Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Yuval Mintz | 1817 | 82.18% | 4 | 21.05% |
Alexander Lobakin | 238 | 10.76% | 9 | 47.37% |
Denis Bolotin | 114 | 5.16% | 1 | 5.26% |
Yuval Basson | 25 | 1.13% | 1 | 5.26% |
Prabhakar Kushwaha | 10 | 0.45% | 1 | 5.26% |
Tomer Tayar | 3 | 0.14% | 1 | 5.26% |
Bhaskar Chowdhury | 3 | 0.14% | 1 | 5.26% |
Randy Dunlap | 1 | 0.05% | 1 | 5.26% |
Total | 2211 | 19 |
/* SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause) */ /* QLogic qed NIC Driver * Copyright (c) 2015-2017 QLogic Corporation * Copyright (c) 2019-2020 Marvell International Ltd. */ #ifndef _QED_CHAIN_H #define _QED_CHAIN_H #include <linux/types.h> #include <asm/byteorder.h> #include <linux/kernel.h> #include <linux/list.h> #include <linux/sizes.h> #include <linux/slab.h> #include <linux/qed/common_hsi.h> enum qed_chain_mode { /* Each Page contains a next pointer at its end */ QED_CHAIN_MODE_NEXT_PTR, /* Chain is a single page (next ptr) is not required */ QED_CHAIN_MODE_SINGLE, /* Page pointers are located in a side list */ QED_CHAIN_MODE_PBL, }; enum qed_chain_use_mode { QED_CHAIN_USE_TO_PRODUCE, /* Chain starts empty */ QED_CHAIN_USE_TO_CONSUME, /* Chain starts full */ QED_CHAIN_USE_TO_CONSUME_PRODUCE, /* Chain starts empty */ }; enum qed_chain_cnt_type { /* The chain's size/prod/cons are kept in 16-bit variables */ QED_CHAIN_CNT_TYPE_U16, /* The chain's size/prod/cons are kept in 32-bit variables */ QED_CHAIN_CNT_TYPE_U32, }; struct qed_chain_next { struct regpair next_phys; void *next_virt; }; struct qed_chain_pbl_u16 { u16 prod_page_idx; u16 cons_page_idx; }; struct qed_chain_pbl_u32 { u32 prod_page_idx; u32 cons_page_idx; }; struct qed_chain_u16 { /* Cyclic index of next element to produce/consume */ u16 prod_idx; u16 cons_idx; }; struct qed_chain_u32 { /* Cyclic index of next element to produce/consume */ u32 prod_idx; u32 cons_idx; }; struct addr_tbl_entry { void *virt_addr; dma_addr_t dma_map; }; struct qed_chain { /* Fastpath portion of the chain - required for commands such * as produce / consume. */ /* Point to next element to produce/consume */ void *p_prod_elem; void *p_cons_elem; /* Fastpath portions of the PBL [if exists] */ struct { /* Table for keeping the virtual and physical addresses of the * chain pages, respectively to the physical addresses * in the pbl table. */ struct addr_tbl_entry *pp_addr_tbl; union { struct qed_chain_pbl_u16 u16; struct qed_chain_pbl_u32 u32; } c; } pbl; union { struct qed_chain_u16 chain16; struct qed_chain_u32 chain32; } u; /* Capacity counts only usable elements */ u32 capacity; u32 page_cnt; enum qed_chain_mode mode; /* Elements information for fast calculations */ u16 elem_per_page; u16 elem_per_page_mask; u16 elem_size; u16 next_page_mask; u16 usable_per_page; u8 elem_unusable; enum qed_chain_cnt_type cnt_type; /* Slowpath of the chain - required for initialization and destruction, * but isn't involved in regular functionality. */ u32 page_size; /* Base address of a pre-allocated buffer for pbl */ struct { __le64 *table_virt; dma_addr_t table_phys; size_t table_size; } pbl_sp; /* Address of first page of the chain - the address is required * for fastpath operation [consume/produce] but only for the SINGLE * flavour which isn't considered fastpath [== SPQ]. */ void *p_virt_addr; dma_addr_t p_phys_addr; /* Total number of elements [for entire chain] */ u32 size; enum qed_chain_use_mode intended_use; bool b_external_pbl; }; struct qed_chain_init_params { enum qed_chain_mode mode; enum qed_chain_use_mode intended_use; enum qed_chain_cnt_type cnt_type; u32 page_size; u32 num_elems; size_t elem_size; void *ext_pbl_virt; dma_addr_t ext_pbl_phys; }; #define QED_CHAIN_PAGE_SIZE SZ_4K #define ELEMS_PER_PAGE(elem_size, page_size) \ ((page_size) / (elem_size)) #define UNUSABLE_ELEMS_PER_PAGE(elem_size, mode) \ (((mode) == QED_CHAIN_MODE_NEXT_PTR) ? \ (u8)(1 + ((sizeof(struct qed_chain_next) - 1) / (elem_size))) : \ 0) #define USABLE_ELEMS_PER_PAGE(elem_size, page_size, mode) \ ((u32)(ELEMS_PER_PAGE((elem_size), (page_size)) - \ UNUSABLE_ELEMS_PER_PAGE((elem_size), (mode)))) #define QED_CHAIN_PAGE_CNT(elem_cnt, elem_size, page_size, mode) \ DIV_ROUND_UP((elem_cnt), \ USABLE_ELEMS_PER_PAGE((elem_size), (page_size), (mode))) #define is_chain_u16(p) \ ((p)->cnt_type == QED_CHAIN_CNT_TYPE_U16) #define is_chain_u32(p) \ ((p)->cnt_type == QED_CHAIN_CNT_TYPE_U32) /* Accessors */ static inline u16 qed_chain_get_prod_idx(const struct qed_chain *chain) { return chain->u.chain16.prod_idx; } static inline u16 qed_chain_get_cons_idx(const struct qed_chain *chain) { return chain->u.chain16.cons_idx; } static inline u32 qed_chain_get_prod_idx_u32(const struct qed_chain *chain) { return chain->u.chain32.prod_idx; } static inline u32 qed_chain_get_cons_idx_u32(const struct qed_chain *chain) { return chain->u.chain32.cons_idx; } static inline u16 qed_chain_get_elem_used(const struct qed_chain *chain) { u32 prod = qed_chain_get_prod_idx(chain); u32 cons = qed_chain_get_cons_idx(chain); u16 elem_per_page = chain->elem_per_page; u16 used; if (prod < cons) prod += (u32)U16_MAX + 1; used = (u16)(prod - cons); if (chain->mode == QED_CHAIN_MODE_NEXT_PTR) used -= (u16)(prod / elem_per_page - cons / elem_per_page); return used; } static inline u16 qed_chain_get_elem_left(const struct qed_chain *chain) { return (u16)(chain->capacity - qed_chain_get_elem_used(chain)); } static inline u32 qed_chain_get_elem_used_u32(const struct qed_chain *chain) { u64 prod = qed_chain_get_prod_idx_u32(chain); u64 cons = qed_chain_get_cons_idx_u32(chain); u16 elem_per_page = chain->elem_per_page; u32 used; if (prod < cons) prod += (u64)U32_MAX + 1; used = (u32)(prod - cons); if (chain->mode == QED_CHAIN_MODE_NEXT_PTR) used -= (u32)(prod / elem_per_page - cons / elem_per_page); return used; } static inline u32 qed_chain_get_elem_left_u32(const struct qed_chain *chain) { return chain->capacity - qed_chain_get_elem_used_u32(chain); } static inline u16 qed_chain_get_usable_per_page(const struct qed_chain *chain) { return chain->usable_per_page; } static inline u8 qed_chain_get_unusable_per_page(const struct qed_chain *chain) { return chain->elem_unusable; } static inline u32 qed_chain_get_page_cnt(const struct qed_chain *chain) { return chain->page_cnt; } static inline dma_addr_t qed_chain_get_pbl_phys(const