_andnot_bit(const unsigned long *addr1, const unsigned long *addr2, const unsigned long *addr3, unsigned long size, unsigned long n) { if (n >= size) return size; if (small_const_nbits(size)) { unsigned long val = *addr1 & *addr2 & (~*addr3) & GENMASK(size - 1, 0); return val ? fns(val, n) : size; } return __find_nth_and_andnot_bit(addr1, addr2, addr3, size, n); } #ifndef find_first_and_bit /** * find_first_and_bit - find the first set bit in both memory regions * @addr1: The first address to base the search on * @addr2: The second address to base the search on * @size: The bitmap size in bits * * Returns the bit number for the next set bit * If no bits are set, returns @size. */ static inline unsigned long find_first_and_bit(const unsigned long *addr1, const unsigned long *addr2, unsigned long size) { if (small_const_nbits(size)) { unsigned long val = *addr1 & *addr2 & GENMASK(size - 1, 0); return val ? __ffs(val) : size; } return _find_first_and_bit(addr1, addr2, size); } #endif #ifndef find_first_zero_bit /** * find_first_zero_bit - find the first cleared bit in a memory region * @addr: The address to start the search at * @size: The maximum number of bits to search * * Returns the bit number of the first cleared bit. * If no bits are zero, returns @size. */ static inline unsigned long find_first_zero_bit(const unsigned long *addr, unsigned long size) { if (small_const_nbits(size)) { unsigned long val = *addr | ~GENMASK(size - 1, 0); return val == ~0UL ? size : ffz(val); } return _find_first_zero_bit(addr, size); } #endif #ifndef find_last_bit /** * find_last_bit - find the last set bit in a memory region * @addr: The address to start the search at * @size: The number of bits to search * * Returns the bit number of the last set bit, or size. */ static inline unsigned long find_last_bit(const unsigned long *addr, unsigned long size) { if (small_const_nbits(size)) { unsigned long val = *addr & GENMASK(size - 1, 0); return val ? __fls(val) : size; } return _find_last_bit(addr, size); } #endif /** * find_next_and_bit_wrap - find the next set bit in both memory regions * @addr1: The first address to base the search on * @addr2: The second address to base the search on * @size: The bitmap size in bits * @offset: The bitnumber to start searching at * * Returns the bit number for the next set bit, or first set bit up to @offset * If no bits are set, returns @size. */ static inline unsigned long find_next_and_bit_wrap(const unsigned long *addr1, const unsigned long *addr2, unsigned long size, unsigned long offset) { unsigned long bit = find_next_and_bit(addr1, addr2, size, offset); if (bit < size) return bit; bit = find_first_and_bit(addr1, addr2, offset); return bit < offset ? bit : size; } /** * find_next_bit_wrap - find the next set bit in both memory regions * @addr: The first address to base the search on * @size: The bitmap size in bits * @offset: The bitnumber to start searching at * * Returns the bit number for the next set bit, or first set bit up to @offset * If no bits are set, returns @size. */ static inline unsigned long find_next_bit_wrap(const unsigned long *addr, unsigned long size, unsigned long offset) { unsigned long bit = find_next_bit(addr, size, offset); if (bit < size) return bit; bit = find_first_bit(addr, offset); return bit < offset ? bit : size; } /* * Helper for for_each_set_bit_wrap(). Make sure you're doing right thing * before using it alone. */ static inline unsigned long __for_each_wrap(const unsigned long *bitmap, unsigned long size, unsigned long start, unsigned long n) { unsigned long bit; /* If not wrapped around */ if (n > start) { /* and have a bit, just return it. */ bit = find_next_bit(bitmap, size, n); if (bit < size) return bit; /* Otherwise, wrap around and ... */ n = 0; } /* Search the other part. */ bit = find_next_bit(bitmap, start, n); return bit < start ? bit : size; } /** * find_next_clump8 - find next 8-bit clump with set bits in a memory region * @clump: location to store copy of found clump * @addr: address to base the search on * @size: bitmap size in number of bits * @offset: bit offset at which to start searching * * Returns the bit offset for the next set clump; the found clump value is * copied to the location pointed by @clump. If no bits are set, returns @size. */ extern unsigned long find_next_clump8(unsigned long *clump, const unsigned long *addr, unsigned long size, unsigned long offset); #define find_first_clump8(clump, bits, size) \ find_next_clump8((clump), (bits), (size), 0) #if defined(__LITTLE_ENDIAN) static inline unsigned long find_next_zero_bit_le(const void *addr, unsigned long size, unsigned long offset) { return find_next_zero_bit(addr, size, offset); } static inline unsigned long find_next_bit_le(const void *addr, unsigned long size, unsigned long offset) { return find_next_bit(addr, size, offset); } static inline unsigned long find_first_zero_bit_le(const void *addr, unsigned long size) { return find_first_zero_bit(addr, size); } #elif defined(__BIG_ENDIAN) #ifndef find_next_zero_bit_le static inline unsigned long find_next_zero_bit_le(const void *addr, unsigned long size, unsigned long offset) { if (small_const_nbits(size)) { unsigned