Contributors: 27
Author |
Tokens |
Token Proportion |
Commits |
Commit Proportion |
Oleg Nesterov |
147 |
28.11% |
3 |
4.69% |
Luis R. Rodriguez |
104 |
19.89% |
5 |
7.81% |
Linus Torvalds (pre-git) |
85 |
16.25% |
20 |
31.25% |
Lucas De Marchi |
33 |
6.31% |
1 |
1.56% |
Linus Torvalds |
25 |
4.78% |
5 |
7.81% |
Rusty Russell |
19 |
3.63% |
2 |
3.12% |
Li Zefan |
12 |
2.29% |
1 |
1.56% |
Tejun Heo |
12 |
2.29% |
1 |
1.56% |
Andrew Morton |
11 |
2.10% |
3 |
4.69% |
Ingo Molnar |
10 |
1.91% |
4 |
6.25% |
Arjan van de Ven |
10 |
1.91% |
1 |
1.56% |
Mimi Zohar |
8 |
1.53% |
1 |
1.56% |
Eric Paris |
8 |
1.53% |
2 |
3.12% |
Al Viro |
6 |
1.15% |
2 |
3.12% |
Rafael J. Wysocki |
6 |
1.15% |
1 |
1.56% |
Neil Horman |
4 |
0.76% |
1 |
1.56% |
Christoph Hellwig |
3 |
0.57% |
1 |
1.56% |
Srivatsa S. Bhat |
3 |
0.57% |
1 |
1.56% |
Greg Kroah-Hartman |
3 |
0.57% |
1 |
1.56% |
Andi Kleen |
3 |
0.57% |
1 |
1.56% |
Eric Biggers |
3 |
0.57% |
1 |
1.56% |
Matthew Wilcox |
2 |
0.38% |
1 |
1.56% |
Jeremy Fitzhardinge |
2 |
0.38% |
1 |
1.56% |
Jiri Kosina |
1 |
0.19% |
1 |
1.56% |
Rasmus Villemoes |
1 |
0.19% |
1 |
1.56% |
James Morris |
1 |
0.19% |
1 |
1.56% |
Tiezhu Yang |
1 |
0.19% |
1 |
1.56% |
Total |
523 |
|
64 |
|
/*
* kmod - the kernel module loader
*
* Copyright (C) 2023 Luis Chamberlain <mcgrof@kernel.org>
*/
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/sched/task.h>
#include <linux/binfmts.h>
#include <linux/syscalls.h>
#include <linux/unistd.h>
#include <linux/kmod.h>
#include <linux/slab.h>
#include <linux/completion.h>
#include <linux/cred.h>
#include <linux/file.h>
#include <linux/fdtable.h>
#include <linux/workqueue.h>
#include <linux/security.h>
#include <linux/mount.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/resource.h>
#include <linux/notifier.h>
#include <linux/suspend.h>
#include <linux/rwsem.h>
#include <linux/ptrace.h>
#include <linux/async.h>
#include <linux/uaccess.h>
#include <trace/events/module.h>
#include "internal.h"
/*
* Assuming:
*
* threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
* (u64) THREAD_SIZE * 8UL);
*
* If you need less than 50 threads would mean we're dealing with systems
* smaller than 3200 pages. This assumes you are capable of having ~13M memory,
* and this would only be an upper limit, after which the OOM killer would take
* effect. Systems like these are very unlikely if modules are enabled.
*/
#define MAX_KMOD_CONCURRENT 50
static DEFINE_SEMAPHORE(kmod_concurrent_max, MAX_KMOD_CONCURRENT);
/*
* This is a restriction on having *all* MAX_KMOD_CONCURRENT threads
* running at the same time without returning. When this happens we
* believe you've somehow ended up with a recursive module dependency
* creating a loop.
*
* We have no option but to fail.
*
* Userspace should proactively try to detect and prevent these.
*/
#define MAX_KMOD_ALL_BUSY_TIMEOUT 5
/*
modprobe_path is set via /proc/sys.
*/
char modprobe_path[KMOD_PATH_LEN] = CONFIG_MODPROBE_PATH;
static void free_modprobe_argv(struct subprocess_info *info)
{
kfree(info->argv[3]); /* check call_modprobe() */
kfree(info->argv);
}
static int call_modprobe(char *orig_module_name, int wait)
{
struct subprocess_info *info;
static char *envp[] = {
"HOME=/",
"TERM=linux",
"PATH=/sbin:/usr/sbin:/bin:/usr/bin",
NULL
};
char *module_name;
int ret;
char **argv = kmalloc(sizeof(char *[5]), GFP_KERNEL);
if (!argv)
goto out;
module_name = kstrdup(orig_module_name, GFP_KERNEL);
if (!module_name)
goto free_argv;
argv[0] = modprobe_path;
argv[1] = "-q";
argv[2] = "--";
argv[3] = module_name; /* check free_modprobe_argv() */
argv[4] = NULL;
info = call_usermodehelper_setup(modprobe_path, argv, envp, GFP_KERNEL,
NULL, free_modprobe_argv, NULL);
if (!info)
goto free_module_name;
ret = call_usermodehelper_exec(info, wait | UMH_KILLABLE);
kmod_dup_request_announce(orig_module_name, ret);
return ret;
free_module_name:
kfree(module_name);
free_argv:
kfree(argv);
out:
kmod_dup_request_announce(orig_module_name, -ENOMEM);
return -ENOMEM;
}
/**
* __request_module - try to load a kernel module
* @wait: wait (or not) for the operation to complete
* @fmt: printf style format string for the name of the module
* @...: arguments as specified in the format string
*
* Load a module using the user mode module loader. The function returns
* zero on success or a negative errno code or positive exit code from
* "modprobe" on failure. Note that a successful module load does not mean
* the module did not then unload and exit on an error of its own. Callers
* must check that the service they requested is now available not blindly
* invoke it.
*
* If module auto-loading support is disabled then this function
* simply returns -ENOENT.
*/
int __request_module(bool wait, const char *fmt, ...)
{
va_list args;
char module_name[MODULE_NAME_LEN];
int ret, dup_ret;
/*
* We don't allow synchronous module loading from async. Module
* init may invoke async_synchronize_full() which will end up
* waiting for this task which already is waiting for the module
* loading to complete, leading to a deadlock.
*/
WARN_ON_ONCE(wait && current_is_async());
if (!modprobe_path[0])
return -ENOENT;
va_start(args, fmt);
ret = vsnprintf(module_name, MODULE_NAME_LEN, fmt, args);
va_end(args);
if (ret >= MODULE_NAME_LEN)
return -ENAMETOOLONG;
ret = security_kernel_module_request(module_name);
if (ret)
return ret;
ret = down_timeout(&kmod_concurrent_max, MAX_KMOD_ALL_BUSY_TIMEOUT * HZ);
if (ret) {
pr_warn_ratelimited("request_module: modprobe %s cannot be processed, kmod busy with %d threads for more than %d seconds now",
module_name, MAX_KMOD_CONCURRENT, MAX_KMOD_ALL_BUSY_TIMEOUT);
return ret;
}
trace_module_request(module_name, wait, _RET_IP_);
if (kmod_dup_request_exists_wait(module_name, wait, &dup_ret)) {
ret = dup_ret;
goto out;
}
ret = call_modprobe(module_name, wait ? UMH_WAIT_PROC : UMH_WAIT_EXEC);
out:
up(&kmod_concurrent_max);
return ret;
}
EXPORT_SYMBOL(__request_module);