Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Huang Ying | 212 | 43.62% | 3 | 15.79% |
Peter Zijlstra | 94 | 19.34% | 2 | 10.53% |
Neil Brown | 76 | 15.64% | 2 | 10.53% |
Stephen Rothwell | 38 | 7.82% | 1 | 5.26% |
Peter Hurley | 14 | 2.88% | 1 | 5.26% |
Alexander Potapenko | 13 | 2.67% | 1 | 5.26% |
Shaohua Li | 10 | 2.06% | 1 | 5.26% |
Oleg Nesterov | 9 | 1.85% | 1 | 5.26% |
Byungchul Park | 7 | 1.44% | 1 | 5.26% |
Andy Shevchenko | 7 | 1.44% | 1 | 5.26% |
Thomas Gleixner | 2 | 0.41% | 1 | 5.26% |
Will Deacon | 1 | 0.21% | 1 | 5.26% |
Andrew Morton | 1 | 0.21% | 1 | 5.26% |
Christoph Hellwig | 1 | 0.21% | 1 | 5.26% |
Mark Rutland | 1 | 0.21% | 1 | 5.26% |
Total | 486 | 19 |
/* SPDX-License-Identifier: GPL-2.0-only */ #ifndef LLIST_H #define LLIST_H /* * Lock-less NULL terminated single linked list * * Cases where locking is not needed: * If there are multiple producers and multiple consumers, llist_add can be * used in producers and llist_del_all can be used in consumers simultaneously * without locking. Also a single consumer can use llist_del_first while * multiple producers simultaneously use llist_add, without any locking. * * Cases where locking is needed: * If we have multiple consumers with llist_del_first used in one consumer, and * llist_del_first or llist_del_all used in other consumers, then a lock is * needed. This is because llist_del_first depends on list->first->next not * changing, but without lock protection, there's no way to be sure about that * if a preemption happens in the middle of the delete operation and on being * preempted back, the list->first is the same as before causing the cmpxchg in * llist_del_first to succeed. For example, while a llist_del_first operation * is in progress in one consumer, then a llist_del_first, llist_add, * llist_add (or llist_del_all, llist_add, llist_add) sequence in another * consumer may cause violations. * * This can be summarized as follows: * * | add | del_first | del_all * add | - | - | - * del_first | | L | L * del_all | | | - * * Where, a particular row's operation can happen concurrently with a column's * operation, with "-" being no lock needed, while "L" being lock is needed. * * The list entries deleted via llist_del_all can be traversed with * traversing function such as llist_for_each etc. But the list * entries can not be traversed safely before deleted from the list. * The order of deleted entries is from the newest to the oldest added * one. If you want to traverse from the oldest to the newest, you * must reverse the order by yourself before traversing. * * The basic atomic operation of this list is cmpxchg on long. On * architectures that don't have NMI-safe cmpxchg implementation, the * list can NOT be used in NMI handlers. So code that uses the list in * an NMI handler should depend on CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG. * * Copyright 2010,2011 Intel Corp. * Author: Huang Ying <ying.huang@intel.com> */ #include <linux/atomic.h> #include <linux/container_of.h> #include <linux/stddef.h> #include <linux/types.h> struct llist_head { struct llist_node *first; }; struct llist_node { struct llist_node *next; }; #define LLIST_HEAD_INIT(name) { NULL } #define LLIST_HEAD(name) struct llist_head name = LLIST_HEAD_INIT(name) /** * init_llist_head - initialize lock-less list head * @head: the head for your lock-less list */ static inline void init_llist_head(struct llist_head *list) { list->first = NULL; } /** * init_llist_node - initialize lock-less list node * @node: the node to be initialised * * In cases where there is a need to test if a node is on * a list or not, this initialises the node to clearly * not be on any list. */ static inline void init_llist_node(struct llist_node *node) { node->next = node; } /** * llist_on_list - test if a lock-list list node is on a list * @node: the node to test * * When a node is on a list the ->next pointer will be NULL or * some other node. It can never point to itself. We use that * in init_llist_node() to record that a node is not on any list, * and here to test whether it is on any list. */ static inline bool llist_on_list(const struct llist_node *node) { return node->next != node; } /** * llist_entry - get the struct of this entry * @ptr: the &struct llist_node pointer. * @type: the type of the struct this is embedded in. * @member: the name of the llist_node within the struct. */ #define llist_entry(ptr, type, member) \ container_of(ptr, type, member) /** * member_address_is_nonnull - check whether the member address is not NULL * @ptr: the object pointer (struct type * that contains the llist_node) * @member: the name of the llist_node within the struct. * * This macro is conceptually the same as * &ptr->member != NULL * but it works around the fact that compilers can decide that taking a member * address is never a NULL pointer. * * Real objects that start at a high address and have a member at NULL are * unlikely to exist, but such pointers may be returned e.g. by the * container_of() macro. */ #define member_address_is_nonnull(ptr, member) \ ((uintptr_t)(ptr) + offsetof(typeof(*(ptr)), member) != 0) /** * llist_for_each - iterate over some deleted entries of a lock-less list * @pos: the &struct llist_node to use as a loop cursor * @node: the first entry of deleted list entries * * In general, some entries of the lock-less list can be traversed * safely only after being deleted from list, so start with an entry * instead of list head. * * If being used on