Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Thomas Gleixner | 2853 | 51.26% | 99 | 49.50% |
David Daney | 656 | 11.79% | 5 | 2.50% |
Jiang Liu | 356 | 6.40% | 7 | 3.50% |
Marc Zyngier | 338 | 6.07% | 11 | 5.50% |
Julien Thierry | 180 | 3.23% | 1 | 0.50% |
Ingo Molnar | 178 | 3.20% | 10 | 5.00% |
Yingjoe Chen | 77 | 1.38% | 1 | 0.50% |
Keith Busch | 70 | 1.26% | 1 | 0.50% |
Maulik Shah | 67 | 1.20% | 1 | 0.50% |
Jeffy Chen | 63 | 1.13% | 1 | 0.50% |
Jon Hunter | 57 | 1.02% | 1 | 0.50% |
Mika Westerberg | 54 | 0.97% | 1 | 0.50% |
Lokesh Vutla | 50 | 0.90% | 1 | 0.50% |
Eric W. Biedermann | 41 | 0.74% | 2 | 1.00% |
Yinghai Lu | 40 | 0.72% | 5 | 2.50% |
Gowans, James | 38 | 0.68% | 1 | 0.50% |
Ralf Baechle | 37 | 0.66% | 1 | 0.50% |
Russell King | 31 | 0.56% | 1 | 0.50% |
Stefan Agner | 30 | 0.54% | 1 | 0.50% |
David Howells | 27 | 0.49% | 1 | 0.50% |
Quan Nguyen | 26 | 0.47% | 1 | 0.50% |
Qais Yousef | 24 | 0.43% | 1 | 0.50% |
Grygorii Strashko | 23 | 0.41% | 2 | 1.00% |
Alexander Gordeev | 20 | 0.36% | 1 | 0.50% |
Sudeep Holla | 20 | 0.36% | 1 | 0.50% |
Linus Walleij | 15 | 0.27% | 1 | 0.50% |
Linus Torvalds (pre-git) | 14 | 0.25% | 4 | 2.00% |
Stephen Boyd | 13 | 0.23% | 1 | 0.50% |
Jonathan Cameron | 12 | 0.22% | 1 | 0.50% |
Wang Chen | 11 | 0.20% | 1 | 0.50% |
Brian Masney | 11 | 0.20% | 1 | 0.50% |
Shijith Thotton | 10 | 0.18% | 1 | 0.50% |
John Stultz | 10 | 0.18% | 1 | 0.50% |
Charles Keepax | 10 | 0.18% | 1 | 0.50% |
Steven Rostedt | 9 | 0.16% | 2 | 1.00% |
Michael Ellerman | 9 | 0.16% | 1 | 0.50% |
Paolo 'Blaisorblade' Giarrusso | 7 | 0.13% | 1 | 0.50% |
Benjamin Herrenschmidt | 6 | 0.11% | 1 | 0.50% |
David Brownell | 6 | 0.11% | 1 | 0.50% |
Shanker Donthineni | 5 | 0.09% | 1 | 0.50% |
Jiri Kosina | 5 | 0.09% | 1 | 0.50% |
Jake Oshins | 5 | 0.09% | 1 | 0.50% |
Paul Mundt | 5 | 0.09% | 1 | 0.50% |
Kuninori Morimoto | 5 | 0.09% | 1 | 0.50% |
Vincent Stehlé | 5 | 0.09% | 1 | 0.50% |
Rusty Russell | 4 | 0.07% | 1 | 0.50% |
Vincent Whitchurch | 4 | 0.07% | 1 | 0.50% |
Samuel Holland | 3 | 0.05% | 1 | 0.50% |
Grant C. Likely | 3 | 0.05% | 1 | 0.50% |
Chi Minghao | 3 | 0.05% | 1 | 0.50% |
Krzysztof Kozlowski | 3 | 0.05% | 1 | 0.50% |
Jason Baron | 2 | 0.04% | 1 | 0.50% |
Yanmin Zhang | 2 | 0.04% | 1 | 0.50% |
Ning Jiang | 2 | 0.04% | 1 | 0.50% |
Chris Friesen | 2 | 0.04% | 1 | 0.50% |
Antonio Borneo | 2 | 0.04% | 1 | 0.50% |
Stephen Rothwell | 1 | 0.02% | 1 | 0.50% |
Masanari Iida | 1 | 0.02% | 1 | 0.50% |
Wei Yongjun | 1 | 0.02% | 1 | 0.50% |
Geert Uytterhoeven | 1 | 0.02% | 1 | 0.50% |
Jan Beulich | 1 | 0.02% | 1 | 0.50% |
Andrew Morton | 1 | 0.02% | 1 | 0.50% |
Mauro Carvalho Chehab | 1 | 0.02% | 1 | 0.50% |
Total | 5566 | 200 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar * Copyright (C) 2005-2006, Thomas Gleixner, Russell King * * This file contains the core interrupt handling code, for irq-chip based * architectures. Detailed information is available in * Documentation/core-api/genericirq.rst */ #include <linux/irq.h> #include <linux/msi.h> #include <linux/module.h> #include <linux/interrupt.h> #include <linux/kernel_stat.h> #include <linux/irqdomain.h> #include <trace/events/irq.h> #include "internals.h" static irqreturn_t bad_chained_irq(int irq, void *dev_id) { WARN_ONCE(1, "Chained irq %d should not call an action\n", irq); return IRQ_NONE; } /* * Chained handlers should never call action on their IRQ. This default * action will emit warning if such thing happens. */ struct irqaction chained_action = { .handler = bad_chained_irq, }; /** * irq_set_chip - set the irq chip for an irq * @irq: irq number * @chip: pointer to irq chip description structure */ int irq_set_chip(unsigned int irq, const struct irq_chip *chip) { unsigned long flags; struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); if (!desc) return -EINVAL; desc->irq_data.chip = (struct irq_chip *)(chip ?: &no_irq_chip); irq_put_desc_unlock(desc, flags); /* * For !CONFIG_SPARSE_IRQ make the irq show up in * allocated_irqs. */ irq_mark_irq(irq); return 0; } EXPORT_SYMBOL(irq_set_chip); /** * irq_set_irq_type - set the irq trigger type for an irq * @irq: irq number * @type: IRQ_TYPE_{LEVEL,EDGE}_* value - see include/linux/irq.h */ int irq_set_irq_type(unsigned int irq, unsigned int type) { unsigned long flags; struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); int ret = 0; if (!desc) return -EINVAL; ret = __irq_set_trigger(desc, type); irq_put_desc_busunlock(desc, flags); return ret; } EXPORT_SYMBOL(irq_set_irq_type); /** * irq_set_handler_data - set irq handler data for an irq * @irq: Interrupt number * @data: Pointer to interrupt specific data * * Set the hardware irq controller data for an irq */ int irq_set_handler_data(unsigned int irq, void *data) { unsigned long flags; struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); if (!desc) return -EINVAL; desc->irq_common_data.handler_data = data; irq_put_desc_unlock(desc, flags); return 0; } EXPORT_SYMBOL(irq_set_handler_data); /** * irq_set_msi_desc_off - set MSI descriptor data for an irq at offset * @irq_base: Interrupt number base * @irq_offset: Interrupt number offset * @entry: Pointer to MSI descriptor data * * Set the MSI descriptor entry for an irq at offset */ int irq_set_msi_desc_off(unsigned int irq_base, unsigned int irq_offset, struct msi_desc *entry) { unsigned long flags; struct irq_desc *desc = irq_get_desc_lock(irq_base + irq_offset, &flags, IRQ_GET_DESC_CHECK_GLOBAL); if (!desc) return -EINVAL; desc->irq_common_data.msi_desc = entry; if (entry && !irq_offset) entry->irq = irq_base; irq_put_desc_unlock(desc, flags); return 0; } /** * irq_set_msi_desc - set MSI descriptor data for an irq * @irq: Interrupt number * @entry: Pointer to MSI descriptor data * * Set the MSI descriptor entry for an irq */ int irq_set_msi_desc(unsigned int irq, struct msi_desc *entry) { return irq_set_msi_desc_off(irq, 0, entry); } /** * irq_set_chip_data - set irq chip data for an irq * @irq: Interrupt number * @data: Pointer to chip specific data * * Set the hardware irq chip data for an irq */ int irq_set_chip_data(unsigned int irq, void *data) { unsigned long flags; struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); if (!desc) return -EINVAL; desc->irq_data.chip_data = data; irq_put_desc_unlock(desc, flags); return 0; } EXPORT_SYMBOL(irq_set_chip_data); struct irq_data *irq_get_irq_data(unsigned int irq) { struct irq_desc *desc = irq_to_desc(irq); return desc ? &desc->irq_data : NULL; } EXPORT_SYMBOL_GPL(irq_get_irq_data); static void irq_state_clr_disabled(struct irq_desc *desc) { irqd_clear(&desc->irq_data, IRQD_IRQ_DISABLED); } static void irq_state_clr_masked(struct irq_desc *desc) { irqd_clear(&desc->irq_data, IRQD_IRQ_MASKED); } static void irq_state_clr_started(struct irq_desc *desc) { irqd_clear(&desc->irq_data, IRQD_IRQ_STARTED); } static void irq_state_set_started(struct irq_desc *desc) { irqd_set(&desc->irq_data, IRQD_IRQ_STARTED); } enum { IRQ_STARTUP_NORMAL, IRQ_STARTUP_MANAGED, IRQ_STARTUP_ABORT, }; #ifdef CONFIG_SMP static int __irq_startup_managed(struct irq_desc *desc, const struct cpumask *aff, bool force) { struct irq_data *d = irq_desc_get_irq_data(desc); if (!irqd_affinity_is_managed(d)) return IRQ_STARTUP_NORMAL; irqd_clr_managed_shutdown(d); if (cpumask_any_and(aff, cpu_online_mask) >= nr_cpu_ids) { /* * Catch code which fiddles with enable_irq() on a managed * and potentially shutdown IRQ. Chained interrupt * installment or irq auto probing should not happen on * managed irqs either. */ if (WARN_ON_ONCE(force)) return IRQ_STARTUP_ABORT; /* * The interrupt was requested, but there is no online CPU * in it's affinity mask. Put it into managed shutdown * state and let the cpu hotplug mechanism start it up once * a CPU in the mask becomes available. */ return IRQ_STARTUP_ABORT; } /* * Managed interrupts have reserved resources, so this should not * happen. */ if (WARN_ON(irq_domain_activate_irq(d, false))) return IRQ_STARTUP_ABORT; return IRQ_STARTUP_MANAGED; } #else static __always_inline int __irq_startup_managed(struct irq_desc *desc, const struct cpumask *aff, bool force) { return IRQ_STARTUP_NORMAL; } #endif static int __irq_startup(struct irq_desc *desc) { struct irq_data *d = irq_desc_get_irq_data(desc); int ret = 0; /* Warn if this interrupt is not activated but try nevertheless */ WARN_ON_ONCE(!irqd_is_activated(d)); if (d->chip->irq_startup) { ret = d->chip->irq_startup(d); irq_state_clr_disabled(desc); irq_state_clr_masked(desc); } else { irq_enable(desc); } irq_state_set_started(desc); return ret; } int irq_startup(struct irq_desc *desc, bool resend, bool force) { struct irq_data *d = irq_desc_get_irq_data(desc); const struct cpumask *aff = irq_data_get_affinity_mask(d); int ret = 0; desc->depth = 0; if (irqd_is_started(d)) { irq_enable(desc); } else { switch (__irq_startup_managed(desc, aff, force)) { case IRQ_STARTUP_NORMAL: if (d->chip->flags & IRQCHIP_AFFINITY_PRE_STARTUP) irq_setup_affinity(desc); ret = __irq_startup(desc); if (!(d->chip->flags & IRQCHIP_AFFINITY_PRE_STARTUP)) irq_setup_affinity(desc); break; case IRQ_STARTUP_MANAGED: irq_do_set_affinity(d, aff, false); ret = __irq_startup(desc); break; case IRQ_STARTUP_ABORT: irqd_set_managed_shutdown(d); return 0; } } if (resend) check_irq_resend(desc, false); return ret; } int irq_activate(struct irq_desc *desc) { struct irq_data *d = irq_desc_get_irq_data(desc); if (!irqd_affinity_is_managed(d)) return irq_domain_activate_irq(d, false); return 0; } int irq_activate_and_startup(struct irq_desc *desc, bool resend) { if (WARN_ON(irq_activate(desc))) return 0; return irq_startup(desc, resend, IRQ_START_FORCE); } static void __irq_disable(struct irq_desc *desc, bool mask); void irq_shutdown(struct irq_desc *desc) { if (irqd_is_started(&desc->irq_data)) { clear_irq_resend(desc); desc->depth = 1; if (desc->irq_data.chip->irq_shutdown) { desc->irq_data.chip->irq_shutdown(&desc->irq_data); irq_state_set_disabled(desc); irq_state_set_masked(desc); } else { __irq_disable(desc, true); } irq_state_clr_started(desc); } } void irq_shutdown_and_deactivate(struct irq_desc *desc) { irq_shutdown(desc); /* * This must be called even if the interrupt was never started up, * because the activation can happen before the interrupt is * available for request/startup. It has it's own state tracking so * it's safe to call it unconditionally. */ irq_domain_deactivate_irq(&desc->irq_data); } void irq_enable(struct irq_desc *desc) { if (!irqd_irq_disabled(&desc->irq_data)) { unmask_irq(desc); } else { irq_state_clr_disabled(desc); if (desc->irq_data.chip->irq_enable) { desc->irq_data.chip->irq_enable(&desc->irq_data); irq_state_clr_masked(desc); } else { unmask_irq(desc); } } } static void __irq_disable(struct irq_desc *desc, bool mask) { if (irqd_irq_disabled(&desc->irq_data)) { if (mask) mask_irq(desc); } else { irq_state_set_disabled(desc); if (desc->irq_data.chip->irq_disable) { desc->irq_data.chip->irq_disable(&desc->irq_data); irq_state_set_masked(desc); } else if (mask) { mask_irq(desc); } } } /** * irq_disable - Mark interrupt disabled * @desc: irq descriptor which should be disabled * * If the chip does not implement the irq_disable callback, we * use a lazy disable approach. That means we mark the interrupt * disabled, but leave the hardware unmasked. That's an * optimization because we avoid the hardware access for the * common case where no interrupt happens after we marked it * disabled. If an interrupt happens, then the interrupt flow * handler masks the line at the hardware level and marks it * pending. * * If the interrupt chip does not implement the irq_disable callback, * a driver can disable the lazy approach for a particular irq line by * calling 'irq_set_status_flags(irq, IRQ_DISABLE_UNLAZY)'. This can * be used for devices which cannot disable the interrupt at the * device level under certain circumstances and have to use * disable_irq[_nosync] instead. */ void irq_disable(struct irq_desc *desc) { __irq_disable(desc, irq_settings_disable_unlazy(desc)); } void irq_percpu_enable(struct irq_desc *desc, unsigned int cpu) { if (desc->irq_data.chip->irq_enable) desc->irq_data.chip->irq_enable(&desc->irq_data); else desc->irq_data.chip->irq_unmask(&desc->irq_data); cpumask_set_cpu(cpu, desc->percpu_enabled); } void irq_percpu_disable(struct irq_desc *desc, unsigned int cpu) { if (desc->irq_data.chip->irq_disable) desc->irq_data.chip->irq_disable(&desc->irq_data); else desc->irq_data.chip->irq_mask(&desc->irq_data); cpumask_clear_cpu(cpu, desc->percpu_enabled); } static inline void mask_ack_irq(struct irq_desc *desc) { if (desc->irq_data.chip->irq_mask_ack) { desc->irq_data.chip->irq_mask_ack(&desc->irq_data); irq_state_set_masked(desc); } else { mask_irq(desc); if (desc->irq_data.chip->irq_ack) desc->irq_data.chip->irq_ack(&desc->irq_data); } } void mask_irq(struct irq_desc *desc) { if (irqd_irq_masked(&desc->irq_data)) return; if (desc->irq_data.chip->irq_mask) { desc->irq_data.chip->irq_mask(&desc->irq_data); irq_state_set_masked(desc); } } void unmask_irq(struct irq_desc *desc) { if (!irqd_irq_masked(&desc->irq_data)) return; if (desc->irq_data.chip->irq_unmask) { desc->irq_data.chip->irq_unmask(&desc->irq_data); irq_state_clr_masked(desc); } } void unmask_threaded_irq(struct irq_desc *desc) { struct irq_chip *chip = desc->irq_data.chip; if (chip->flags & IRQCHIP_EOI_THREADED) chip->irq_eoi(&desc->irq_data); unmask_irq(desc); } /* * handle_nested_irq - Handle a nested irq from a irq thread * @irq: the interrupt number * * Handle interrupts which are nested into a threaded interrupt * handler. The handler function is called inside the calling * threads context. */ void handle_nested_irq(unsigned int irq) { struct irq_desc *desc = irq_to_desc(irq); struct irqaction *action; irqreturn_t action_ret; might_sleep(); raw_spin_lock_irq(&desc->lock); desc->istate &= ~(IRQS_REPLAY | IRQS_WAITING); action = desc->action; if (unlikely(!action || irqd_irq_disabled(&desc->irq_data))) { desc->istate |= IRQS_PENDING; raw_spin_unlock_irq(&desc->lock); return; } kstat_incr_irqs_this_cpu(desc); atomic_inc(&desc->threads_active); raw_spin_unlock_irq(&desc->lock); action_ret = IRQ_NONE; for_each_action_of_desc(desc, action) action_ret |= action->thread_fn(action->irq, action->dev_id); if (!irq_settings_no_debug(desc)) note_interrupt(desc, action_ret); wake_threads_waitq(desc); } EXPORT_SYMBOL_GPL(handle_nested_irq); static bool irq_check_poll(struct irq_desc *desc) { if (!(desc->istate & IRQS_POLL_INPROGRESS)) return false; return irq_wait_for_poll(desc); } static bool irq_may_run(struct irq_desc *desc) { unsigned int mask = IRQD_IRQ_INPROGRESS | IRQD_WAKEUP_ARMED; /* * If the interrupt is not in progress and is not an armed * wakeup interrupt, proceed. */ if (!irqd_has_set(&desc->irq_data, mask)) return true; /* * If the interrupt is an armed wakeup source, mark it pending * and suspended, disable it and notify the pm core about the * event. */ if (irq_pm_check_wakeup(desc)) return false; /* * Handle a potential concurrent poll on a different core. */ return irq_check_poll(desc); } /** * handle_simple_irq - Simple and software-decoded IRQs. * @desc: the interrupt description structure for this irq * * Simple interrupts are either sent from a demultiplexing interrupt * handler or come from hardware, where no interrupt hardware control * is necessary. * * Note: The caller is expected to handle the ack, clear, mask and * unmask issues if necessary. */ void handle_simple_irq(struct irq_desc *desc) { raw_spin_lock(&desc->lock); if (!irq_may_run(desc)) goto out_unlock; desc->istate &= ~(IRQS_REPLAY | IRQS_WAITING); if (unlikely(!desc->action || irqd_irq_disabled(&desc->irq_data))) { desc->istate |= IRQS_PENDING; goto out_unlock; } kstat_incr_irqs_this_cpu(desc); handle_irq_event(desc); out_unlock: raw_spin_unlock(&desc->lock); } EXPORT_SYMBOL_GPL(handle_simple_irq); /** * handle_untracked_irq - Simple and software-decoded IRQs. * @desc: the