Contributors: 22
Author |
Tokens |
Token Proportion |
Commits |
Commit Proportion |
Christoph Lameter |
251 |
36.17% |
22 |
30.56% |
Alexander Potapenko |
101 |
14.55% |
5 |
6.94% |
Roman Gushchin |
83 |
11.96% |
2 |
2.78% |
Wei Yang |
64 |
9.22% |
2 |
2.78% |
Vlastimil Babka |
59 |
8.50% |
9 |
12.50% |
Alexey Dobriyan |
23 |
3.31% |
12 |
16.67% |
Pekka J Enberg |
19 |
2.74% |
2 |
2.78% |
Andrey Ryabinin |
18 |
2.59% |
2 |
2.78% |
Peter Zijlstra |
11 |
1.59% |
1 |
1.39% |
Glauber de Oliveira Costa |
10 |
1.44% |
3 |
4.17% |
Thomas Garnier |
10 |
1.44% |
1 |
1.39% |
Kees Cook |
9 |
1.30% |
1 |
1.39% |
Alex Shi |
8 |
1.15% |
1 |
1.39% |
Mikulas Patocka |
8 |
1.15% |
1 |
1.39% |
David Windsor |
6 |
0.86% |
1 |
1.39% |
Tobin C Harding |
4 |
0.58% |
1 |
1.39% |
JoonSoo Kim |
4 |
0.58% |
1 |
1.39% |
Tejun Heo |
2 |
0.29% |
1 |
1.39% |
Zhi Yong Wu |
1 |
0.14% |
1 |
1.39% |
Namhyung Kim |
1 |
0.14% |
1 |
1.39% |
Feng Tang |
1 |
0.14% |
1 |
1.39% |
Greg Kroah-Hartman |
1 |
0.14% |
1 |
1.39% |
Total |
694 |
|
72 |
|
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _LINUX_SLUB_DEF_H
#define _LINUX_SLUB_DEF_H
/*
* SLUB : A Slab allocator without object queues.
*
* (C) 2007 SGI, Christoph Lameter
*/
#include <linux/kfence.h>
#include <linux/kobject.h>
#include <linux/reciprocal_div.h>
#include <linux/local_lock.h>
enum stat_item {
ALLOC_FASTPATH, /* Allocation from cpu slab */
ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */
FREE_FASTPATH, /* Free to cpu slab */
FREE_SLOWPATH, /* Freeing not to cpu slab */
FREE_FROZEN, /* Freeing to frozen slab */
FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */
FREE_REMOVE_PARTIAL, /* Freeing removes last object */
ALLOC_FROM_PARTIAL, /* Cpu slab acquired from node partial list */
ALLOC_SLAB, /* Cpu slab acquired from page allocator */
ALLOC_REFILL, /* Refill cpu slab from slab freelist */
ALLOC_NODE_MISMATCH, /* Switching cpu slab */
FREE_SLAB, /* Slab freed to the page allocator */
CPUSLAB_FLUSH, /* Abandoning of the cpu slab */
DEACTIVATE_FULL, /* Cpu slab was full when deactivated */
DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */
DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */
DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */
DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
DEACTIVATE_BYPASS, /* Implicit deactivation */
ORDER_FALLBACK, /* Number of times fallback was necessary */
CMPXCHG_DOUBLE_CPU_FAIL,/* Failure of this_cpu_cmpxchg_double */
CMPXCHG_DOUBLE_FAIL, /* Number of times that cmpxchg double did not match */
CPU_PARTIAL_ALLOC, /* Used cpu partial on alloc */
CPU_PARTIAL_FREE, /* Refill cpu partial on free */
CPU_PARTIAL_NODE, /* Refill cpu partial from node partial */
CPU_PARTIAL_DRAIN, /* Drain cpu partial to node partial */
NR_SLUB_STAT_ITEMS
};
#ifndef CONFIG_SLUB_TINY
/*
* When changing the layout, make sure freelist and tid are still compatible
* with this_cpu_cmpxchg_double() alignment requirements.