struct qed_chain *chain) { return chain->pbl_sp.table_phys; } /** * qed_chain_advance_page(): Advance the next element across pages for a * linked chain. * * @p_chain: P_chain. * @p_next_elem: P_next_elem. * @idx_to_inc: Idx_to_inc. * @page_to_inc: page_to_inc. * * Return: Void. */ static inline void qed_chain_advance_page(struct qed_chain *p_chain, void **p_next_elem, void *idx_to_inc, void *page_to_inc) { struct qed_chain_next *p_next = NULL; u32 page_index = 0; switch (p_chain->mode) { case QED_CHAIN_MODE_NEXT_PTR: p_next = *p_next_elem; *p_next_elem = p_next->next_virt; if (is_chain_u16(p_chain)) *(u16 *)idx_to_inc += p_chain->elem_unusable; else *(u32 *)idx_to_inc += p_chain->elem_unusable; break; case QED_CHAIN_MODE_SINGLE: *p_next_elem = p_chain->p_virt_addr; break; case QED_CHAIN_MODE_PBL: if (is_chain_u16(p_chain)) { if (++(*(u16 *)page_to_inc) == p_chain->page_cnt) *(u16 *)page_to_inc = 0; page_index = *(u16 *)page_to_inc; } else { if (++(*(u32 *)page_to_inc) == p_chain->page_cnt) *(u32 *)page_to_inc = 0; page_index = *(u32 *)page_to_inc; } *p_next_elem = p_chain->pbl.pp_addr_tbl[page_index].virt_addr; } } #define is_unusable_idx(p, idx) \ (((p)->u.chain16.idx & (p)->elem_per_page_mask) == (p)->usable_per_page) #define is_unusable_idx_u32(p, idx) \ (((p)->u.chain32.idx & (p)->elem_per_page_mask) == (p)->usable_per_page) #define is_unusable_next_idx(p, idx) \ ((((p)->u.chain16.idx + 1) & (p)->elem_per_page_mask) == \ (p)->usable_per_page) #define is_unusable_next_idx_u32(p, idx) \ ((((p)->u.chain32.idx + 1) & (p)->elem_per_page_mask) == \ (p)->usable_per_page) #define test_and_skip(p, idx) \ do { \ if (is_chain_u16(p)) { \ if (is_unusable_idx(p, idx)) \ (p)->u.chain16.idx += (p)->elem_unusable; \ } else { \ if (is_unusable_idx_u32(p, idx)) \ (p)->u.chain32.idx += (p)->elem_unusable; \ } \ } while (0) /** * qed_chain_return_produced(): A chain in which the driver "Produces" * elements should use this API * to indicate previous produced elements * are now consumed. * * @p_chain: Chain. * * Return: Void. */ static inline void qed_chain_return_produced(struct qed_chain *p_chain) { if (is_chain_u16(p_chain)) p_chain->u.chain16.cons_idx++; else p_chain->u.chain32.cons_idx++; test_and_skip(p_chain, cons_idx); } /** * qed_chain_produce(): A chain in which the driver "Produces" * elements should use this to get a pointer to * the next element which can be "Produced". It's driver * responsibility to validate that the chain has room for * new element. * * @p_chain: Chain. * * Return: void*, a pointer to next element. */ static inline void *qed_chain_produce(struct qed_chain *p_chain) { void *p_ret = NULL, *p_prod_idx, *p_prod_page_idx; if (is_chain_u16(p_chain)) { if ((p_chain->u.chain16.prod_idx & p_chain->elem_per_page_mask) == p_chain->next_page_mask) { p_prod_idx = &p_chain->u.chain16.prod_idx; p_prod_page_idx = &p_chain->pbl.c.u16.prod_page_idx; qed_chain_advance_page(p_chain, &p_chain->p_prod_elem, p_prod_idx, p_prod_page_idx); } p_chain->u.chain16.prod_idx++; } else { if ((p_chain->u.chain32.prod_idx & p_chain->elem_per_page_mask) == p_chain->next_page_mask) { p_prod_idx = &p_chain->u.chain32.prod_idx; p_prod_page_idx = &p_chain->pbl.c.u32.prod_page_idx; qed_chain_advance_page(p_chain, &p_chain->p_prod_elem, p_prod_idx, p_prod_page_idx); } p_chain->u.chain32.prod_idx++; } p_ret = p_chain->p_prod_elem; p_chain->p_prod_elem = (void *)(((u8 *)p_chain->p_prod_elem) + p_chain->elem_size); return p_ret; } /** * qed_chain_get_capacity(): Get the maximum number of BDs in chain * * @p_chain: Chain. * * Return: number of unusable BDs. */ static inline u32 qed_chain_get_capacity(struct qed_chain *p_chain) { return p_chain->capacity; } /** * qed_chain_recycle_consumed(): Returns an element which was * previously consumed; * Increments producers so they could * be written to FW. * * @p_chain: Chain. * * Return: Void. */ static inline void qed_chain_recycle_consumed(struct qed_chain *p_chain) { test_and_skip(p_chain, prod_idx); if (is_chain_u16(p_chain)) p_chain->u.chain16.prod_idx++; else p_chain->u.chain32.prod_idx++; } /** * qed_chain_consume(): A Chain in which the driver utilizes data written * by a different source (i.e., FW) should use this to * access passed buffers. * * @p_chain: Chain. * * Return: void*, a pointer to the next buffer written. */ static inline void *qed_chain_consume(struct qed_chain *p_chain) { void *p_ret = NULL, *p_cons_idx, *p_cons_page_idx; if (is_chain_u16(p_chain)) { if ((p_chain->u.chain16.cons_idx & p_chain->elem_per_page_mask) == p_chain->next_page_mask) { p_cons_idx = &p_chain->u.chain16.cons_idx; p_cons_page_idx = &p_chain->pbl.c.u16.cons_page_idx; qed_chain_advance_page(p_chain, &p_chain->p_cons_elem, p_cons_idx, p_cons_page_idx); } p_chain->u.chain16.cons_idx++; } else { if ((p_chain->u.chain32.cons_idx & p_chain->elem_per_page_mask) == p_chain->next_page_mask) { p_cons_idx = &p_chain->u.chain32.cons_idx; p_cons_page_idx = &p_chain->pbl.c.u32.cons_page_idx; qed_chain_advance_page(p_chain, &p_chain->p_cons_elem, p_cons_idx, p_cons_page_idx); } p_chain->u.chain32.cons_idx++; } p_ret = p_chain->p_cons_elem; p_chain->p_cons_elem = (void *)(((u8 *)p_chain->p_cons_elem) + p_chain->elem_size); return p_ret; } /** * qed_chain_reset(): Resets the chain to its start state. * * @p_chain: pointer to a previously allocated chain. * * Return Void. */ static inline void qed_chain_reset(struct qed_chain *p_chain) { u32 i; if (is_chain_u16(p_chain)) { p_chain->u.chain16.prod_idx = 0; p_chain->u.chain16.cons_idx = 0; } else { p_chain->u.chain32.prod_idx = 0; p_chain->u.chain32.cons_idx = 0; } p_chain->p_cons_elem = p_chain->p_virt_addr; p_chain->p_prod_elem = p_chain->p_virt_addr; if (p_chain->mode == QED_CHAIN_MODE_PBL) { /* Use (page_cnt - 1) as a reset value for the prod/cons page's * indices, to avoid unnecessary page advancing on the first * call to qed_chain_produce/consume. Instead, the indices * will be advanced to page_cnt and then will be wrapped to 0. */ u32 reset_val = p_chain->page_cnt - 1; if (is_chain_u16(p_chain)) { p_chain->pbl.c.u16.prod_page_idx = (u16)reset_val; p_chain->pbl.c.u16.cons_page_idx = (u16)reset_val; } else { p_chain->pbl.c.u32.prod_page_idx = reset_val; p_chain->pbl.c.u32.cons_page_idx = reset_val; } } switch (p_chain->intended_use) { case QED_CHAIN_USE_TO_CONSUME: /* produce