Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Steffen Klassert | 1715 | 36.53% | 20 | 24.39% |
Daniel Jordan | 1319 | 28.09% | 26 | 31.71% |
Dan Kruchinin | 922 | 19.64% | 3 | 3.66% |
Herbert Xu | 493 | 10.50% | 4 | 4.88% |
Sebastian Andrzej Siewior | 104 | 2.22% | 3 | 3.66% |
Mathias Krause | 39 | 0.83% | 4 | 4.88% |
Wang Jinchao | 21 | 0.45% | 1 | 1.22% |
Tejun Heo | 18 | 0.38% | 2 | 2.44% |
Richard Weinberger | 12 | 0.26% | 1 | 1.22% |
Eric Biggers | 9 | 0.19% | 1 | 1.22% |
Kimberly Brown | 7 | 0.15% | 1 | 1.22% |
Anthony Yznaga | 7 | 0.15% | 1 | 1.22% |
Xiyu Yang | 4 | 0.09% | 1 | 1.22% |
Kees Cook | 4 | 0.09% | 1 | 1.22% |
Jason A. Donenfeld | 4 | 0.09% | 2 | 2.44% |
Thomas Gleixner | 4 | 0.09% | 1 | 1.22% |
Linus Torvalds | 3 | 0.06% | 2 | 2.44% |
Nathan Chancellor | 2 | 0.04% | 1 | 1.22% |
Linus Torvalds (pre-git) | 2 | 0.04% | 1 | 1.22% |
Yury Norov | 1 | 0.02% | 1 | 1.22% |
Cheah Kok Cheong | 1 | 0.02% | 1 | 1.22% |
Paul Gortmaker | 1 | 0.02% | 1 | 1.22% |
caihuoqing | 1 | 0.02% | 1 | 1.22% |
Lucas De Marchi | 1 | 0.02% | 1 | 1.22% |
Thomas Weißschuh | 1 | 0.02% | 1 | 1.22% |
Total | 4695 | 82 |
// SPDX-License-Identifier: GPL-2.0 /* * padata.c - generic interface to process data streams in parallel * * See Documentation/core-api/padata.rst for more information. * * Copyright (C) 2008, 2009 secunet Security Networks AG * Copyright (C) 2008, 2009 Steffen Klassert <steffen.klassert@secunet.com> * * Copyright (c) 2020 Oracle and/or its affiliates. * Author: Daniel Jordan <daniel.m.jordan@oracle.com> */ #include <linux/completion.h> #include <linux/export.h> #include <linux/cpumask.h> #include <linux/err.h> #include <linux/cpu.h> #include <linux/padata.h> #include <linux/mutex.h> #include <linux/sched.h> #include <linux/slab.h> #include <linux/sysfs.h> #include <linux/rcupdate.h> #define PADATA_WORK_ONSTACK 1 /* Work's memory is on stack */ struct padata_work { struct work_struct pw_work; struct list_head pw_list; /* padata_free_works linkage */ void *pw_data; }; static DEFINE_SPINLOCK(padata_works_lock); static struct padata_work *padata_works; static LIST_HEAD(padata_free_works); struct padata_mt_job_state { spinlock_t lock; struct completion completion; struct padata_mt_job *job; int nworks; int nworks_fini; unsigned long chunk_size; }; static void padata_free_pd(struct parallel_data *pd); static void __init padata_mt_helper(struct work_struct *work); static int padata_index_to_cpu(struct parallel_data *pd, int cpu_index) { int cpu, target_cpu; target_cpu = cpumask_first(pd->cpumask.pcpu); for (cpu = 0; cpu < cpu_index; cpu++) target_cpu = cpumask_next(target_cpu, pd->cpumask.pcpu); return target_cpu; } static int padata_cpu_hash(struct parallel_data *pd, unsigned int seq_nr) { /* * Hash the sequence numbers to the cpus by taking * seq_nr mod. number of cpus in use. */ int cpu_index = seq_nr % cpumask_weight(pd->cpumask.pcpu); return padata_index_to_cpu(pd, cpu_index); } static struct padata_work *padata_work_alloc(void) { struct padata_work *pw; lockdep_assert_held(&padata_works_lock); if (list_empty(&padata_free_works)) return NULL; /* No more work items allowed to be queued. */ pw = list_first_entry(&padata_free_works, struct padata_work, pw_list); list_del(&pw->pw_list); return pw; } /* * This function is marked __ref because this function may be optimized in such * a way that it directly refers to work_fn's address, which causes modpost to * complain when work_fn is marked __init. This scenario was observed with clang * LTO, where padata_work_init() was optimized