*/
struct kmem_cache_cpu {
union {
struct {
void **freelist; /* Pointer to next available object */
unsigned long tid; /* Globally unique transaction id */
};
freelist_aba_t freelist_tid;
};
struct slab *slab; /* The slab from which we are allocating */
#ifdef CONFIG_SLUB_CPU_PARTIAL
struct slab *partial; /* Partially allocated frozen slabs */
#endif
local_lock_t lock; /* Protects the fields above */
#ifdef CONFIG_SLUB_STATS
unsigned stat[NR_SLUB_STAT_ITEMS];
#endif
};
#endif /* CONFIG_SLUB_TINY */
#ifdef CONFIG_SLUB_CPU_PARTIAL
#define slub_percpu_partial(c) ((c)->partial)
#define slub_set_percpu_partial(c, p) \
({ \
slub_percpu_partial(c) = (p)->next; \
})
#define slub_percpu_partial_read_once(c) READ_ONCE(slub_percpu_partial(c))
#else
#define slub_percpu_partial(c) NULL
#define slub_set_percpu_partial(c, p)
#define slub_percpu_partial_read_once(c) NULL
#endif // CONFIG_SLUB_CPU_PARTIAL
/*
* Word size structure that can be atomically updated or read and that
* contains both the order and the number of objects that a slab of the
* given order would contain.
*/
struct kmem_cache_order_objects {
unsigned int x;
};
/*
* Slab cache management.
*/
struct kmem_cache {
#ifndef CONFIG_SLUB_TINY
struct kmem_cache_cpu __percpu *cpu_slab;
#endif
/* Used for retrieving partial slabs, etc. */
slab_flags_t flags;
unsigned long min_partial;
unsigned int size; /* The size of an object including metadata */
unsigned int object_size;/* The size of an object without metadata */
struct reciprocal_value reciprocal_size;
unsigned int offset; /* Free pointer offset */
#ifdef CONFIG_SLUB_CPU_PARTIAL
/* Number of per cpu partial objects to keep around */
unsigned int cpu_partial;
/* Number of per cpu partial slabs to keep around */
unsigned int cpu_partial_slabs;
#endif
struct kmem_cache_order_objects oo;
/* Allocation and freeing of slabs */
struct kmem_cache_order_objects min;
gfp_t allocflags; /* gfp flags to use on each alloc */
int refcount; /* Refcount for slab cache destroy */
void (*ctor)(void *);
unsigned int inuse; /* Offset to metadata */
unsigned int align; /* Alignment */
unsigned int red_left_pad; /* Left redzone padding size */
const char *name; /* Name (only for display!) */
struct list_head list; /* List of slab caches */
#ifdef CONFIG_SYSFS
struct kobject kobj; /* For sysfs */
#endif
#ifdef CONFIG_SLAB_FREELIST_HARDENED
unsigned long random;
#endif
#ifdef CONFIG_NUMA
/*
* Defragmentation by allocating from a remote node.
*/
unsigned int remote_node_defrag_ratio;
#endif
#ifdef CONFIG_SLAB_FREELIST_RANDOM
unsigned int *random_seq;
#endif
#ifdef CONFIG_KASAN_GENERIC
struct kasan_cache kasan_info;
#endif
#ifdef CONFIG_HARDENED_USERCOPY
unsigned int useroffset; /* Usercopy region offset */
unsigned int usersize; /* Usercopy region size */
#endif
struct kmem_cache_node *node[MAX_NUMNODES];
};
#if defined(CONFIG_SYSFS) && !defined(CONFIG_SLUB_TINY)
#define SLAB_SUPPORTS_SYSFS
void sysfs_slab_unlink(struct kmem_cache *);
void sysfs_slab_release(struct kmem_cache *);
#else
static inline void sysfs_slab_unlink(struct kmem_cache *s)
{
}
static inline void sysfs_slab_release(struct kmem_cache *s)
{
}
#endif
void *fixup_red_left(struct kmem_cache *s, void *p);
static inline void *nearest_obj(struct kmem_cache *cache, const struct slab *slab,
void *x) {
void *object = x - (x - slab_address(slab)) % cache->size;
void *last_object = slab_address(slab) +
(slab->objects - 1) * cache->size;
void *result = (unlikely(object > last_object)) ? last_object : object;
result = fixup_red_left(cache, result);
return result;
}
/* Determine object index from a given position */
static inline unsigned int __obj_to_index(const struct kmem_cache *cache,
void *addr, void *obj)
{
return reciprocal_divide(kasan_reset_tag(obj) - addr,
cache->reciprocal_size);
}
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
const struct slab *slab, void *obj)
{
if (is_kfence_address(obj))
return 0;
return __obj_to_index(cache, slab_address(slab), obj);
}
static inline int objs_per_slab(const struct kmem_cache *cache,
const struct slab *slab)
{
return slab->objects;
}
#endif /* _LINUX_SLUB_DEF_H */