interrupt description structure for this irq * * Untracked interrupts are sent from a demultiplexing interrupt * handler when the demultiplexer does not know which device it its * multiplexed irq domain generated the interrupt. IRQ's handled * through here are not subjected to stats tracking, randomness, or * spurious interrupt detection. * * Note: Like handle_simple_irq, the caller is expected to handle * the ack, clear, mask and unmask issues if necessary. */ void handle_untracked_irq(struct irq_desc *desc) { raw_spin_lock(&desc->lock); if (!irq_may_run(desc)) goto out_unlock; desc->istate &= ~(IRQS_REPLAY | IRQS_WAITING); if (unlikely(!desc->action || irqd_irq_disabled(&desc->irq_data))) { desc->istate |= IRQS_PENDING; goto out_unlock; } desc->istate &= ~IRQS_PENDING; irqd_set(&desc->irq_data, IRQD_IRQ_INPROGRESS); raw_spin_unlock(&desc->lock); __handle_irq_event_percpu(desc); raw_spin_lock(&desc->lock); irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS); out_unlock: raw_spin_unlock(&desc->lock); } EXPORT_SYMBOL_GPL(handle_untracked_irq); /* * Called unconditionally from handle_level_irq() and only for oneshot * interrupts from handle_fasteoi_irq() */ static void cond_unmask_irq(struct irq_desc *desc) { /* * We need to unmask in the following cases: * - Standard level irq (IRQF_ONESHOT is not set) * - Oneshot irq which did not wake the thread (caused by a * spurious interrupt or a primary handler handling it * completely). */ if (!irqd_irq_disabled(&desc->irq_data) && irqd_irq_masked(&desc->irq_data) && !desc->threads_oneshot) unmask_irq(desc); } /** * handle_level_irq - Level type irq handler * @desc: the interrupt description structure for this irq * * Level type interrupts are active as long as the hardware line has * the active level. This may require to mask the interrupt and unmask * it after the associated handler has acknowledged the device, so the * interrupt line is back to inactive. */ void handle_level_irq(struct irq_desc *desc) { raw_spin_lock(&desc->lock); mask_ack_irq(desc); if (!irq_may_run(desc)) goto out_unlock; desc->istate &= ~(IRQS_REPLAY | IRQS_WAITING); /* * If its disabled or no action available * keep it masked and get out of here */ if (unlikely(!desc->action || irqd_irq_disabled(&desc->irq_data))) { desc->istate |= IRQS_PENDING; goto out_unlock; } kstat_incr_irqs_this_cpu(desc); handle_irq_event(desc); cond_unmask_irq(desc); out_unlock: raw_spin_unlock(&desc->lock); } EXPORT_SYMBOL_GPL(handle_level_irq); static void cond_unmask_eoi_irq(struct irq_desc *desc, struct irq_chip *chip) { if (!(desc->istate & IRQS_ONESHOT)) { chip->irq_eoi(&desc->irq_data); return; } /* * We need to unmask in the following cases: * - Oneshot irq which did not wake the thread (caused by a * spurious interrupt or a primary handler handling it * completely). */ if (!irqd_irq_disabled(&desc->irq_data) && irqd_irq_masked(&desc->irq_data) && !desc->threads_oneshot) { chip->irq_eoi(&desc->irq_data); unmask_irq(desc); } else if (!(chip->flags & IRQCHIP_EOI_THREADED)) { chip->irq_eoi(&desc->irq_data); } } /** * handle_fasteoi_irq - irq handler for transparent controllers * @desc: the interrupt description structure for this irq * * Only a single callback will be issued to the chip: an ->eoi() * call when the interrupt has been serviced. This enables support * for modern forms of interrupt handlers, which handle the flow * details in hardware, transparently. */ void handle_fasteoi_irq(struct irq_desc *desc) { struct irq_chip *chip = desc->irq_data.chip; raw_spin_lock(&desc->lock); /* * When an affinity change races with IRQ handling, the next interrupt * can arrive on the new CPU before the original CPU has completed * handling the previous one - it may need to be resent. */ if (!irq_may_run(desc)) { if (irqd_needs_resend_when_in_progress(&desc->irq_data)) desc->istate |= IRQS_PENDING; goto out; } desc->istate &= ~(IRQS_REPLAY | IRQS_WAITING); /* * If its disabled or no action available * then mask it and get out of here: */ if (unlikely(!desc->action || irqd_irq_disabled(&desc->irq_data))) { desc->istate |= IRQS_PENDING; mask_irq(desc); goto out; } kstat_incr_irqs_this_cpu(desc); if (desc->istate & IRQS_ONESHOT) mask_irq(desc); handle_irq_event(desc); cond_unmask_eoi_irq(desc, chip); /* * When the race described above happens this will resend the interrupt. */ if (unlikely(desc->istate & IRQS_PENDING)) check_irq_resend(desc, false); raw_spin_unlock(&desc->lock); return; out: if (!(chip->flags & IRQCHIP_EOI_IF_HANDLED)) chip->irq_eoi(&desc->irq_data); raw_spin_unlock(&desc->lock); } EXPORT_SYMBOL_GPL(handle_fasteoi_irq); /** * handle_fasteoi_nmi - irq handler for NMI interrupt lines * @desc: the interrupt description structure for this irq * * A simple NMI-safe handler, considering the restrictions * from request_nmi. * * Only a single callback will be issued to the chip: an ->eoi() * call when the interrupt has been serviced. This enables support * for modern forms of interrupt handlers, which handle the flow * details in hardware, transparently. */ void handle_fasteoi_nmi(struct irq_desc *desc) { struct irq_chip *chip = irq_desc_get_chip(desc); struct irqaction *action = desc->action; unsigned int irq = irq_desc_get_irq(desc); irqreturn_t res; __kstat_incr_irqs_this_cpu(desc); trace_irq_handler_entry(irq, action); /* * NMIs