to refer directly to * padata_mt_helper() because the calls to padata_work_init() with other work_fn * values were eliminated or inlined. */ static void __ref padata_work_init(struct padata_work *pw, work_func_t work_fn, void *data, int flags) { if (flags & PADATA_WORK_ONSTACK) INIT_WORK_ONSTACK(&pw->pw_work, work_fn); else INIT_WORK(&pw->pw_work, work_fn); pw->pw_data = data; } static int __init padata_work_alloc_mt(int nworks, void *data, struct list_head *head) { int i; spin_lock(&padata_works_lock); /* Start at 1 because the current task participates in the job. */ for (i = 1; i < nworks; ++i) { struct padata_work *pw = padata_work_alloc(); if (!pw) break; padata_work_init(pw, padata_mt_helper, data, 0); list_add(&pw->pw_list, head); } spin_unlock(&padata_works_lock); return i; } static void padata_work_free(struct padata_work *pw) { lockdep_assert_held(&padata_works_lock); list_add(&pw->pw_list, &padata_free_works); } static void __init padata_works_free(struct list_head *works) { struct padata_work *cur, *next; if (list_empty(works)) return; spin_lock(&padata_works_lock); list_for_each_entry_safe(cur, next, works, pw_list) { list_del(&cur->pw_list); padata_work_free(cur); } spin_unlock(&padata_works_lock); } static void padata_parallel_worker(struct work_struct *parallel_work) { struct padata_work *pw = container_of(parallel_work, struct padata_work, pw_work); struct padata_priv *padata = pw->pw_data; local_bh_disable(); padata->parallel(padata); spin_lock(&padata_works_lock); padata_work_free(pw); spin_unlock(&padata_works_lock); local_bh_enable(); } /** * padata_do_parallel - padata parallelization function * * @ps: padatashell * @padata: object to be parallelized * @cb_cpu: pointer to the CPU that the serialization callback function should * run on. If it's not in the serial cpumask of @pinst * (i.e. cpumask.cbcpu), this function selects a fallback CPU and if * none found, returns -EINVAL. * * The parallelization callback function will run with BHs off. * Note: Every object which is parallelized by padata_do_parallel * must be seen by padata_do_serial. * * Return: 0 on success or else negative error code. */ int padata_do_parallel(struct padata_shell *ps, struct padata_priv *padata, int *cb_cpu) { struct padata_instance *pinst = ps->pinst; int i, cpu, cpu_index, err; struct parallel_data *pd; struct padata_work *pw; rcu_read_lock_bh(); pd = rcu_dereference_bh(ps->pd); err = -EINVAL; if (!(pinst->flags & PADATA_INIT) || pinst->flags & PADATA_INVALID) goto out; if (!cpumask_test_cpu(*cb_cpu, pd->cpumask.cbcpu)) { if (cpumask_empty(pd->cpumask.cbcpu)) goto out; /* Select an alternate fallback CPU and notify the caller. */ cpu_index = *cb_cpu % cpumask_weight(pd->cpumask.cbcpu); cpu = cpumask_first(pd->cpumask.cbcpu); for (i = 0; i < cpu_index; i++) cpu = cpumask_next(cpu, pd->cpumask.cbcpu); *cb_cpu = cpu; } err = -EBUSY; if ((pinst->flags & PADATA_RESET)) goto out; refcount_inc(&pd->refcnt); padata->pd = pd; padata->cb_cpu = *cb_cpu; spin_lock(&padata_works_lock); padata->seq_nr = ++pd->seq_nr; pw = padata_work_alloc(); spin_unlock(&padata_works_lock); if (!pw) { /* Maximum works limit exceeded, run in the current task. */ padata->parallel(padata); } rcu_read_unlock_bh(); if (pw) { padata_work_init(pw, padata_parallel_worker, padata, 0); queue_work(pinst->parallel_wq, &pw->pw_work); } return 0; out: rcu_read_unlock_bh(); return err; } EXPORT_SYMBOL(padata_do_parallel); /* * padata_find_next - Find the next object that needs serialization. * * Return: * * A pointer to the