empty elements */ for (i = 0; i < p_chain->capacity; i++) qed_chain_recycle_consumed(p_chain); break; case QED_CHAIN_USE_TO_CONSUME_PRODUCE: case QED_CHAIN_USE_TO_PRODUCE: default: /* Do nothing */ break; } } /** * qed_chain_get_last_elem(): Returns a pointer to the last element of the * chain. * * @p_chain: Chain. * * Return: void*. */ static inline void *qed_chain_get_last_elem(struct qed_chain *p_chain) { struct qed_chain_next *p_next = NULL; void *p_virt_addr = NULL; u32 size, last_page_idx; if (!p_chain->p_virt_addr) goto out; switch (p_chain->mode) { case QED_CHAIN_MODE_NEXT_PTR: size = p_chain->elem_size * p_chain->usable_per_page; p_virt_addr = p_chain->p_virt_addr; p_next = (struct qed_chain_next *)((u8 *)p_virt_addr + size); while (p_next->next_virt != p_chain->p_virt_addr) { p_virt_addr = p_next->next_virt; p_next = (struct qed_chain_next *)((u8 *)p_virt_addr + size); } break; case QED_CHAIN_MODE_SINGLE: p_virt_addr = p_chain->p_virt_addr; break; case QED_CHAIN_MODE_PBL: last_page_idx = p_chain->page_cnt - 1; p_virt_addr = p_chain->pbl.pp_addr_tbl[last_page_idx].virt_addr; break; } /* p_virt_addr points at this stage to the last page of the chain */ size = p_chain->elem_size * (p_chain->usable_per_page - 1); p_virt_addr = (u8 *)p_virt_addr + size; out: return p_virt_addr; } /** * qed_chain_set_prod(): sets the prod to the given value. * * @p_chain: Chain. * @prod_idx: Prod Idx. * @p_prod_elem: Prod elem. * * Return Void. */ static inline void qed_chain_set_prod(struct qed_chain *p_chain, u32 prod_idx, void *p_prod_elem) { if (p_chain->mode == QED_CHAIN_MODE_PBL) { u32 cur_prod, page_mask, page_cnt, page_diff; cur_prod = is_chain_u16(p_chain) ? p_chain->u.chain16.prod_idx : p_chain->u.chain32.prod_idx; /* Assume that number of elements in a page is power of 2 */ page_mask = ~p_chain->elem_per_page_mask; /* Use "cur_prod - 1" and "prod_idx - 1" since producer index * reaches the first element of next page before the page index * is incremented. See qed_chain_produce(). * Index wrap around is not a problem because the difference * between current and given producer indices is always * positive and lower than the chain's capacity. */ page_diff = (((cur_prod - 1) & page_mask) - ((prod_idx - 1) & page_mask)) / p_chain->elem_per_page; page_cnt = qed_chain_get_page_cnt(p_chain); if (is_chain_u16(p_chain)) p_chain->pbl.c.u16.prod_page_idx = (p_chain->pbl.c.u16.prod_page_idx - page_diff + page_cnt) % page_cnt; else p_chain->pbl.c.u32.prod_page_idx = (p_chain->pbl.c.u32.prod_page_idx - page_diff + page_cnt) % page_cnt; } if (is_chain_u16(p_chain)) p_chain->u.chain16.prod_idx = (u16) prod_idx; else p_chain->u.chain32.prod_idx = prod_idx; p_chain->p_prod_elem = p_prod_elem; } /** * qed_chain_pbl_zero_mem(): set chain memory to 0. * * @p_chain: Chain. * * Return: Void. */ static inline void qed_chain_pbl_zero_mem(struct qed_chain *p_chain) { u32 i, page_cnt; if (p_chain->mode != QED_CHAIN_MODE_PBL) return; page_cnt = qed_chain_get_page_cnt(p_chain); for (i = 0; i < page_cnt; i++) memset(p_chain->pbl.pp_addr_tbl[i].virt_addr, 0, p_chain->page_size); } #endif
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1