Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Yury Norov | 512 | 53.84% | 12 | 48.00% |
David Howells | 127 | 13.35% | 2 | 8.00% |
Akinobu Mita | 126 | 13.25% | 2 | 8.00% |
Clement Courbet | 62 | 6.52% | 1 | 4.00% |
William Breathitt Gray | 57 | 5.99% | 1 | 4.00% |
Alexander van Heukelum | 38 | 4.00% | 1 | 4.00% |
David Chinner | 12 | 1.26% | 1 | 4.00% |
Andy Shevchenko | 7 | 0.74% | 2 | 8.00% |
Valentin Schneider | 7 | 0.74% | 1 | 4.00% |
Thomas Gleixner | 2 | 0.21% | 1 | 4.00% |
Paul Gortmaker | 1 | 0.11% | 1 | 4.00% |
Total | 951 | 25 |
// SPDX-License-Identifier: GPL-2.0-or-later /* bit search implementation * * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) * * Copyright (C) 2008 IBM Corporation * 'find_last_bit' is written by Rusty Russell <rusty@rustcorp.com.au> * (Inspired by David Howell's find_next_bit implementation) * * Rewritten by Yury Norov <yury.norov@gmail.com> to decrease * size and improve performance, 2015. */ #include <linux/bitops.h> #include <linux/bitmap.h> #include <linux/export.h> #include <linux/math.h> #include <linux/minmax.h> #include <linux/swab.h> /* * Common helper for find_bit() function family * @FETCH: The expression that fetches and pre-processes each word of bitmap(s) * @MUNGE: The expression that post-processes a word containing found bit (may be empty) * @size: The bitmap size in bits */ #define FIND_FIRST_BIT(FETCH, MUNGE, size) \ ({ \ unsigned long idx, val, sz = (size); \ \ for (idx = 0; idx * BITS_PER_LONG < sz; idx++) { \ val = (FETCH); \ if (val) { \ sz = min(idx * BITS_PER_LONG + __ffs(MUNGE(val)), sz); \ break; \ } \ } \ \ sz; \ }) /* * Common helper for find_next_bit() function family * @FETCH: The expression that fetches and pre-processes each word of bitmap(s) * @MUNGE: The expression that post-processes a word containing found bit (may be empty) * @size: The bitmap size in bits * @start: The bitnumber to start searching at */ #define FIND_NEXT_BIT(FETCH, MUNGE, size, start) \ ({ \ unsigned long mask, idx, tmp, sz = (size), __start = (start); \ \ if (unlikely(__start >= sz)) \ goto out; \ \ mask = MUNGE(BITMAP_FIRST_WORD_MASK(__start)); \ idx = __start / BITS_PER_LONG; \ \ for (tmp = (FETCH) & mask; !tmp; tmp = (FETCH)) { \ if ((idx + 1) * BITS_PER_LONG >= sz) \ goto out; \ idx++; \ } \ \ sz = min(idx * BITS_PER_LONG + __ffs(MUNGE(tmp)), sz); \ out: \ sz; \ }) #define FIND_NTH_BIT(FETCH, size, num) \ ({ \ unsigned long sz = (size), nr = (num), idx, w, tmp; \ \ for (idx = 0; (idx + 1) * BITS_PER_LONG <= sz; idx++) { \ if (idx * BITS_PER_LONG + nr >= sz) \ goto out; \ \ tmp = (FETCH); \ w = hweight_long(tmp); \ if (w > nr) \ goto found; \ \ nr -= w; \ } \ \ if (sz % BITS_PER_LONG) \ tmp = (FETCH) & BITMAP_LAST_WORD_MASK(sz); \ found: \ sz = min(idx * BITS_PER_LONG + fns(tmp, nr), sz); \ out: \ sz; \ }) #ifndef find_first_bit /* * Find the first set bit in a memory region. */ unsigned long _find_first_bit(const unsigned long *addr, unsigned long size) { return FIND_FIRST_BIT(addr[idx], /* nop */, size); } EXPORT_SYMBOL(_find_first_bit); #endif #ifndef find_first_and_bit /* * Find the first set bit in two memory regions. */ unsigned long _find_first_and_bit(const unsigned long *addr1, const unsigned long *addr2, unsigned long size) { return FIND_FIRST_BIT(addr1[idx] & addr2[idx], /* nop */, size); } EXPORT_SYMBOL(_find_first_and_bit); #endif #ifndef find_first_zero_bit /* * Find the first cleared bit in a memory region. */ unsigned long _find_first_zero_bit(const unsigned long *addr, unsigned long size) { return FIND_FIRST_BIT(~addr[idx], /* nop */, size); } EXPORT_SYMBOL(_find_first_zero_bit); #endif #ifndef find_next_bit unsigned long _find_next_bit(const unsigned long *addr, unsigned long nbits, unsigned long start) { return FIND_NEXT_BIT(addr[idx], /* nop */, nbits, start); } EXPORT_SYMBOL(_find_next_bit); #endif unsigned long __find_nth_bit(const unsigned long *addr, unsigned long size, unsigned long n) { return FIND_NTH_BIT(addr[idx], size, n); } EXPORT_SYMBOL(__find_nth_bit); unsigned long __find_nth_and_bit(const unsigned long *addr1, const unsigned long *addr2, unsigned long size, unsigned long n) { return FIND_NTH_BIT(addr1[idx] & addr2[idx], size, n); } EXPORT_SYMBOL(__find_nth_and_bit); unsigned long __find_nth_andnot_bit(const unsigned long *addr1, const unsigned long *addr2, unsigned long size, unsigned long n) { return FIND_NTH_BIT(addr1[idx] & ~addr2[idx], size, n); } EXPORT_SYMBOL(__find_nth_andnot_bit); unsigned long __find_nth_and_andnot_bit(const unsigned long *addr1, const unsigned long *addr2, const unsigned long *addr3, unsigned long size, unsigned long n) { return FIND_NTH_BIT(addr1[idx] & addr2[idx] & ~addr3[idx], size, n); } EXPORT_SYMBOL(__find_nth_and_andnot_bit); #ifndef find_next_and_bit unsigned long _find_next_and_bit(const unsigned long *addr1, const unsigned long *addr2, unsigned long nbits, unsigned long start) { return FIND_NEXT_BIT(addr1[idx] & addr2[idx], /* nop */, nbits, start); } EXPORT_SYMBOL(_find_next_and_bit); #endif #ifndef find_next_andnot_bit unsigned long _find_next_andnot_bit(const unsigned long *addr1, const unsigned long *addr2, unsigned long nbits, unsigned long start) { return FIND_NEXT_BIT(addr1[idx] & ~addr2[idx], /* nop */, nbits, start); } EXPORT_SYMBOL(_find_next_andnot_bit); #endif #ifndef find_next_or_bit unsigned long _find_next_or_bit(const unsigned long *addr1, const unsigned long *addr2, unsigned long nbits, unsigned long start) { return FIND_NEXT_BIT(addr1[idx] | addr2[idx], /* nop */, nbits, start); } EXPORT_SYMBOL(_find_next_or_bit); #endif #ifndef find_next_zero_bit unsigned long _find_next_zero_bit(const unsigned long *addr, unsigned long nbits, unsigned long start) { return FIND_NEXT_BIT(~addr[idx], /* nop */, nbits, start); } EXPORT_SYMBOL(_find_next_zero_bit); #endif #ifndef find_last_bit unsigned long _find_last_bit(const unsigned long *addr, unsigned long size) { if (size) { unsigned long val = BITMAP_LAST_WORD_MASK(size); unsigned long idx = (size-1) / BITS_PER_LONG; do { val &= addr[idx]; if (val) return idx * BITS_PER_LONG + __fls(val); val = ~0ul; } while (idx--); } return size; } EXPORT_SYMBOL(_find_last_bit); #endif unsigned long find_next_clump8(unsigned long *clump, const unsigned long *addr, unsigned long size, unsigned long offset) { offset = find_next_bit(addr, size, offset); if (offset == size) return size; offset = round_down(offset, 8); *clump = bitmap_get_value8(addr, offset); return offset; } EXPORT_SYMBOL(find_next_clump8); #ifdef __BIG_ENDIAN #ifndef find_first_zero_bit_le /* * Find the first cleared bit in an LE memory region. */ unsigned long _find_first_zero_bit_le(const unsigned long *addr, unsigned long size) { return FIND_FIRST_BIT(~addr[idx], swab, size); } EXPORT_SYMBOL(_find_first_zero_bit_le); #endif #ifndef find_next_zero_bit_le unsigned long _find_next_zero_bit_le(const unsigned long *addr, unsigned long size, unsigned long offset) { return FIND_NEXT_BIT(~addr[idx], swab, size, offset); } EXPORT_SYMBOL(_find_next_zero_bit_le); #endif #ifndef find_next_bit_le unsigned long _find_next_bit_le(const unsigned long *addr, unsigned long size, unsigned long offset) { return FIND_NEXT_BIT(addr[idx], swab, size, offset); } EXPORT_SYMBOL(_find_next_bit_le); #endif #endif /* __BIG_ENDIAN */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1