Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Florian Westphal | 1485 | 51.17% | 15 | 30.61% |
Yi-Hung Wei | 864 | 29.77% | 8 | 16.33% |
Jan Engelhardt | 324 | 11.16% | 4 | 8.16% |
Pablo Neira Ayuso | 74 | 2.55% | 4 | 8.16% |
William Tu | 47 | 1.62% | 1 | 2.04% |
Taehee Yoo | 35 | 1.21% | 3 | 6.12% |
Eric Dumazet | 21 | 0.72% | 1 | 2.04% |
Alexey Dobriyan | 18 | 0.62% | 2 | 4.08% |
Daniel Borkmann | 12 | 0.41% | 1 | 2.04% |
Patrick McHardy | 8 | 0.28% | 2 | 4.08% |
Shawn Bohrer | 3 | 0.10% | 1 | 2.04% |
Changli Gao | 2 | 0.07% | 1 | 2.04% |
Linus Torvalds (pre-git) | 2 | 0.07% | 1 | 2.04% |
Geliang Tang | 2 | 0.07% | 1 | 2.04% |
Dong Wei | 2 | 0.07% | 1 | 2.04% |
Linus Torvalds | 1 | 0.03% | 1 | 2.04% |
Gustavo A. R. Silva | 1 | 0.03% | 1 | 2.04% |
Thomas Gleixner | 1 | 0.03% | 1 | 2.04% |
Total | 2902 | 49 |
// SPDX-License-Identifier: GPL-2.0-only /* * count the number of connections matching an arbitrary key. * * (C) 2017 Red Hat GmbH * Author: Florian Westphal <fw@strlen.de> * * split from xt_connlimit.c: * (c) 2000 Gerd Knorr <kraxel@bytesex.org> * Nov 2002: Martin Bene <martin.bene@icomedias.com>: * only ignore TIME_WAIT or gone connections * (C) CC Computer Consultants GmbH, 2007 */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/in.h> #include <linux/in6.h> #include <linux/ip.h> #include <linux/ipv6.h> #include <linux/jhash.h> #include <linux/slab.h> #include <linux/list.h> #include <linux/rbtree.h> #include <linux/module.h> #include <linux/random.h> #include <linux/skbuff.h> #include <linux/spinlock.h> #include <linux/netfilter/nf_conntrack_tcp.h> #include <linux/netfilter/x_tables.h> #include <net/netfilter/nf_conntrack.h> #include <net/netfilter/nf_conntrack_count.h> #include <net/netfilter/nf_conntrack_core.h> #include <net/netfilter/nf_conntrack_tuple.h> #include <net/netfilter/nf_conntrack_zones.h> #define CONNCOUNT_SLOTS 256U #define CONNCOUNT_GC_MAX_NODES 8 #define MAX_KEYLEN 5 /* we will save the tuples of all connections we care about */ struct nf_conncount_tuple { struct list_head node; struct nf_conntrack_tuple tuple; struct nf_conntrack_zone zone; int cpu; u32 jiffies32; }; struct nf_conncount_rb { struct rb_node node; struct nf_conncount_list list; u32 key[MAX_KEYLEN]; struct rcu_head rcu_head; }; static spinlock_t nf_conncount_locks[CONNCOUNT_SLOTS] __cacheline_aligned_in_smp; struct nf_conncount_data { unsigned int keylen; struct rb_root root[CONNCOUNT_SLOTS]; struct net *net; struct work_struct gc_work; unsigned long pending_trees[BITS_TO_LONGS(CONNCOUNT_SLOTS)]; unsigned int gc_tree; }; static u_int32_t conncount_rnd __read_mostly; static struct kmem_cache *conncount_rb_cachep __read_mostly; static struct kmem_cache *conncount_conn_cachep __read_mostly; static inline bool already_closed(const struct nf_conn *conn) { if (nf_ct_protonum(conn) == IPPROTO_TCP) return conn->proto.tcp.state == TCP_CONNTRACK_TIME_WAIT || conn->proto.tcp.state == TCP_CONNTRACK_CLOSE; else return false; } static int key_diff(const u32 *a, const u32 *b, unsigned int klen) { return memcmp(a, b, klen * sizeof(u32)); } static void conn_free(struct nf_conncount_list *list, struct nf_conncount_tuple *conn) { lockdep_assert_held(&list->list_lock); list->count--; list_del(&conn->node); kmem_cache_free(conncount_conn_cachep, conn); } static const struct nf_conntrack_tuple_hash * find_or_evict(struct net *net, struct nf_conncount_list *list, struct nf_conncount_tuple *conn) { const struct nf_conntrack_tuple_hash *found; unsigned long a, b; int cpu = raw_smp_processor_id(); u32 age; found = nf_conntrack_find_get(net, &conn->zone, &conn->tuple); if (found) return found; b = conn->jiffies32; a = (u32)jiffies; /* conn might have been added just before by another cpu and * might still be unconfirmed. In this case, nf_conntrack_find() * returns no result. Thus only evict if this cpu added the * stale entry or if the entry is older than two jiffies. */ age = a - b; if (conn->cpu == cpu || age >= 2) { conn_free(list, conn); return ERR_PTR(-ENOENT); } return ERR_PTR(-EAGAIN); } static int __nf_conncount_add(struct net *net, struct nf_conncount_list *list, const struct nf_conntrack_tuple *tuple, const struct nf_conntrack_zone *zone) { const struct nf_conntrack_tuple_hash *found; struct nf_conncount_tuple *conn, *conn_n; struct nf_conn *found_ct; unsigned int collect = 0; if (time_is_after_eq_jiffies((unsigned long)list->last_gc)) goto add_new_node; /* check the saved connections */ list_for_each_entry_safe(conn, conn_n, &list->head, node) { if (collect > CONNCOUNT_GC_MAX_NODES) break; found = find_or_evict(net, list, conn); if (IS_ERR(found)) { /* Not found, but might be about to be confirmed */ if (PTR_ERR(found) == -EAGAIN) { if (nf_ct_tuple_equal(&conn->tuple, tuple) && nf_ct_zone_id(&conn->zone, conn->zone.dir) == nf_ct_zone_id(zone, zone->dir)) return 0; /* already exists */ } else { collect++; } continue; } found_ct = nf_ct_tuplehash_to_ctrack(found); if (nf_ct_tuple_equal(&conn->tuple, tuple) && nf_ct_zone_equal(found_ct, zone, zone->dir)) { /* * We should not see tuples twice unless someone hooks * this into a table without "-p tcp --syn". * * Attempt to avoid a re-add in this case. */ nf_ct_put(found_ct); return 0; } else if (already_closed(found_ct)) { /* * we do not care about connections which are * closed already -> ditch it */ nf_ct_put(found_ct); conn_free(list, conn); collect++; continue; } nf_ct_put(found_ct); } add_new_node: if (WARN_ON_ONCE(list->count > INT_MAX)) return -EOVERFLOW; conn = kmem_cache_alloc(conncount_conn_cachep, GFP_ATOMIC); if (conn == NULL) return -ENOMEM; conn->tuple = *tuple; conn->zone = *zone; conn->cpu = raw_smp_processor_id(); conn->jiffies32 = (u32)jiffies; list_add_tail(&conn->node, &list->head); list->count++; list->last_gc = (u32)jiffies; return 0; } int nf_conncount_add(struct net *net, struct nf_conncount_list *list, const struct nf_conntrack_tuple *tuple, const struct nf_conntrack_zone *zone) { int ret; /* check the saved connections */ spin_lock_bh(&list->list_lock); ret = __nf_conncount_add(net, list, tuple, zone); spin_unlock_bh(&list->list_lock); return ret; } EXPORT_SYMBOL_GPL(nf_conncount_add); void nf_conncount_list_init(struct nf_conncount_list *list) { spin_lock_init(&list->list_lock); INIT_LIST_HEAD(&list->head); list->count = 0; list->last_gc = (u32)jiffies; } EXPORT_SYMBOL_GPL(nf_conncount_list_init); /* Return true if the list is empty. Must be called with BH disabled. */ bool nf_conncount_gc_list(struct net *net, struct nf_conncount_list *list) { const struct nf_conntrack_tuple_hash *found; struct nf_conncount_tuple *conn, *conn_n; struct nf_conn *found_ct; unsigned int collected = 0; bool ret = false; /* don't bother if we just did GC */ if (time_is_after_eq_jiffies((unsigned long)READ_ONCE(list->last_gc))) return false; /* don't bother if other cpu is already doing GC */ if (!spin_trylock(&list->list_lock)) return false; list_for_each_entry_safe(conn, conn_n, &list->head, node) { found = find_or_evict(net, list, conn); if (IS_ERR(found)) { if (PTR_ERR(found) == -ENOENT) collected++; continue; } found_ct = nf_ct_tuplehash_to_ctrack(found); if (already_closed(found_ct)) { /* * we do not care about connections which are * closed already -> ditch it */ nf_ct_put(found_ct); conn_free(list, conn); collected++; continue; } nf_ct_put(found_ct); if (collected > CONNCOUNT_GC_MAX_NODES) break; } if (!list->count) ret = true; list->last_gc = (u32)jiffies; spin_unlock(&list->list_lock); return ret; } EXPORT_SYMBOL_GPL(nf_conncount_gc_list); static void __tree_nodes_free(struct rcu_head *h) { struct nf_conncount_rb *rbconn; rbconn = container_of(h, struct nf_conncount_rb, rcu_head); kmem_cache_free(conncount_rb_cachep, rbconn); } /* caller must hold tree nf_conncount_locks[] lock */ static void tree_nodes_free(struct rb_root *root, struct nf_conncount_rb *gc_nodes[], unsigned int gc_count) { struct nf_conncount_rb *rbconn; while (gc_count) { rbconn = gc_nodes[--gc_count]; spin_lock(&rbconn->list.list_lock); if (!rbconn->list.count) { rb_erase(&rbconn->node, root); call_rcu(&rbconn->rcu_head, __tree_nodes_free); } spin_unlock(&rbconn->list.list_lock); } } static void schedule_gc_worker(struct nf_conncount_data *data, int tree) { set_bit(tree, data->pending_trees); schedule_work(&data->gc_work); } static unsigned int insert_tree(struct net *net, struct nf_conncount_data *data, struct rb_root *root, unsigned int hash, const u32 *key, const struct nf_conntrack_tuple *tuple, const struct nf_conntrack_zone *zone) { struct nf_conncount_rb *gc_nodes[CONNCOUNT_GC_MAX_NODES]; struct rb_node **rbnode, *parent; struct nf_conncount_rb *rbconn; struct nf_conncount_tuple *conn; unsigned int count = 0, gc_count = 0; u8 keylen = data->keylen; bool do_gc = true; spin_lock_bh(&nf_conncount_locks[hash]); restart: parent = NULL; rbnode = &(root->rb_node); while (*rbnode) { int diff; rbconn = rb_entry(*rbnode, struct nf_conncount_rb, node); parent = *rbnode; diff = key_diff(key, rbconn->key, keylen); if (diff < 0) { rbnode = &((*rbnode)->rb_left); } else if (diff > 0) { rbnode = &((*rbnode)->rb_right); } else { int ret; ret = nf_conncount_add(net, &rbconn->list, tuple, zone); if (ret) count = 0; /* hotdrop */ else count = rbconn->list.count; tree_nodes_free(root, gc_nodes, gc_count); goto out_unlock; } if (gc_count >= ARRAY_SIZE(gc_nodes)) continue; if (do_gc && nf_conncount_gc_list(net, &rbconn->list)) gc_nodes[gc_count++] = rbconn; } if (gc_count) { tree_nodes_free(root, gc_nodes, gc_count); schedule_gc_worker(data, hash); gc_count = 0; do_gc = false; goto restart; } /* expected case: match, insert new node */ rbconn = kmem_cache_alloc(conncount_rb_cachep, GFP_ATOMIC); if (rbconn == NULL) goto out_unlock; conn = kmem_cache_alloc(conncount_conn_cachep, GFP_ATOMIC); if (conn == NULL) { kmem_cache_free(conncount_rb_cachep, rbconn); goto out_unlock; } conn->tuple = *tuple; conn->zone = *zone; memcpy(rbconn->key, key, sizeof(u32) * keylen); nf_conncount_list_init(&rbconn->list); list_add(&conn->node, &rbconn->list.head); count = 1; rbconn->list.count = count; rb_link_node_rcu(&rbconn->node, parent, rbnode); rb_insert_color(&rbconn->node, root); out_unlock: spin_unlock_bh(&nf_conncount_locks[hash]); return count; } static unsigned int count_tree(struct net *net, struct nf_conncount_data *data, const u32 *key, const struct nf_conntrack_tuple *tuple, const struct nf_conntrack_zone *zone) { struct rb_root *root; struct rb_node *parent; struct nf_conncount_rb *rbconn; unsigned int hash; u8 keylen = data->keylen; hash = jhash2(key, data->keylen, conncount_rnd) % CONNCOUNT_SLOTS; root = &data->root[hash]; parent = rcu_dereference_raw(root->rb_node); while (parent) { int diff; rbconn = rb_entry(parent, struct nf_conncount_rb, node); diff = key_diff(key, rbconn->key, keylen); if (diff < 0) { parent = rcu_dereference_raw(parent->rb_left); } else if (diff > 0) { parent = rcu_dereference_raw(parent->rb_right); } else { int ret; if (!tuple) { nf_conncount_gc_list(net, &rbconn->list); return rbconn->list.count; } spin_lock_bh(&rbconn->list.list_lock); /* Node might be about to be free'd. * We need to defer to insert_tree() in this case. */ if (rbconn->list.count == 0) { spin_unlock_bh(&rbconn->list.list_lock); break; } /* same source network -> be counted! */ ret = __nf_conncount_add(net, &rbconn->list, tuple, zone); spin_unlock_bh(&rbconn->list.list_lock); if (ret) return 0; /* hotdrop */ else return rbconn->list.count; } } if (!tuple) return 0; return insert_tree(net, data, root, hash, key, tuple, zone); } static void tree_gc_worker(struct work_struct *work) { struct nf_conncount_data *data = container_of(work, struct nf_conncount_data, gc_work); struct nf_conncount_rb *gc_nodes[CONNCOUNT_GC_MAX_NODES], *rbconn; struct rb_root *root; struct rb_node *node; unsigned int tree, next_tree, gc_count = 0; tree = data->gc_tree % CONNCOUNT_SLOTS; root = &data->root[tree]; local_bh_disable(); rcu_read_lock(); for (node = rb_first(root); node != NULL; node = rb_next(node)) { rbconn = rb_entry(node, struct nf_conncount_rb, node); if (nf_conncount_gc_list(data->net, &rbconn->list)) gc_count++; } rcu_read_unlock(); local_bh_enable(); cond_resched(); spin_lock_bh(&nf_conncount_locks[tree]); if (gc_count < ARRAY_SIZE(gc_nodes)) goto next; /* do not bother */ gc_count = 0; node = rb_first(root); while (node != NULL) { rbconn = rb_entry(node, struct nf_conncount_rb, node); node = rb_next(node); if (rbconn->list.count > 0) continue; gc_nodes[gc_count++] = rbconn; if (gc_count >= ARRAY_SIZE(gc_nodes)) { tree_nodes_free(root, gc_nodes, gc_count); gc_count = 0; } } tree_nodes_free(root, gc_nodes, gc_count); next: clear_bit(tree, data->pending_trees); next_tree = (tree + 1) % CONNCOUNT_SLOTS; next_tree = find_next_bit(data->pending_trees, CONNCOUNT_SLOTS, next_tree); if (next_tree < CONNCOUNT_SLOTS) { data->gc_tree = next_tree; schedule_work(work); } spin_unlock_bh(&nf_conncount_locks[tree]); } /* Count and return number of conntrack entries in 'net' with particular 'key'. * If 'tuple' is not null, insert it into the accounting data structure. * Call with RCU read lock. */ unsigned int nf_conncount_count(struct net *net, struct nf_conncount_data *data, const u32 *key, const struct nf_conntrack_tuple *tuple, const struct nf_conntrack_zone *zone) { return count_tree(net, data, key, tuple, zone); } EXPORT_SYMBOL_GPL(nf_conncount_count); struct nf_conncount_data *nf_conncount_init(struct net *net, unsigned int family, unsigned int keylen) { struct nf_conncount_data *data; int ret, i; if (keylen % sizeof(u32) || keylen / sizeof(u32) > MAX_KEYLEN || keylen == 0) return ERR_PTR(-EINVAL); net_get_random_once(&conncount_rnd, sizeof(conncount_rnd)); data = kmalloc(sizeof(*data), GFP_KERNEL); if (!data) return ERR_PTR(-ENOMEM); ret = nf_ct_netns_get(net, family); if (ret < 0) { kfree(data); return ERR_PTR(ret); } for (i = 0; i < ARRAY_SIZE(data->root); ++i) data->root[i] = RB_ROOT; data->keylen = keylen / sizeof(u32); data->net = net; INIT_WORK(&data->gc_work, tree_gc_worker); return data; } EXPORT_SYMBOL_GPL(nf_conncount_init); void nf_conncount_cache_free(struct nf_conncount_list *list) { struct nf_conncount_tuple *conn, *conn_n; list_for_each_entry_safe(conn, conn_n, &list->head, node) kmem_cache_free(conncount_conn_cachep, conn); } EXPORT_SYMBOL_GPL(nf_conncount_cache_free); static void destroy_tree(struct rb_root *r) { struct nf_conncount_rb *rbconn; struct rb_node *node; while ((node = rb_first(r)) != NULL) { rbconn = rb_entry(node, struct nf_conncount_rb, node); rb_erase(node, r); nf_conncount_cache_free(&rbconn->list); kmem_cache_free(conncount_rb_cachep, rbconn); } } void nf_conncount_destroy(struct net *net, unsigned int family, struct nf_conncount_data *data) { unsigned int i; cancel_work_sync(&data->gc_work); nf_ct_netns_put(net, family); for (i = 0; i < ARRAY_SIZE(data->root); ++i) destroy_tree(&data->root[i]); kfree(data); } EXPORT_SYMBOL_GPL(nf_conncount_destroy); static int __init nf_conncount_modinit(void) { int i; for (i = 0; i < CONNCOUNT_SLOTS; ++i) spin_lock_init(&nf_conncount_locks[i]); conncount_conn_cachep = kmem_cache_create("nf_conncount_tuple", sizeof(struct nf_conncount_tuple), 0, 0, NULL); if (!conncount_conn_cachep) return -ENOMEM; conncount_rb_cachep = kmem_cache_create("nf_conncount_rb", sizeof(struct nf_conncount_rb), 0, 0, NULL); if (!conncount_rb_cachep) { kmem_cache_destroy(conncount_conn_cachep); return -ENOMEM; } return 0; } static void __exit nf_conncount_modexit(void) { kmem_cache_destroy(conncount_conn_cachep); kmem_cache_destroy(conncount_rb_cachep); } module_init(nf_conncount_modinit); module_exit(nf_conncount_modexit); MODULE_AUTHOR("Jan Engelhardt <jengelh@medozas.de>"); MODULE_AUTHOR("Florian Westphal <fw@strlen.de>"); MODULE_DESCRIPTION("netfilter: count number of connections matching a key"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1