control struct of the next object that needs * serialization, if present in one of the percpu reorder queues. * * NULL, if the next object that needs serialization will * be parallel processed by another cpu and is not yet present in * the cpu's reorder queue. */ static struct padata_priv *padata_find_next(struct parallel_data *pd, bool remove_object) { struct padata_priv *padata; struct padata_list *reorder; int cpu = pd->cpu; reorder = per_cpu_ptr(pd->reorder_list, cpu); spin_lock(&reorder->lock); if (list_empty(&reorder->list)) { spin_unlock(&reorder->lock); return NULL; } padata = list_entry(reorder->list.next, struct padata_priv, list); /* * Checks the rare case where two or more parallel jobs have hashed to * the same CPU and one of the later ones finishes first. */ if (padata->seq_nr != pd->processed) { spin_unlock(&reorder->lock); return NULL; } if (remove_object) { list_del_init(&padata->list); ++pd->processed; pd->cpu = cpumask_next_wrap(cpu, pd->cpumask.pcpu, -1, false); } spin_unlock(&reorder->lock); return padata; } static void padata_reorder(struct parallel_data *pd) { struct padata_instance *pinst = pd->ps->pinst; int cb_cpu; struct padata_priv *padata; struct padata_serial_queue *squeue; struct padata_list *reorder; /* * We need to ensure that only one cpu can work on dequeueing of * the reorder queue the time. Calculating in which percpu reorder * queue the next object will arrive takes some time. A spinlock * would be highly contended. Also it is not clear in which order * the objects arrive to the reorder queues. So a cpu could wait to * get the lock just to notice that there is nothing to do at the * moment. Therefore we use a trylock and let the holder of the lock * care for all the objects enqueued during the holdtime of the lock. */ if (!spin_trylock_bh(&pd->lock)) return; while (1) { padata = padata_find_next(pd, true); /* * If the next object that needs serialization is parallel * processed by another cpu and is still on it's way to the * cpu's reorder queue, nothing to do for now. */ if (!padata) break; cb_cpu = padata->cb_cpu; squeue = per_cpu_ptr(pd->squeue, cb_cpu); spin_lock(&squeue->serial.lock); list_add_tail(&padata->list, &squeue->serial.list); spin_unlock(&squeue->serial.lock); queue_work_on(cb_cpu, pinst->serial_wq, &squeue->work); } spin_unlock_bh(&pd->lock); /* * The next object that needs serialization might have arrived to * the reorder queues in the meantime. * * Ensure reorder queue is read after pd->lock is dropped so we see * new objects from another task in padata_do_serial. Pairs with * smp_mb in padata_do_serial. */ smp_mb(); reorder = per_cpu_ptr(pd->reorder_list, pd->cpu); if (!list_empty(&reorder->list) && padata_find_next(pd, false)) queue_work(pinst->serial_wq, &pd->reorder_work); } static void invoke_padata_reorder(struct work_struct *work) { struct parallel_data *pd; local_bh_disable(); pd = container_of(work, struct parallel_data, reorder_work); padata_reorder(pd); local_bh_enable(); } static void padata_serial_worker(struct work_struct *serial_work) { struct padata_serial_queue *squeue; struct parallel_data *pd; LIST_HEAD(local_list); int cnt; local_bh_disable(); squeue = container_of(serial_work, struct padata_serial_queue, work); pd = squeue->pd; spin_lock(&squeue->serial.lock); list_replace_init(&squeue->serial.list, &local_list); spin_unlock(&squeue->serial.lock); cnt = 0; while (!list_empty(&local_list)) { struct padata_priv *padata; padata = list_entry(local_list.next, struct