cannot be shared, there is only one action. */ res = action->handler(irq, action->dev_id); trace_irq_handler_exit(irq, action, res); if (chip->irq_eoi) chip->irq_eoi(&desc->irq_data); } EXPORT_SYMBOL_GPL(handle_fasteoi_nmi); /** * handle_edge_irq - edge type IRQ handler * @desc: the interrupt description structure for this irq * * Interrupt occurs on the falling and/or rising edge of a hardware * signal. The occurrence is latched into the irq controller hardware * and must be acked in order to be reenabled. After the ack another * interrupt can happen on the same source even before the first one * is handled by the associated event handler. If this happens it * might be necessary to disable (mask) the interrupt depending on the * controller hardware. This requires to reenable the interrupt inside * of the loop which handles the interrupts which have arrived while * the handler was running. If all pending interrupts are handled, the * loop is left. */ void handle_edge_irq(struct irq_desc *desc) { raw_spin_lock(&desc->lock); desc->istate &= ~(IRQS_REPLAY | IRQS_WAITING); if (!irq_may_run(desc)) { desc->istate |= IRQS_PENDING; mask_ack_irq(desc); goto out_unlock; } /* * If its disabled or no action available then mask it and get * out of here. */ if (irqd_irq_disabled(&desc->irq_data) || !desc->action) { desc->istate |= IRQS_PENDING; mask_ack_irq(desc); goto out_unlock; } kstat_incr_irqs_this_cpu(desc); /* Start handling the irq */ desc->irq_data.chip->irq_ack(&desc->irq_data); do { if (unlikely(!desc->action)) { mask_irq(desc); goto out_unlock; } /* * When another irq arrived while we were handling * one, we could have masked the irq. * Reenable it, if it was not disabled in meantime. */ if (unlikely(desc->istate & IRQS_PENDING)) { if (!irqd_irq_disabled(&desc->irq_data) && irqd_irq_masked(&desc->irq_data)) unmask_irq(desc); } handle_irq_event(desc); } while ((desc->istate & IRQS_PENDING) && !irqd_irq_disabled(&desc->irq_data)); out_unlock: raw_spin_unlock(&desc->lock); } EXPORT_SYMBOL(handle_edge_irq); #ifdef CONFIG_IRQ_EDGE_EOI_HANDLER /** * handle_edge_eoi_irq - edge eoi type IRQ handler * @desc: the interrupt description structure for this irq * * Similar as the above handle_edge_irq, but using eoi and w/o the * mask/unmask logic. */ void handle_edge_eoi_irq(struct irq_desc *desc) { struct irq_chip *chip = irq_desc_get_chip(desc); raw_spin_lock(&desc->lock); desc->istate &= ~(IRQS_REPLAY | IRQS_WAITING); if (!irq_may_run(desc)) { desc->istate |= IRQS_PENDING; goto out_eoi; } /* * If its disabled or no action available then mask it and get * out of here. */ if (irqd_irq_disabled(&desc->irq_data) || !desc->action) { desc->istate |= IRQS_PENDING; goto out_eoi; } kstat_incr_irqs_this_cpu(desc); do { if (unlikely(!desc->action)) goto out_eoi; handle_irq_event(desc); } while ((desc->istate & IRQS_PENDING) && !irqd_irq_disabled(&desc->irq_data)); out_eoi: chip->irq_eoi(&desc->irq_data); raw_spin_unlock(&desc->lock); } #endif /** * handle_percpu_irq - Per CPU local irq handler * @desc: the interrupt description structure for this irq * * Per CPU interrupts on SMP machines without locking requirements */ void handle_percpu_irq(struct irq_desc *desc) { struct irq_chip *chip = irq_desc_get_chip(desc); /* * PER CPU interrupts are not serialized. Do not touch * desc->tot_count. */ __kstat_incr_irqs_this_cpu(desc); if (chip->irq_ack) chip->irq_ack(&desc->irq_data); handle_irq_event_percpu(desc); if (chip->irq_eoi) chip->irq_eoi(&desc->irq_data); } /** * handle_percpu_devid_irq - Per CPU local irq handler with per cpu dev ids * @desc: the interrupt description structure for this irq * * Per CPU interrupts on SMP machines without locking requirements. Same as * handle_percpu_irq() above but with the following extras: * * action->percpu_dev_id is a pointer to percpu variables which * contain the real device id for the cpu on which this handler is * called */ void handle_percpu_devid_irq(struct irq_desc *desc) { struct irq_chip *chip = irq_desc_get_chip(desc); struct irqaction *action = desc->action; unsigned int irq = irq_desc_get_irq(desc); irqreturn_t res; /* * PER CPU interrupts are not serialized. Do not touch * desc->tot_count. */ __kstat_incr_irqs_this_cpu(desc); if (chip->irq_ack) chip->irq_ack(&desc->irq_data); if (likely(action)) { trace_irq_handler_entry(irq, action); res = action->handler(irq, raw_cpu_ptr(action->percpu_dev_id)); trace_irq_handler_exit(irq, action, res); } else { unsigned int cpu = smp_processor_id(); bool enabled = cpumask_test_cpu(cpu, desc->percpu_enabled); if (enabled) irq_percpu_disable(desc, cpu); pr_err_once("Spurious%s percpu IRQ%u on CPU%u\n", enabled ? " and unmasked" : "", irq, cpu); } if (chip->irq_eoi) chip->irq_eoi(&desc->irq_data); } /** * handle_percpu_devid_fasteoi_nmi - Per CPU local NMI handler with per cpu * dev ids * @desc: the interrupt description structure for this irq * * Similar to handle_fasteoi_nmi, but handling the dev_id cookie * as a percpu pointer. */ void handle_percpu_devid_fasteoi_nmi(struct irq_desc *desc) { struct irq_chip *chip = irq_desc_get_chip(desc); struct irqaction *action = desc->action; unsigned int irq = irq_desc_get_irq(desc); irqreturn_t res; __kstat_incr_irqs_this_cpu(desc); trace_irq_handler_entry(irq, action); res = action->handler(irq, raw_cpu_ptr(action->percpu_dev_id)); trace_irq_handler_exit(irq, action, res); if (chip->irq_eoi) chip->irq_eoi(&desc->irq_data); } static void __irq_do_set_handler(struct irq_desc *desc, irq_flow_handler_t handle, int is_chained, const char *name) { if (!handle) { handle = handle_bad_irq; } else { struct irq_data *irq_data = &desc->irq_data; #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY /* * With hierarchical domains we might run into a * situation where the outermost chip is not yet set * up, but the inner chips are there. Instead of * bailing we install the handler, but obviously we * cannot enable/startup the interrupt at this point. */ while (irq_data) { if (irq_data->chip != &no_irq_chip) break; /* * Bail out if the outer chip is not set up * and the interrupt supposed to be started * right away. */ if (WARN_ON(is_chained)) return; /* Try the parent */ irq_data = irq_data->parent_data; } #endif if (WARN_ON(!irq_data || irq_data->chip == &no_irq_chip)) return; } /* Uninstall? */ if (handle == handle_bad_irq) { if (desc->irq_data.chip != &no_irq_chip) mask_ack_irq(desc); irq_state_set_disabled(desc); if (is_chained) { desc->action = NULL; WARN_ON(irq_chip_pm_put(irq_desc_get_irq_data(desc))); } desc->depth = 1; } desc->handle_irq = handle; desc->name = name; if (handle != handle_bad_irq && is_chained) { unsigned int type = irqd_get_trigger_type(&desc->irq_data); /* * We're about to start this interrupt immediately, * hence the need to set the trigger configuration. * But the .set_type callback may have overridden the * flow handler, ignoring that we're dealing with a * chained interrupt. Reset it immediately because we * do know better. */ if (type != IRQ_TYPE_NONE) { __irq_set_trigger(desc, type); desc->handle_irq = handle; } irq_settings_set_noprobe(desc); irq_settings_set_norequest(desc); irq_settings_set_nothread(desc); desc->action = &chained_action; WARN_ON(irq_chip_pm_get(irq_desc_get_irq_data(desc))); irq_activate_and_startup(desc, IRQ_RESEND); } } void __irq_set_handler(unsigned int irq, irq_flow_handler_t handle, int is_chained, const char *name) { unsigned long flags; struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, 0); if (!desc) return; __irq_do_set_handler(desc, handle, is_chained, name); irq_put_desc_busunlock(desc, flags); } EXPORT_SYMBOL_GPL(__irq_set_handler); void irq_set_chained_handler_and_data(unsigned int irq, irq_flow_handler_t handle, void *data) { unsigned long flags; struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, 0); if (!desc) return; desc->irq_common_data.handler_data = data; __irq_do_set_handler(desc, handle, 1, NULL); irq_put_desc_busunlock(desc, flags); } EXPORT_SYMBOL_GPL(irq_set_chained_handler_and_data); void irq_set_chip_and_handler_name(unsigned int irq, const struct irq_chip *chip, irq_flow_handler_t handle, const char *name) { irq_set_chip(irq, chip); __irq_set_handler(irq, handle, 0, name); } EXPORT_SYMBOL_GPL(irq_set_chip_and_handler_name); void irq_modify_status(unsigned int irq, unsigned long clr, unsigned long set) { unsigned long flags, trigger, tmp; struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); if (!desc) return; /* * Warn when a driver sets the no autoenable flag on an already * active interrupt. */ WARN_ON_ONCE(!desc->depth && (set & _IRQ_NOAUTOEN)); irq_settings_clr_and_set(desc, clr, set); trigger = irqd_get_trigger_type(&desc->irq_data); irqd_clear(&desc->irq_data, IRQD_NO_BALANCING | IRQD_PER_CPU | IRQD_TRIGGER_MASK | IRQD_LEVEL | IRQD_MOVE_PCNTXT); if (irq_settings_has_no_balance_set(desc)) irqd_set(&desc->irq_data, IRQD_NO_BALANCING); if (irq_settings_is_per_cpu(desc)) irqd_set(&desc->irq_data, IRQD_PER_CPU); if (irq_settings_can_move_pcntxt(desc)) irqd_set(&desc->irq_data, IRQD_MOVE_PCNTXT); if (irq_settings_is_level(desc)) irqd_set(&desc->irq_data, IRQD_LEVEL); tmp = irq_settings_get_trigger_mask(desc); if (tmp != IRQ_TYPE_NONE) trigger = tmp; irqd_set(&desc->irq_data, trigger); irq_put_desc_unlock(desc, flags); } EXPORT_SYMBOL_GPL(irq_modify_status); #ifdef CONFIG_DEPRECATED_IRQ_CPU_ONOFFLINE /** * irq_cpu_online - Invoke all irq_cpu_online functions. * * Iterate through all irqs and invoke the chip.irq_cpu_online() * for each. */ void irq_cpu_online(void) { struct irq_desc *desc; struct irq_chip *chip; unsigned long flags; unsigned int irq; for_each_active_irq(irq) { desc = irq_to_desc(irq); if (!desc) continue; raw_spin_lock_irqsave(&desc->lock, flags); chip = irq_data_get_irq_chip(&desc->irq_data); if (chip && chip->irq_cpu_online && (!(chip->flags & IRQCHIP_ONOFFLINE_ENABLED) || !irqd_irq_disabled(&desc->irq_data))) chip->irq_cpu_online(&desc->irq_data); raw_spin_unlock_irqrestore(&desc->lock, flags); } } /** * irq_cpu_offline - Invoke all irq_cpu_offline functions. * * Iterate through all irqs and invoke the chip.irq_cpu_offline() * for each. */ void irq_cpu_offline(void) { struct irq_desc *desc; struct irq_chip *chip; unsigned long flags; unsigned int irq; for_each_active_irq(irq) { desc = irq_to_desc(irq); if (!desc) continue; raw_spin_lock_irqsave(&desc->lock, flags); chip = irq_data_get_irq_chip(&desc->irq_data); if (chip && chip->irq_cpu_offline && (!