Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Johannes Berg | 286 | 43.66% | 6 | 22.22% |
Ivo van Doorn | 185 | 28.24% | 1 | 3.70% |
AceLan Kao | 42 | 6.41% | 1 | 3.70% |
Emmanuel Grumbach | 30 | 4.58% | 2 | 7.41% |
Henrique de Moraes Holschuh | 23 | 3.51% | 4 | 14.81% |
Heikki Krogerus | 15 | 2.29% | 1 | 3.70% |
Michael Buesch | 11 | 1.68% | 1 | 3.70% |
Iñaky Pérez-González | 11 | 1.68% | 2 | 7.41% |
Larry Finger | 10 | 1.53% | 2 | 7.41% |
Alan Jenkins | 9 | 1.37% | 1 | 3.70% |
Peter Meerwald-Stadler | 9 | 1.37% | 1 | 3.70% |
Ben Dooks | 8 | 1.22% | 1 | 3.70% |
Andrew Morton | 7 | 1.07% | 1 | 3.70% |
Dmitry Eremin-Solenikov | 5 | 0.76% | 1 | 3.70% |
Russell King | 3 | 0.46% | 1 | 3.70% |
David Howells | 1 | 0.15% | 1 | 3.70% |
Total | 655 | 27 |
/* * Copyright (C) 2006 - 2007 Ivo van Doorn * Copyright (C) 2007 Dmitry Torokhov * Copyright 2009 Johannes Berg <johannes@sipsolutions.net> * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #ifndef __RFKILL_H #define __RFKILL_H #include <uapi/linux/rfkill.h> /* don't allow anyone to use these in the kernel */ enum rfkill_user_states { RFKILL_USER_STATE_SOFT_BLOCKED = RFKILL_STATE_SOFT_BLOCKED, RFKILL_USER_STATE_UNBLOCKED = RFKILL_STATE_UNBLOCKED, RFKILL_USER_STATE_HARD_BLOCKED = RFKILL_STATE_HARD_BLOCKED, }; #undef RFKILL_STATE_SOFT_BLOCKED #undef RFKILL_STATE_UNBLOCKED #undef RFKILL_STATE_HARD_BLOCKED #include <linux/kernel.h> #include <linux/list.h> #include <linux/mutex.h> #include <linux/leds.h> #include <linux/err.h> struct device; /* this is opaque */ struct rfkill; /** * struct rfkill_ops - rfkill driver methods * * @poll: poll the rfkill block state(s) -- only assign this method * when you need polling. When called, simply call one of the * rfkill_set{,_hw,_sw}_state family of functions. If the hw * is getting unblocked you need to take into account the return * value of those functions to make sure the software block is * properly used. * @query: query the rfkill block state(s) and call exactly one of the * rfkill_set{,_hw,_sw}_state family of functions. Assign this * method if input events can cause hardware state changes to make * the rfkill core query your driver before setting a requested * block. * @set_block: turn the transmitter on (blocked == false) or off * (blocked == true) -- ignore and return 0 when hard blocked. * This callback must be assigned. */ struct rfkill_ops { void (*poll)(struct rfkill *rfkill, void *data); void (*query)(struct rfkill *rfkill, void *data); int (*set_block)(void *data, bool blocked); }; #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE) /** * rfkill_alloc - Allocate rfkill structure * @name: name of the struct -- the string is not copied internally * @parent: device that has rf switch on it * @type: type of the switch (RFKILL_TYPE_*) * @ops: rfkill methods * @ops_data: data passed to each method * * This function should be called by the transmitter driver to allocate an * rfkill structure. Returns %NULL on failure. */ struct rfkill * __must_check rfkill_alloc(const char *name, struct device *parent, const enum rfkill_type type, const struct rfkill_ops *ops, void *ops_data); /** * rfkill_register - Register a rfkill structure. * @rfkill: rfkill structure to be registered * * This function should be called by the transmitter driver to register * the rfkill structure. Before calling this function the driver needs * to be ready to service method calls from rfkill. * * If rfkill_init_sw_state() is not called before registration, * set_block() will be called to initialize the software blocked state * to a default value. * * If the hardware blocked state is not set before registration, * it is assumed to be unblocked. */ int __must_check rfkill_register(struct rfkill *rfkill); /** * rfkill_pause_polling(struct rfkill *rfkill) * * Pause polling -- say transmitter is off for other reasons. * NOTE: not necessary for suspend/resume -- in that case the * core stops polling anyway (but will also correctly handle * the case of polling having been paused before suspend.) */ void rfkill_pause_polling(struct rfkill *rfkill); /** * rfkill_resume_polling(struct rfkill *rfkill) * * Resume polling * NOTE: not necessary for suspend/resume -- in that case the * core stops polling anyway */ void rfkill_resume_polling(struct rfkill *rfkill); /** * rfkill_unregister - Unregister a rfkill structure. * @rfkill: rfkill structure to be unregistered * * This function should be called by the network driver during device * teardown to destroy rfkill structure. Until it returns, the driver * needs to be able to service method calls. */ void rfkill_unregister(struct rfkill *rfkill); /** * rfkill_destroy - Free rfkill structure * @rfkill: rfkill structure to be destroyed * * Destroys the rfkill structure. */ void rfkill_destroy(struct rfkill *rfkill); /** * rfkill_set_hw_state_reason - Set the internal rfkill hardware block state * with a reason * @rfkill: pointer to the rfkill class to modify. * @blocked: the current hardware block state to set * @reason: one of &enum rfkill_hard_block_reasons * * Prefer to use rfkill_set_hw_state if you don't need any special reason. */ bool rfkill_set_hw_state_reason(struct rfkill *rfkill, bool blocked, unsigned long reason); /** * rfkill_set_hw_state - Set the internal rfkill hardware block state * @rfkill: pointer to the rfkill class to modify. * @blocked: the current hardware block state