padata_priv, list); list_del_init(&padata->list); padata->serial(padata); cnt++; } local_bh_enable(); if (refcount_sub_and_test(cnt, &pd->refcnt)) padata_free_pd(pd); } /** * padata_do_serial - padata serialization function * * @padata: object to be serialized. * * padata_do_serial must be called for every parallelized object. * The serialization callback function will run with BHs off. */ void padata_do_serial(struct padata_priv *padata) { struct parallel_data *pd = padata->pd; int hashed_cpu = padata_cpu_hash(pd, padata->seq_nr); struct padata_list *reorder = per_cpu_ptr(pd->reorder_list, hashed_cpu); struct padata_priv *cur; struct list_head *pos; spin_lock(&reorder->lock); /* Sort in ascending order of sequence number. */ list_for_each_prev(pos, &reorder->list) { cur = list_entry(pos, struct padata_priv, list); if (cur->seq_nr < padata->seq_nr) break; } list_add(&padata->list, pos); spin_unlock(&reorder->lock); /* * Ensure the addition to the reorder list is ordered correctly * with the trylock of pd->lock in padata_reorder. Pairs with smp_mb * in padata_reorder. */ smp_mb(); padata_reorder(pd); } EXPORT_SYMBOL(padata_do_serial); static int padata_setup_cpumasks(struct padata_instance *pinst) { struct workqueue_attrs *attrs; int err; attrs = alloc_workqueue_attrs(); if (!attrs) return -ENOMEM; /* Restrict parallel_wq workers to pd->cpumask.pcpu. */ cpumask_copy(attrs->cpumask, pinst->cpumask.pcpu); err = apply_workqueue_attrs(pinst->parallel_wq, attrs); free_workqueue_attrs(attrs); return err; } static void __init padata_mt_helper(struct work_struct *w) { struct padata_work *pw = container_of(w, struct padata_work, pw_work); struct padata_mt_job_state *ps = pw->pw_data; struct padata_mt_job *job = ps->job; bool done; spin_lock(&ps->lock); while (job->size > 0) { unsigned long start, size, end; start = job->start; /* So end is chunk size aligned if enough work remains. */ size = roundup(start + 1, ps->chunk_size) - start; size = min(size, job->size); end = start + size; job->start = end; job->size -= size; spin_unlock(&ps->lock); job->thread_fn(start, end, job->fn_arg); spin_lock(&ps->lock); } ++ps->nworks_fini; done = (ps->nworks_fini == ps->nworks); spin_unlock(&ps->lock); if (done) complete(&ps->completion); } /** * padata_do_multithreaded - run a multithreaded job * @job: Description of the job. * * See the definition of struct padata_mt_job for more details. */ void __init padata_do_multithreaded(struct padata_mt_job *job) { /* In case threads finish at different times. */ static const unsigned long load_balance_factor = 4; struct padata_work my_work, *pw; struct padata_mt_job_state ps; LIST_HEAD(works); int nworks; if (job->size == 0) return; /* Ensure at least one thread when size < min_chunk. */ nworks = max(job->size / max(job->min_chunk, job->align), 1ul); nworks = min(nworks, job->max_threads); if (nworks == 1) { /* Single thread, no coordination needed, cut to the chase. */ job->thread_fn(job->start, job->start + job->size, job->fn_arg); return; } spin_lock_init(&ps.lock); init_completion(&ps.completion); ps.job = job; ps.nworks = padata_work_alloc_mt(nworks, &ps, &works); ps.nworks_fini = 0; /* * Chunk size is the amount of work a helper does per call to the * thread function. Load balance large jobs between threads by * increasing the number of chunks, guarantee at least the minimum * chunk size from the caller, and honor the caller's alignment. */ ps.chunk_size = job->size / (ps.nworks * load_balance_factor); ps.chunk_size = max(ps.chunk_size, job->min_chunk); ps.chunk_size = roundup(ps.chunk_size, job->align); list_for_each_entry(pw, &works, pw_list) queue_work(system_unbound_wq, &pw->pw_work); /* Use the current thread, which saves starting a workqueue worker. */ padata_work_init(&my_work, padata_mt_helper, &ps, PADATA_WORK_ONSTACK); padata_mt_helper(&my_work.pw_work); /* Wait for all the helpers to finish. */ wait_for_completion(&ps.completion); destroy_work_on_stack(&my_work.pw_work); padata_works_free(&works); } static void __padata_list_init(struct padata_list *pd_list) { INIT_LIST_HEAD(&pd_list->list); spin_lock_init(&pd_list->lock); } /* Initialize all percpu queues used by serial workers */ static void padata_init_squeues(struct parallel_data *pd) { int cpu; struct padata_serial_queue *squeue; for_each_cpu(cpu, pd->cpumask.cbcpu) { squeue = per_cpu_ptr(pd->squeue, cpu); squeue->pd = pd; __padata_list_init(&squeue->serial); INIT_WORK(&squeue->work, padata_serial_worker); } } /* Initialize per-CPU reorder lists */ static void padata_init_reorder_list(struct parallel_data *pd) { int cpu; struct padata_list *list; for_each_cpu(cpu, pd->cpumask.pcpu) { list = per_cpu_ptr(pd->reorder_list, cpu); __padata_list_init(list); } } /* Allocate and initialize the internal cpumask dependend resources. */ static struct parallel_data *padata_alloc_pd(struct padata_shell *ps) { struct padata_instance *pinst = ps->pinst; struct parallel_data *pd; pd = kzalloc(sizeof(struct parallel_data), GFP_KERNEL); if (!pd) goto err; pd->reorder_list = alloc_percpu(struct padata_list); if (!pd->reorder_list) goto err_free_pd; pd->squeue = alloc_percpu(struct padata_serial_queue); if (!pd->squeue) goto err_free_reorder_list; pd->ps = ps; if (!alloc_cpumask_var(&pd->cpumask.pcpu, GFP_KERNEL)) goto err_free_squeue; if (!alloc_cpumask_var(&pd->cpumask.cbcpu, GFP_KERNEL)) goto err_free_pcpu; cpumask_and(pd->cpumask.pcpu, pinst->cpumask.pcpu, cpu_online_mask); cpumask_and(pd->cpumask.cbcpu, pinst->cpumask.cbcpu, cpu_online_mask); padata_init_reorder_list(pd); padata_init_squeues(pd); pd->seq_nr = -1; refcount_set(&pd->refcnt, 1); spin_lock_init(&pd->lock); pd->cpu = cpumask_first(pd->cpumask.pcpu); INIT_WORK(&pd->reorder_work, invoke_padata_reorder); return pd; err_free_pcpu: free_cpumask_var(pd->cpumask.pcpu); err_free_squeue: free_percpu(pd->squeue); err_free_reorder_list: free_percpu(pd->reorder_list); err_free_pd: kfree(pd); err: return NULL; } static void padata_free_pd(struct parallel_data *pd) { free_cpumask_var(pd->cpumask.pcpu); free_cpumask_var(pd->cpumask.cbcpu); free_percpu(pd->reorder_list); free_percpu(pd->squeue); kfree(pd); } static void __padata_start(struct padata_instance *pinst) { pinst->flags |= PADATA_INIT; } static void __padata_stop(struct padata_instance *pinst) { if (!(pinst->flags & PADATA_INIT)) return; pinst->flags &= ~PADATA_INIT; synchronize_rcu(); } /* Replace the internal control structure with a new one. */ static int padata_replace_one(struct padata_shell *ps) { struct parallel_data *pd_new; pd_new = padata_alloc_pd(ps); if (!pd_new) return -ENOMEM; ps->opd = rcu_dereference_protected(ps->pd, 1); rcu_assign_pointer(ps->pd, pd_new); return 0; } static int padata_replace(struct padata_instance *pinst) { struct padata_shell *ps; int err = 0; pinst->flags |= PADATA_RESET; list_for_each_entry(ps, &pinst->pslist, list) { err = padata_replace_one(ps); if (err) break; } synchronize_rcu(); list_for_each_entry_continue_reverse(ps, &pinst->pslist, list) if (refcount_dec_and_test(&ps->opd->refcnt)) padata_free_pd(ps->opd); pinst->flags &= ~PADATA_RESET; return err; } /* If cpumask contains no