entries deleted from lock-less list directly, the * traverse order is from the newest to the oldest added entry. If * you want to traverse from the oldest to the newest, you must * reverse the order by yourself before traversing. */ #define llist_for_each(pos, node) \ for ((pos) = (node); pos; (pos) = (pos)->next) /** * llist_for_each_safe - iterate over some deleted entries of a lock-less list * safe against removal of list entry * @pos: the &struct llist_node to use as a loop cursor * @n: another &struct llist_node to use as temporary storage * @node: the first entry of deleted list entries * * In general, some entries of the lock-less list can be traversed * safely only after being deleted from list, so start with an entry * instead of list head. * * If being used on entries deleted from lock-less list directly, the * traverse order is from the newest to the oldest added entry. If * you want to traverse from the oldest to the newest, you must * reverse the order by yourself before traversing. */ #define llist_for_each_safe(pos, n, node) \ for ((pos) = (node); (pos) && ((n) = (pos)->next, true); (pos) = (n)) /** * llist_for_each_entry - iterate over some deleted entries of lock-less list of given type * @pos: the type * to use as a loop cursor. * @node: the fist entry of deleted list entries. * @member: the name of the llist_node with the struct. * * In general, some entries of the lock-less list can be traversed * safely only after being removed from list, so start with an entry * instead of list head. * * If being used on entries deleted from lock-less list directly, the * traverse order is from the newest to the oldest added entry. If * you want to traverse from the oldest to the newest, you must * reverse the order by yourself before traversing. */ #define llist_for_each_entry(pos, node, member) \ for ((pos) = llist_entry((node), typeof(*(pos)), member); \ member_address_is_nonnull(pos, member); \ (pos) = llist_entry((pos)->member.next, typeof(*(pos)), member)) /** * llist_for_each_entry_safe - iterate over some deleted entries of lock-less list of given type * safe against removal of list entry * @pos: the type * to use as a loop cursor. * @n: another type * to use as temporary storage * @node: the first entry of deleted list entries. * @member: the name of the llist_node with the struct. * * In general, some entries of the lock-less list can be traversed * safely only after being removed from list, so start with an entry * instead of list head. * * If being used on entries deleted from lock-less list directly, the * traverse order is from the newest to the oldest added entry. If * you want to traverse from the oldest to the newest, you must * reverse the order by yourself before traversing. */ #define llist_for_each_entry_safe(pos, n, node, member) \ for (pos = llist_entry((node), typeof(*pos), member); \ member_address_is_nonnull(pos, member) && \ (n = llist_entry(pos->member.next, typeof(*n), member), true); \ pos = n) /** * llist_empty - tests whether a lock-less list is empty * @head: the list to test * * Not guaranteed to be accurate or up to date. Just a quick way to * test whether the list is empty without deleting something from the * list. */ static inline bool llist_empty(const struct llist_head *head) { return READ_ONCE(head->first) == NULL; } static inline struct llist_node *llist_next(struct llist_node *node) { return node->next; } extern bool llist_add_batch(struct llist_node *new_first, struct llist_node *new_last, struct llist_head *head); static inline bool __llist_add_batch(struct llist_node *new_first, struct llist_node *new_last, struct llist_head *head) { new_last->next = head->first; head->first = new_first; return new_last->next == NULL; } /** * llist_add - add a new entry * @new: new entry to be added * @head: the head for your lock-less list * * Returns true if the list was empty prior to adding this entry. */ static inline bool llist_add(struct llist_node *new, struct llist_head *head) { return llist_add_batch(new, new, head); } static inline bool __llist_add(struct llist_node *new, struct llist_head *head) { return __llist_add_batch(new, new, head); } /** * llist_del_all - delete all entries from lock-less list * @head: the head of lock-less list to delete all entries * * If list is empty, return NULL, otherwise, delete all entries and * return the pointer to the first entry. The order of entries * deleted is from the newest to the oldest added one. */ static inline struct llist_node *llist_del_all(struct llist_head *head) { return xchg(&head->first, NULL); } static inline struct llist_node *__llist_del_all(struct llist_head *head) { struct llist_node *first = head->first; head->first = NULL; return first; } extern struct llist_node *llist_del_first(struct llist_head *head); /** * llist_del_first_init - delete first entry from lock-list and mark is as being off-list * @head: the head of lock-less list to delete from. * * This behave the same as llist_del_first() except that llist_init_node() is called * on the returned node so that llist_on_list() will report false for the node. */ static inline struct llist_node *llist_del_first_init(struct llist_head *head) { struct llist_node *n = llist_del_first(head); if (n) init_llist_node(n); return n; } extern bool llist_del_first_this(struct llist_head *head, struct llist_node *this); struct llist_node *llist_reverse_order(struct llist_node *head); #endif /* LLIST_H */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1