long val = *(const unsigned long *)addr; if (unlikely(offset >= size)) return size; val = swab(val) | ~GENMASK(size - 1, offset); return val == ~0UL ? size : ffz(val); } return _find_next_zero_bit_le(addr, size, offset); } #endif #ifndef find_first_zero_bit_le static inline unsigned long find_first_zero_bit_le(const void *addr, unsigned long size) { if (small_const_nbits(size)) { unsigned long val = swab(*(const unsigned long *)addr) | ~GENMASK(size - 1, 0); return val == ~0UL ? size : ffz(val); } return _find_first_zero_bit_le(addr, size); } #endif #ifndef find_next_bit_le static inline unsigned long find_next_bit_le(const void *addr, unsigned long size, unsigned long offset) { if (small_const_nbits(size)) { unsigned long val = *(const unsigned long *)addr; if (unlikely(offset >= size)) return size; val = swab(val) & GENMASK(size - 1, offset); return val ? __ffs(val) : size; } return _find_next_bit_le(addr, size, offset); } #endif #else #error "Please fix <asm/byteorder.h>" #endif #define for_each_set_bit(bit, addr, size) \ for ((bit) = 0; (bit) = find_next_bit((addr), (size), (bit)), (bit) < (size); (bit)++) #define for_each_and_bit(bit, addr1, addr2, size) \ for ((bit) = 0; \ (bit) = find_next_and_bit((addr1), (addr2), (size), (bit)), (bit) < (size);\ (bit)++) #define for_each_andnot_bit(bit, addr1, addr2, size) \ for ((bit) = 0; \ (bit) = find_next_andnot_bit((addr1), (addr2), (size), (bit)), (bit) < (size);\ (bit)++) #define for_each_or_bit(bit, addr1, addr2, size) \ for ((bit) = 0; \ (bit) = find_next_or_bit((addr1), (addr2), (size), (bit)), (bit) < (size);\ (bit)++) /* same as for_each_set_bit() but use bit as value to start with */ #define for_each_set_bit_from(bit, addr, size) \ for (; (bit) = find_next_bit((addr), (size), (bit)), (bit) < (size); (bit)++) #define for_each_clear_bit(bit, addr, size) \ for ((bit) = 0; \ (bit) = find_next_zero_bit((addr), (size), (bit)), (bit) < (size); \ (bit)++) /* same as for_each_clear_bit() but use bit as value to start with */ #define for_each_clear_bit_from(bit, addr, size) \ for (; (bit) = find_next_zero_bit((addr), (size), (bit)), (bit) < (size); (bit)++) /** * for_each_set_bitrange - iterate over all set bit ranges [b; e) * @b: bit offset of start of current bitrange (first set bit) * @e: bit offset of end of current bitrange (first unset bit) * @addr: bitmap address to base the search on * @size: bitmap size in number of bits */ #define for_each_set_bitrange(b, e, addr, size) \ for ((b) = 0; \ (b) = find_next_bit((addr), (size), b), \ (e) = find_next_zero_bit((addr), (size), (b) + 1), \ (b) < (size); \ (b) = (e) + 1) /** * for_each_set_bitrange_from - iterate over all set bit ranges [b; e) * @b: bit offset of start of current bitrange (first set bit); must be initialized * @e: bit offset of end of current bitrange (first unset bit) * @addr: bitmap address to base the search on * @size: bitmap size in number of bits */ #define for_each_set_bitrange_from(b, e, addr, size) \ for (; \ (b) = find_next_bit((addr), (size), (b)), \ (e) = find_next_zero_bit((addr), (size), (b) + 1), \ (b) < (size); \ (b) = (e) + 1) /** * for_each_clear_bitrange - iterate over all unset bit ranges [b; e) * @b: bit offset of start of current bitrange (first unset bit) * @e: bit offset of end of current bitrange (first set bit) * @addr: bitmap address to base the search on * @size: bitmap size in number of bits */ #define for_each_clear_bitrange(b, e, addr, size) \ for ((b) = 0; \ (b) = find_next_zero_bit((addr), (size), (b)), \ (e) = find_next_bit((addr), (size), (b) + 1), \ (b) < (size); \ (b) = (e) + 1) /** * for_each_clear_bitrange_from - iterate over all unset bit ranges [b; e) * @b: bit offset of start of current bitrange (first set bit); must be initialized * @e: bit offset of end of current bitrange (first unset bit) * @addr: bitmap address to base the search on * @size: bitmap size in number of bits */ #define for_each_clear_bitrange_from(b, e, addr, size) \ for (; \ (b) = find_next_zero_bit((addr), (size), (b)), \ (e) = find_next_bit((addr), (size), (b) + 1), \ (b) < (size); \ (b) = (e) + 1) /** * for_each_set_bit_wrap - iterate over all set bits starting from @start, and * wrapping around the end of bitmap. * @bit: offset for current iteration * @addr: bitmap address to base the search on * @size: bitmap size in number of bits * @start: Starting bit for bitmap traversing, wrapping around the bitmap end */ #define for_each_set_bit_wrap(bit, addr, size, start) \ for ((bit) = find_next_bit_wrap((addr), (size), (start)); \ (bit) < (size); \ (bit) = __for_each_wrap((addr), (size), (start), (bit) + 1)) /** * for_each_set_clump8 - iterate over bitmap for each 8-bit clump with set bits * @start: bit offset to start search and to store the current iteration offset * @clump: location to store copy of current 8-bit clump * @bits: bitmap address to base the search on * @size: bitmap size in number of bits */ #define for_each_set_clump8(start, clump, bits, size) \ for ((start) = find_first_clump8(&(clump), (bits), (size)); \ (start) < (size); \ (start) = find_next_clump8(&(clump), (bits), (size), (start) + 8)) #endif /*__LINUX_FIND_H_ */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1