active cpu, we mark the instance as invalid. */ static bool padata_validate_cpumask(struct padata_instance *pinst, const struct cpumask *cpumask) { if (!cpumask_intersects(cpumask, cpu_online_mask)) { pinst->flags |= PADATA_INVALID; return false; } pinst->flags &= ~PADATA_INVALID; return true; } static int __padata_set_cpumasks(struct padata_instance *pinst, cpumask_var_t pcpumask, cpumask_var_t cbcpumask) { int valid; int err; valid = padata_validate_cpumask(pinst, pcpumask); if (!valid) { __padata_stop(pinst); goto out_replace; } valid = padata_validate_cpumask(pinst, cbcpumask); if (!valid) __padata_stop(pinst); out_replace: cpumask_copy(pinst->cpumask.pcpu, pcpumask); cpumask_copy(pinst->cpumask.cbcpu, cbcpumask); err = padata_setup_cpumasks(pinst) ?: padata_replace(pinst); if (valid) __padata_start(pinst); return err; } /** * padata_set_cpumask - Sets specified by @cpumask_type cpumask to the value * equivalent to @cpumask. * @pinst: padata instance * @cpumask_type: PADATA_CPU_SERIAL or PADATA_CPU_PARALLEL corresponding * to parallel and serial cpumasks respectively. * @cpumask: the cpumask to use * * Return: 0 on success or negative error code */ int padata_set_cpumask(struct padata_instance *pinst, int cpumask_type, cpumask_var_t cpumask) { struct cpumask *serial_mask, *parallel_mask; int err = -EINVAL; cpus_read_lock(); mutex_lock(&pinst->lock); switch (cpumask_type) { case PADATA_CPU_PARALLEL: serial_mask = pinst->cpumask.cbcpu; parallel_mask = cpumask; break; case PADATA_CPU_SERIAL: parallel_mask = pinst->cpumask.pcpu; serial_mask = cpumask; break; default: goto out; } err = __padata_set_cpumasks(pinst, parallel_mask, serial_mask); out: mutex_unlock(&pinst->lock); cpus_read_unlock(); return err; } EXPORT_SYMBOL(padata_set_cpumask); #ifdef CONFIG_HOTPLUG_CPU static int __padata_add_cpu(struct padata_instance *pinst, int cpu) { int err = 0; if (cpumask_test_cpu(cpu, cpu_online_mask)) { err = padata_replace(pinst); if (padata_validate_cpumask(pinst, pinst->cpumask.pcpu) && padata_validate_cpumask(pinst, pinst->cpumask.cbcpu)) __padata_start(pinst); } return err; } static int __padata_remove_cpu(struct padata_instance *pinst, int cpu) { int err = 0; if (!cpumask_test_cpu(cpu, cpu_online_mask)) { if (!padata_validate_cpumask(pinst, pinst->cpumask.pcpu) || !padata_validate_cpumask(pinst, pinst->cpumask.cbcpu)) __padata_stop(pinst); err = padata_replace(pinst); } return err; } static inline int pinst_has_cpu(struct padata_instance *pinst, int cpu) { return cpumask_test_cpu(cpu, pinst->cpumask.pcpu) || cpumask_test_cpu(cpu, pinst->cpumask.cbcpu); } static int padata_cpu_online(unsigned int cpu, struct hlist_node *node) { struct padata_instance *pinst; int ret; pinst = hlist_entry_safe(node, struct padata_instance, cpu_online_node); if (!pinst_has_cpu(pinst, cpu)) return 0; mutex_lock(&pinst->lock); ret = __padata_add_cpu(pinst, cpu); mutex_unlock(&pinst->lock); return ret; } static int padata_cpu_dead(unsigned int cpu, struct hlist_node *node) { struct padata_instance *pinst; int ret; pinst = hlist_entry_safe(node, struct padata_instance, cpu_dead_node); if (!pinst_has_cpu(pinst, cpu)) return 0; mutex_lock(&pinst->lock); ret = __padata_remove_cpu(pinst, cpu); mutex_unlock(&pinst->lock); return ret; } static enum cpuhp_state hp_online; #endif static void __padata_free(struct padata_instance *pinst) { #ifdef CONFIG_HOTPLUG_CPU cpuhp_state_remove_instance_nocalls(CPUHP_PADATA_DEAD, &pinst->cpu_dead_node); cpuhp_state_remove_instance_nocalls(hp_online, &pinst->cpu_online_node); #endif