to set * * rfkill drivers that get events when the hard-blocked state changes * use this function to notify the rfkill core (and through that also * userspace) of the current state. They should also use this after * resume if the state could have changed. * * You need not (but may) call this function if poll_state is assigned. * * This function can be called in any context, even from within rfkill * callbacks. * * The function returns the combined block state (true if transmitter * should be blocked) so that drivers need not keep track of the soft * block state -- which they might not be able to. */ static inline bool rfkill_set_hw_state(struct rfkill *rfkill, bool blocked) { return rfkill_set_hw_state_reason(rfkill, blocked, RFKILL_HARD_BLOCK_SIGNAL); } /** * rfkill_set_sw_state - Set the internal rfkill software block state * @rfkill: pointer to the rfkill class to modify. * @blocked: the current software block state to set * * rfkill drivers that get events when the soft-blocked state changes * (yes, some platforms directly act on input but allow changing again) * use this function to notify the rfkill core (and through that also * userspace) of the current state. * * Drivers should also call this function after resume if the state has * been changed by the user. This only makes sense for "persistent" * devices (see rfkill_init_sw_state()). * * This function can be called in any context, even from within rfkill * callbacks. * * The function returns the combined block state (true if transmitter * should be blocked). */ bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked); /** * rfkill_init_sw_state - Initialize persistent software block state * @rfkill: pointer to the rfkill class to modify. * @blocked: the current software block state to set * * rfkill drivers that preserve their software block state over power off * use this function to notify the rfkill core (and through that also * userspace) of their initial state. It should only be used before * registration. * * In addition, it marks the device as "persistent", an attribute which * can be read by userspace. Persistent devices are expected to preserve * their own state when suspended. */ void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked); /** * rfkill_set_states - Set the internal rfkill block states * @rfkill: pointer to the rfkill class to modify. * @sw: the current software block state to set * @hw: the current hardware block state to set * * This function can be called in any context, even from within rfkill * callbacks. */ void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw); /** * rfkill_blocked - Query rfkill block state * * @rfkill: rfkill struct to query */ bool rfkill_blocked(struct rfkill *rfkill); /** * rfkill_soft_blocked - Query soft rfkill block state * * @rfkill: rfkill struct to query */ bool rfkill_soft_blocked(struct rfkill *rfkill); /** * rfkill_find_type - Helper for finding rfkill type by name * @name: the name of the type * * Returns enum rfkill_type that corresponds to the name. */ enum rfkill_type rfkill_find_type(const char *name); #else /* !RFKILL */ static inline struct rfkill * __must_check rfkill_alloc(const char *name, struct device *parent, const enum rfkill_type type, const struct rfkill_ops *ops, void *ops_data) { return ERR_PTR(-ENODEV); } static inline int __must_check rfkill_register(struct rfkill *rfkill) { if (rfkill == ERR_PTR(-ENODEV)) return 0; return -EINVAL; } static inline void rfkill_pause_polling(struct rfkill *rfkill) { } static inline void rfkill_resume_polling(struct rfkill *rfkill) { } static inline void rfkill_unregister(struct rfkill *rfkill) { } static inline void rfkill_destroy(struct rfkill *rfkill) { } static inline bool rfkill_set_hw_state_reason(struct rfkill *rfkill, bool blocked, unsigned long reason) { return blocked; } static inline bool rfkill_set_hw_state(struct rfkill *rfkill, bool blocked) { return blocked; } static inline bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked) { return blocked; } static inline void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked) { } static inline void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw) { } static inline bool rfkill_blocked(struct rfkill *rfkill) { return false; } static inline bool rfkill_soft_blocked(struct rfkill *rfkill) { return false; } static inline enum rfkill_type rfkill_find_type(const char *name) { return RFKILL_TYPE_ALL; } #endif /* RFKILL || RFKILL_MODULE */ #ifdef CONFIG_RFKILL_LEDS /** * rfkill_get_led_trigger_name - Get the LED trigger name for the button's LED. * This function might return a NULL pointer if registering of the * LED trigger failed. Use this as "default_trigger" for the LED. */ const char *rfkill_get_led_trigger_name(struct rfkill *rfkill); /** * rfkill_set_led_trigger_name - Set the LED trigger name * @rfkill: rfkill struct * @name: LED trigger name * * This function sets the LED trigger name of the radio LED * trigger that rfkill creates. It is optional, but if called * must be called before rfkill_register() to be effective. */ void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name); #else static inline const char *rfkill_get_led_trigger_name(struct rfkill *rfkill) { return NULL; } static inline void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name) { } #endif #endif /* RFKILL_H */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1