Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Vishwanath Pai | 1781 | 26.59% | 5 | 4.42% |
Harald Welte | 1739 | 25.96% | 3 | 2.65% |
Jan Engelhardt | 1105 | 16.49% | 18 | 15.93% |
Florian Westphal | 504 | 7.52% | 7 | 6.19% |
Patrick McHardy | 426 | 6.36% | 15 | 13.27% |
Alexey Dobriyan | 325 | 4.85% | 3 | 2.65% |
Eric Dumazet | 248 | 3.70% | 7 | 6.19% |
Américo Wang | 111 | 1.66% | 4 | 3.54% |
Pablo Neira Ayuso | 76 | 1.13% | 1 | 0.88% |
Christoph Hellwig | 61 | 0.91% | 1 | 0.88% |
Al Viro | 45 | 0.67% | 2 | 1.77% |
Willem de Bruijn | 44 | 0.66% | 1 | 0.88% |
Vitaly E. Lavrov | 38 | 0.57% | 1 | 0.88% |
Alban Browaeys | 24 | 0.36% | 1 | 0.88% |
Changli Gao | 19 | 0.28% | 1 | 0.88% |
Gao Feng | 15 | 0.22% | 1 | 0.88% |
Stephen Hemminger | 12 | 0.18% | 1 | 0.88% |
Song Muchun | 9 | 0.13% | 1 | 0.88% |
Arun K S | 9 | 0.13% | 2 | 1.77% |
Steven Rostedt | 8 | 0.12% | 1 | 0.88% |
Igor Maravić | 8 | 0.12% | 1 | 0.88% |
Ingo Molnar | 7 | 0.10% | 1 | 0.88% |
Gustavo A. R. Silva | 7 | 0.10% | 2 | 1.77% |
Hagen Paul Pfeifer | 6 | 0.09% | 1 | 0.88% |
Taehee Yoo | 5 | 0.07% | 2 | 1.77% |
Sergey Popovich | 5 | 0.07% | 1 | 0.88% |
Denis V. Lunev | 5 | 0.07% | 2 | 1.77% |
Stephen Rothwell | 5 | 0.07% | 1 | 0.88% |
Andrew Morton | 4 | 0.06% | 1 | 0.88% |
jix@bugmachine.ca | 4 | 0.06% | 1 | 0.88% |
Daniel Borkmann | 4 | 0.06% | 1 | 0.88% |
Philippe De Muyter | 3 | 0.04% | 1 | 0.88% |
Arnaldo Carvalho de Melo | 3 | 0.04% | 2 | 1.77% |
Tobias Klauser | 3 | 0.04% | 1 | 0.88% |
Jeremy Sowden | 3 | 0.04% | 1 | 0.88% |
Eric W. Biedermann | 3 | 0.04% | 1 | 0.88% |
Jesse Gross | 3 | 0.04% | 1 | 0.88% |
Linus Torvalds (pre-git) | 3 | 0.04% | 2 | 1.77% |
Jesper Dangaard Brouer | 2 | 0.03% | 1 | 0.88% |
Paul E. McKenney | 2 | 0.03% | 1 | 0.88% |
Harvey Harrison | 2 | 0.03% | 1 | 0.88% |
Christoph Lameter | 2 | 0.03% | 1 | 0.88% |
Joe Perches | 2 | 0.03% | 2 | 1.77% |
David S. Miller | 2 | 0.03% | 1 | 0.88% |
Samuel Jean | 1 | 0.01% | 1 | 0.88% |
Thomas Gleixner | 1 | 0.01% | 1 | 0.88% |
Rusty Russell | 1 | 0.01% | 1 | 0.88% |
Arjan van de Ven | 1 | 0.01% | 1 | 0.88% |
Geert Uytterhoeven | 1 | 0.01% | 1 | 0.88% |
Zhizhou Tian | 1 | 0.01% | 1 | 0.88% |
Arushi Singhal | 1 | 0.01% | 1 | 0.88% |
Total | 6699 | 113 |
// SPDX-License-Identifier: GPL-2.0-only /* * xt_hashlimit - Netfilter module to limit the number of packets per time * separately for each hashbucket (sourceip/sourceport/dstip/dstport) * * (C) 2003-2004 by Harald Welte <laforge@netfilter.org> * (C) 2006-2012 Patrick McHardy <kaber@trash.net> * Copyright © CC Computer Consultants GmbH, 2007 - 2008 * * Development of this code was funded by Astaro AG, http://www.astaro.com/ */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/module.h> #include <linux/spinlock.h> #include <linux/random.h> #include <linux/jhash.h> #include <linux/slab.h> #include <linux/vmalloc.