WARN_ON(!list_empty(&pinst->pslist)); free_cpumask_var(pinst->cpumask.pcpu); free_cpumask_var(pinst->cpumask.cbcpu); destroy_workqueue(pinst->serial_wq); destroy_workqueue(pinst->parallel_wq); kfree(pinst); } #define kobj2pinst(_kobj) \ container_of(_kobj, struct padata_instance, kobj) #define attr2pentry(_attr) \ container_of(_attr, struct padata_sysfs_entry, attr) static void padata_sysfs_release(struct kobject *kobj) { struct padata_instance *pinst = kobj2pinst(kobj); __padata_free(pinst); } struct padata_sysfs_entry { struct attribute attr; ssize_t (*show)(struct padata_instance *, struct attribute *, char *); ssize_t (*store)(struct padata_instance *, struct attribute *, const char *, size_t); }; static ssize_t show_cpumask(struct padata_instance *pinst, struct attribute *attr, char *buf) { struct cpumask *cpumask; ssize_t len; mutex_lock(&pinst->lock); if (!strcmp(attr->name, "serial_cpumask")) cpumask = pinst->cpumask.cbcpu; else cpumask = pinst->cpumask.pcpu; len = snprintf(buf, PAGE_SIZE, "%*pb\n", nr_cpu_ids, cpumask_bits(cpumask)); mutex_unlock(&pinst->lock); return len < PAGE_SIZE ? len : -EINVAL; } static ssize_t store_cpumask(struct padata_instance *pinst, struct attribute *attr, const char *buf, size_t count) { cpumask_var_t new_cpumask; ssize_t ret; int mask_type; if (!alloc_cpumask_var(&new_cpumask, GFP_KERNEL)) return -ENOMEM; ret = bitmap_parse(buf, count, cpumask_bits(new_cpumask), nr_cpumask_bits); if (ret < 0) goto out; mask_type = !strcmp(attr->name, "serial_cpumask") ? PADATA_CPU_SERIAL : PADATA_CPU_PARALLEL; ret = padata_set_cpumask(pinst, mask_type, new_cpumask); if (!ret) ret = count; out: free_cpumask_var(new_cpumask); return ret; } #define PADATA_ATTR_RW(_name, _show_name, _store_name) \ static struct padata_sysfs_entry _name##_attr = \ __ATTR(_name, 0644, _show_name, _store_name) #define PADATA_ATTR_RO(_name, _show_name) \ static struct padata_sysfs_entry _name##_attr = \ __ATTR(_name, 0400, _show_name, NULL) PADATA_ATTR_RW(serial_cpumask, show_cpumask, store_cpumask); PADATA_ATTR_RW(parallel_cpumask, show_cpumask, store_cpumask); /* * Padata sysfs provides the following objects: * serial_cpumask [RW] - cpumask for serial workers * parallel_cpumask [RW] - cpumask for parallel workers */ static struct attribute *padata_default_attrs[] = { &serial_cpumask_attr.attr, ¶llel_cpumask_attr.attr, NULL, }; ATTRIBUTE_GROUPS(padata_default); static ssize_t padata_sysfs_show(struct kobject *kobj, struct attribute *attr, char *buf) { struct padata_instance *pinst; struct padata_sysfs_entry *pentry; ssize_t ret = -EIO; pinst = kobj2pinst(kobj); pentry = attr2pentry(attr); if (pentry->show) ret = pentry->show(pinst, attr, buf); return ret; } static ssize_t padata_sysfs_store(struct kobject *kobj, struct attribute *attr, const char *buf, size_t count) { struct padata_instance *pinst; struct padata_sysfs_entry *pentry; ssize_t ret = -EIO; pinst = kobj2pinst(kobj); pentry = attr2pentry(attr); if (pentry->show) ret = pentry->store(pinst, attr, buf, count); return ret; } static const struct sysfs_ops padata_sysfs_ops = { .show = padata_sysfs_show, .store = padata_sysfs_store, }; static const struct kobj_type padata_attr_type = { .sysfs_ops = &padata_sysfs_ops, .default_groups = padata_default_groups, .release = padata_sysfs_release, }; /** * padata_alloc - allocate and initialize a padata instance * @name: used to identify the instance * * Return: new instance on success, NULL on error */ struct padata_instance *padata_alloc(const char *name) { struct padata_instance *pinst; pinst = kzalloc(sizeof(struct padata_instance), GFP_KERNEL); if (!pinst) goto err; pinst->parallel_wq = alloc_workqueue("%s_parallel", WQ_UNBOUND, 0, name); if (!pinst->parallel_wq) goto err_free_inst; cpus_read_lock(); pinst->serial_wq = alloc_workqueue("%s_serial", WQ_MEM_RECLAIM | WQ_CPU_INTENSIVE, 1, name); if (!pinst->serial_wq) goto err_put_cpus; if (!alloc_cpumask_var(&pinst->cpumask.pcpu, GFP_KERNEL)) goto err_free_serial_wq; if (!alloc_cpumask_var(&pinst->cpumask.cbcpu, GFP_KERNEL)) { free_cpumask_var(pinst->cpumask.pcpu); goto err_free_serial_wq; } INIT_LIST_HEAD(&pinst->pslist); cpumask_copy(pinst->cpumask.pcpu, cpu_possible_mask); cpumask_copy(pinst->cpumask.cbcpu, cpu_possible_mask); if (padata_setup_cpumasks(pinst)) goto err_free_masks; __padata_start(pinst); kobject_init(&pinst->kobj, &padata_attr_type); mutex_init(&pinst->lock); #ifdef CONFIG_HOTPLUG_CPU cpuhp_state_add_instance_nocalls_cpuslocked(hp_online, &pinst->cpu_online_node); cpuhp_state_add_instance_nocalls_cpuslocked(CPUHP_PADATA_DEAD, &pinst->cpu_dead_node); #endif cpus_read_unlock(); return pinst; err_free_masks: free_cpumask_var(pinst->cpumask.pcpu); free_cpumask_var(pinst->cpumask.cbcpu); err_free_serial_wq: destroy_workqueue(pinst->serial_wq); err_put_cpus: cpus_read_unlock(); destroy_workqueue(pinst->parallel_wq); err_free_inst: kfree(pinst); err: return NULL; } EXPORT_SYMBOL(padata_alloc); /** * padata_free - free a padata instance * * @pinst: padata instance to free */ void padata_free(struct padata_instance *pinst) { kobject_put(&pinst->kobj); } EXPORT_SYMBOL(padata_free); /** * padata_alloc_shell - Allocate and initialize padata shell. * * @pinst: Parent padata_instance object. * * Return: new shell on success, NULL on error */ struct padata_shell *padata_alloc_shell(struct padata_instance *pinst) { struct parallel_data *pd; struct padata_shell *ps; ps = kzalloc(sizeof(*ps), GFP_KERNEL); if (!ps) goto out; ps->pinst = pinst; cpus_read_lock(); pd = padata_alloc_pd(ps); cpus_read_unlock(); if (!pd) goto out_free_ps; mutex_lock(&pinst->lock); RCU_INIT_POINTER(ps->pd, pd); list_add(&ps->list, &pinst->pslist); mutex_unlock(&pinst->lock); return ps; out_free_ps: kfree(ps); out: return NULL; } EXPORT_SYMBOL(padata_alloc_shell); /** * padata_free_shell - free a padata shell * * @ps: padata shell to free */ void padata_free_shell(struct padata_shell *ps) { struct parallel_data *pd; if (!ps) return; mutex_lock(&ps->pinst->lock); list_del(&ps->list); pd = rcu_dereference_protected(ps->pd, 1); if (refcount_dec_and_test(&pd->refcnt)) padata_free_pd(pd); mutex_unlock(&ps->pinst->lock); kfree(ps); } EXPORT_SYMBOL(padata_free_shell); void __init padata_init(void) { unsigned int i, possible_cpus; #ifdef CONFIG_HOTPLUG_CPU int ret; ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "padata:online", padata_cpu_online, NULL); if (ret < 0) goto err; hp_online = ret; ret = cpuhp_setup_state_multi(CPUHP_PADATA_DEAD, "padata:dead", NULL, padata_cpu_dead); if (ret < 0) goto remove_online_state; #endif possible_cpus = num_possible_cpus(); padata_works = kmalloc_array(possible_cpus, sizeof(struct padata_work), GFP_KERNEL); if (!padata_works) goto remove_dead_state; for (i = 0; i < possible_cpus; ++i) list_add(&padata_works[i].pw_list, &padata_free_works); return; remove_dead_state: #ifdef CONFIG_HOTPLUG_CPU cpuhp_remove_multi_state(CPUHP_PADATA_DEAD); remove_online_state: cpuhp_remove_multi_state(hp_online); err: #endif pr_warn("padata: initialization failed\n"); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1