(chip->flags & IRQCHIP_ONOFFLINE_ENABLED) || !irqd_irq_disabled(&desc->irq_data))) chip->irq_cpu_offline(&desc->irq_data); raw_spin_unlock_irqrestore(&desc->lock, flags); } } #endif #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY #ifdef CONFIG_IRQ_FASTEOI_HIERARCHY_HANDLERS /** * handle_fasteoi_ack_irq - irq handler for edge hierarchy * stacked on transparent controllers * * @desc: the interrupt description structure for this irq * * Like handle_fasteoi_irq(), but for use with hierarchy where * the irq_chip also needs to have its ->irq_ack() function * called. */ void handle_fasteoi_ack_irq(struct irq_desc *desc) { struct irq_chip *chip = desc->irq_data.chip; raw_spin_lock(&desc->lock); if (!irq_may_run(desc)) goto out; desc->istate &= ~(IRQS_REPLAY | IRQS_WAITING); /* * If its disabled or no action available * then mask it and get out of here: */ if (unlikely(!desc->action || irqd_irq_disabled(&desc->irq_data))) { desc->istate |= IRQS_PENDING; mask_irq(desc); goto out; } kstat_incr_irqs_this_cpu(desc); if (desc->istate & IRQS_ONESHOT) mask_irq(desc); /* Start handling the irq */ desc->irq_data.chip->irq_ack(&desc->irq_data); handle_irq_event(desc); cond_unmask_eoi_irq(desc, chip); raw_spin_unlock(&desc->lock); return; out: if (!(chip->flags & IRQCHIP_EOI_IF_HANDLED)) chip->irq_eoi(&desc->irq_data); raw_spin_unlock(&desc->lock); } EXPORT_SYMBOL_GPL(handle_fasteoi_ack_irq); /** * handle_fasteoi_mask_irq - irq handler for level hierarchy * stacked on transparent controllers * * @desc: the interrupt description structure for this irq * * Like handle_fasteoi_irq(), but for use with hierarchy where * the irq_chip also needs to have its ->irq_mask_ack() function * called. */ void handle_fasteoi_mask_irq(struct irq_desc *desc) { struct irq_chip *chip = desc->irq_data.chip; raw_spin_lock(&desc->lock); mask_ack_irq(desc); if (!irq_may_run(desc)) goto out; desc->istate &= ~(IRQS_REPLAY | IRQS_WAITING); /* * If its disabled or no action available * then mask it and get out of here: */ if (unlikely(!desc->action || irqd_irq_disabled(&desc->irq_data))) { desc->istate |= IRQS_PENDING; mask_irq(desc); goto out; } kstat_incr_irqs_this_cpu(desc); if (desc->istate & IRQS_ONESHOT) mask_irq(desc); handle_irq_event(desc); cond_unmask_eoi_irq(desc, chip); raw_spin_unlock(&desc->lock); return; out: if (!(chip->flags & IRQCHIP_EOI_IF_HANDLED)) chip->irq_eoi(&desc->irq_data); raw_spin_unlock(&desc->lock); } EXPORT_SYMBOL_GPL(handle_fasteoi_mask_irq); #endif /* CONFIG_IRQ_FASTEOI_HIERARCHY_HANDLERS */ /** * irq_chip_set_parent_state - set the state of a parent interrupt. * * @data: Pointer to interrupt specific data * @which: State to be restored (one of IRQCHIP_STATE_*) * @val: Value corresponding to @which * * Conditional success, if the underlying irqchip does not implement it. */ int irq_chip_set_parent_state(struct irq_data *data, enum irqchip_irq_state which, bool val) { data = data->parent_data; if (!data || !data->chip->irq_set_irqchip_state) return 0; return data->chip->irq_set_irqchip_state(data, which, val); } EXPORT_SYMBOL_GPL(irq_chip_set_parent_state); /** * irq_chip_get_parent_state - get the state of a parent interrupt. * * @data: Pointer to interrupt specific data * @which: one of IRQCHIP_STATE_* the caller wants to know * @state: a pointer to a boolean where the state is to be stored * * Conditional success, if the underlying irqchip does not implement it. */ int irq_chip_get_parent_state(struct irq_data *data, enum irqchip_irq_state which, bool *state) { data = data->parent_data; if (!data || !data->chip->irq_get_irqchip_state) return 0; return data->chip->irq_get_irqchip_state(data, which, state); } EXPORT_SYMBOL_GPL(irq_chip_get_parent_state); /** * irq_chip_enable_parent - Enable the parent interrupt (defaults to unmask if * NULL) * @data: Pointer to interrupt specific data */ void irq_chip_enable_parent(struct irq_data *data) { data = data->parent_data; if (data->chip->irq_enable) data->chip->irq_enable(data); else data->chip->irq_unmask(data); } EXPORT_SYMBOL_GPL(irq_chip_enable_parent); /** * irq_chip_disable_parent - Disable the parent interrupt (defaults to mask if * NULL) * @data: Pointer to interrupt specific data */ void irq_chip_disable_parent(struct irq_data *data) { data = data->parent_data; if (data->chip->irq_disable) data->chip->irq_disable(data); else data->chip->irq_mask(data); } EXPORT_SYMBOL_GPL(irq_chip_disable_parent); /** * irq_chip_ack_parent - Acknowledge the parent interrupt * @data: Pointer to interrupt specific data */ void irq_chip_ack_parent(struct irq_data *data) { data = data->parent_data; data->chip->irq_ack(data); } EXPORT_SYMBOL_GPL(irq_chip_ack_parent); /** * irq_chip_mask_parent - Mask the parent interrupt * @data: Pointer to interrupt specific data */ void irq_chip_mask_parent(struct irq_data *data) { data = data->parent_data; data->chip->irq_mask(data); } EXPORT_SYMBOL_GPL(irq_chip_mask_parent); /** * irq_chip_mask_ack_parent - Mask and acknowledge the parent interrupt * @data: Pointer to interrupt specific data */ void irq_chip_mask_ack_parent(struct irq_data *data) { data = data->parent_data; data->chip->irq_mask_ack(data); } EXPORT_SYMBOL_GPL(irq_chip_mask_ack_parent); /** * irq_chip_unmask_parent - Unmask the parent interrupt * @data: Pointer to interrupt specific data */ void irq_chip_unmask_parent(struct irq_data *data) { data = data->parent_data; data->chip->irq_unmask(data); } EXPORT_SYMBOL_GPL(irq_chip_unmask_parent); /** * irq_chip_eoi_parent - Invoke EOI on the parent interrupt * @data: Pointer to interrupt specific data */ void irq_chip_eoi_parent(struct irq_data *data) { data = data->parent_data; data->chip->irq_eoi(data); } EXPORT_SYMBOL_GPL(irq_chip_eoi_parent); /** * irq_chip_set_affinity_parent - Set affinity on the parent interrupt * @data: Pointer to interrupt specific data * @dest: The affinity mask to set * @force: Flag to enforce setting (disable online checks) * * Conditional, as the underlying parent chip might not implement it. */ int irq_chip_set_affinity_parent(struct irq_data *data, const struct cpumask *dest, bool force) { data = data->parent_data; if (data->chip->irq_set_affinity) return data->chip->irq_set_affinity(data, dest, force); return -ENOSYS; } EXPORT_SYMBOL_GPL(irq_chip_set_affinity_parent); /** * irq_chip_set_type_parent - Set IRQ type on the parent interrupt * @data: Pointer to interrupt specific data * @type: IRQ_TYPE_{LEVEL,EDGE}_* value - see include/linux/irq.h * * Conditional, as the underlying parent chip might not implement it. */ int irq_chip_set_type_parent(struct irq_data *data, unsigned int type) { data = data->parent_data; if (data->chip->irq_set_type) return data->chip->irq_set_type(data, type); return -ENOSYS; } EXPORT_SYMBOL_GPL(irq_chip_set_type_parent); /** * irq_chip_retrigger_hierarchy - Retrigger an interrupt in hardware * @data: Pointer to interrupt specific data * * Iterate through the domain hierarchy of the interrupt and check * whether a hw retrigger function exists. If yes, invoke it. */ int irq_chip_retrigger_hierarchy(struct irq_data *data) { for (data = data->parent_data; data; data = data->parent_data) if (data->chip && data->chip->irq_retrigger) return data->chip->irq_retrigger(data); return 0; } EXPORT_SYMBOL_GPL(irq_chip_retrigger_hierarchy); /** * irq_chip_set_vcpu_affinity_parent - Set vcpu affinity on the parent interrupt * @data: Pointer to interrupt specific data * @vcpu_info: The vcpu affinity information */ int irq_chip_set_vcpu_affinity_parent(struct irq_data *data, void *vcpu_info) { data = data->parent_data; if (data->chip->irq_set_vcpu_affinity) return data->chip->irq_set_vcpu_affinity(data, vcpu_info); return -ENOSYS; } EXPORT_SYMBOL_GPL(irq_chip_set_vcpu_affinity_parent); /** * irq_chip_set_wake_parent - Set/reset wake-up on the parent interrupt * @data: Pointer to interrupt specific data * @on: Whether to set or reset the wake-up capability of this irq * * Conditional, as the underlying parent chip might not implement it. */ int irq_chip_set_wake_parent(struct irq_data *data, unsigned int on) { data = data->parent_data; if (data->chip->flags & IRQCHIP_SKIP_SET_WAKE) return 0; if (data->chip->irq_set_wake) return data->chip->irq_set_wake(data, on); return -ENOSYS; } EXPORT_SYMBOL_GPL(irq_chip_set_wake_parent); /** * irq_chip_request_resources_parent - Request resources on the parent interrupt * @data: Pointer to interrupt specific data */ int irq_chip_request_resources_parent(struct irq_data *data) { data = data->parent_data; if (data->chip->irq_request_resources) return data->chip->irq_request_resources(data); /* no error on missing optional irq_chip::irq_request_resources */ return 0; } EXPORT_SYMBOL_GPL(irq_chip_request_resources_parent); /** * irq_chip_release_resources_parent - Release resources on the parent interrupt * @data: Pointer to interrupt specific data */ void irq_chip_release_resources_parent(struct irq_data *data) { data = data->parent_data; if (data->chip->irq_release_resources) data->chip->irq_release_resources(data); } EXPORT_SYMBOL_GPL(irq_chip_release_resources_parent); #endif /** * irq_chip_compose_msi_msg - Compose msi message for a irq chip * @data: Pointer to interrupt specific data * @msg: Pointer to the MSI message * * For hierarchical domains we find the first chip in the hierarchy * which implements the irq_compose_msi_msg callback. For non * hierarchical we use the top level chip. */ int irq_chip_compose_msi_msg(struct irq_data *data, struct msi_msg *msg) { struct irq_data *pos; for (pos = NULL; !pos && data; data = irqd_get_parent_data(data)) { if (data->chip && data->chip->irq_compose_msi_msg) pos = data; } if (!pos) return -ENOSYS; pos->chip->irq_compose_msi_msg(pos, msg); return 0; } static struct device *irq_get_pm_device(struct irq_data *data) { if (data->domain) return data->domain->pm_dev; return NULL; } /** * irq_chip_pm_get - Enable power for an IRQ chip * @data: Pointer to interrupt specific data * * Enable the power to the IRQ chip referenced by the interrupt data * structure. */ int irq_chip_pm_get(struct irq_data *data) { struct device *dev = irq_get_pm_device(data); int retval = 0; if (IS_ENABLED(CONFIG_PM) && dev) retval = pm_runtime_resume_and_get(dev); return retval; } /** * irq_chip_pm_put - Disable power for an IRQ chip * @data: Pointer to interrupt specific data * * Disable the power to the IRQ chip referenced by the interrupt data * structure, belongs. Note that power will only be disabled, once this * function has been called for all IRQs that have called irq_chip_pm_get(). */ int irq_chip_pm_put(struct irq_data *data) { struct device *dev = irq_get_pm_device(data); int retval = 0; if (IS_ENABLED(CONFIG_PM) && dev) retval = pm_runtime_put(dev); return (retval < 0) ? retval : 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1