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/list.h> #include <linux/skbuff.h> #include <linux/mm.h> #include <linux/in.h> #include <linux/ip.h> #if IS_ENABLED(CONFIG_IP6_NF_IPTABLES) #include <linux/ipv6.h> #include <net/ipv6.h> #endif #include <net/net_namespace.h> #include <net/netns/generic.h> #include <linux/netfilter/x_tables.h> #include <linux/netfilter_ipv4/ip_tables.h> #include <linux/netfilter_ipv6/ip6_tables.h> #include <linux/mutex.h> #include <linux/kernel.h> #include <linux/refcount.h> #include <uapi/linux/netfilter/xt_hashlimit.h> #define XT_HASHLIMIT_ALL (XT_HASHLIMIT_HASH_DIP | XT_HASHLIMIT_HASH_DPT | \ XT_HASHLIMIT_HASH_SIP | XT_HASHLIMIT_HASH_SPT | \ XT_HASHLIMIT_INVERT | XT_HASHLIMIT_BYTES |\ XT_HASHLIMIT_RATE_MATCH) MODULE_LICENSE("GPL"); MODULE_AUTHOR("Harald Welte <laforge@netfilter.org>"); MODULE_AUTHOR("Jan Engelhardt <jengelh@medozas.de>"); MODULE_DESCRIPTION("Xtables: per hash-bucket rate-limit match"); MODULE_ALIAS("ipt_hashlimit"); MODULE_ALIAS("ip6t_hashlimit"); struct hashlimit_net { struct hlist_head htables; struct proc_dir_entry *ipt_hashlimit; struct proc_dir_entry *ip6t_hashlimit; }; static unsigned int hashlimit_net_id; static inline struct hashlimit_net *hashlimit_pernet(struct net *net) { return net_generic(net, hashlimit_net_id); } /* need to declare this at the top */ static const struct seq_operations dl_seq_ops_v2; static const struct seq_operations dl_seq_ops_v1; static const struct seq_operations dl_seq_ops; /* hash table crap */ struct dsthash_dst { union { struct { __be32 src; __be32 dst; } ip; #if IS_ENABLED(CONFIG_IP6_NF_IPTABLES) struct { __be32 src[4]; __be32 dst[4]; } ip6; #endif }; __be16 src_port; __be16 dst_port; }; struct dsthash_ent { /* static / read-only parts in the beginning */ struct hlist_node node; struct dsthash_dst dst; /* modified structure members in the end */ spinlock_t lock; unsigned long expires; /* precalculated expiry time */ struct { unsigned long prev; /* last modification */ union { struct { u_int64_t credit; u_int64_t credit_cap; u_int64_t cost; }; struct { u_int32_t interval, prev_window; u_int64_t current_rate; u_int64_t rate; int64_t burst; }; }; } rateinfo; struct rcu_head rcu; }; struct xt_hashlimit_htable { struct hlist_node node; /* global list of all htables */ refcount_t use; u_int8_t family; bool rnd_initialized; struct hashlimit_cfg3 cfg; /* config */ /* used internally */ spinlock_t lock; /* lock for list_head */ u_int32_t rnd; /* random seed for hash */ unsigned int count; /* number entries in table */ struct delayed_work gc_work; /* seq_file stuff */ struct proc_dir_entry *pde; const char *name; struct net *net; struct hlist_head hash[]; /* hashtable itself */ }; static int cfg_copy(struct hashlimit_cfg3 *to, const void *from, int revision) { if (revision == 1) { struct hashlimit_cfg1 *cfg = (struct hashlimit_cfg1 *)from; to->mode = cfg->mode; to->avg = cfg->avg; to->burst = cfg->burst; to->size = cfg->size; to->max = cfg->max; to->gc_interval = cfg->gc_interval; to->expire = cfg->expire; to->srcmask = cfg->srcmask; to->dstmask = cfg->dstmask; } else if (revision == 2) { struct hashlimit_cfg2 *cfg = (struct hashlimit_cfg2 *)from; to->mode = cfg->mode; to->avg = cfg->avg; to->burst = cfg->burst; to->size = cfg->size; to->max = cfg->max; to->gc_interval = cfg->gc_interval; to->expire = cfg->expire; to->srcmask = cfg->srcmask; to->dstmask = cfg->dstmask; } else if (revision == 3) { memcpy(to, from, sizeof(struct hashlimit_cfg3)); } else { return -EINVAL; } return 0; } static DEFINE_MUTEX(hashlimit_mutex); /* protects htables list */ static struct kmem_cache *hashlimit_cachep __read_mostly; static inline bool dst_cmp(const struct dsthash_ent *ent, const struct dsthash_dst *b) { return !memcmp(&ent->dst, b, sizeof(ent->dst)); } static u_int32_t hash_dst(const struct xt_hashlimit_htable *ht, const struct dsthash_dst *dst) { u_int32_t hash = jhash2((const u32 *)dst, sizeof(*dst)/sizeof(u32), ht->rnd); /* * Instead of returning hash % ht->cfg.size (implying a divide) * we return the high 32 bits of the (hash * ht->cfg.size) that will * give results between [0 and cfg.size-1] and same hash distribution, * but using a multiply, less expensive than a divide */ return reciprocal_scale(hash, ht->cfg.size); } static struct dsthash_ent * dsthash_find(const struct xt_hashlimit_htable *ht, const struct dsthash_dst *dst) { struct dsthash_ent *ent; u_int32_t hash = hash_dst(ht, dst); if (!hlist_empty(&ht->hash[hash])) { hlist_for_each_entry_rcu(ent, &ht->hash[hash], node) if (dst_cmp(ent, dst)) { spin_lock(&ent->lock); return ent; } } return NULL; } /* allocate dsthash_ent, initialize dst, put in htable and lock it */ static struct dsthash_ent * dsthash_alloc_init(struct xt_hashlimit_htable *ht, const struct dsthash_dst *dst, bool *race) { struct dsthash_ent *ent; spin_lock(&ht->lock); /* Two or more packets may race to create the same entry in the * hashtable, double check if this packet lost race. */ ent = dsthash_find(ht, dst); if (ent != NULL) { spin_unlock(&ht->lock); *race = true; return ent; } /* initialize hash with random val at the time we allocate * the first hashtable entry */ if (unlikely(!ht->rnd_initialized)) { get_random_bytes(&ht->rnd, sizeof(ht->rnd)); ht->rnd_initialized = true; } if (ht->cfg.max && ht->count >= ht->cfg.max) { /* FIXME: do something. question is what.. */ net_err_ratelimited("max count of %u reached\n", ht->cfg.max); ent = NULL; } else ent = kmem_cache_alloc(hashlimit_cachep, GFP_ATOMIC); if (ent) { memcpy(&ent->dst, dst, sizeof(ent->dst)); spin_lock_init(&ent->lock); spin_lock(&ent->lock); hlist_add_head_rcu(&ent->node, &ht->hash[hash_dst(ht, dst)]); ht->count++; } spin_unlock(&ht->lock); return ent; } static void dsthash_free_rcu(struct rcu_head *head) { struct dsthash_ent *ent = container_of(head, struct dsthash_ent, rcu); kmem_cache_free(hashlimit_cachep, ent); } static inline void dsthash_free(struct xt_hashlimit_htable *ht, struct dsthash_ent *ent) { hlist_del_rcu(&ent->node); call_rcu(&ent->rcu, dsthash_free_rcu); ht->count--; } static void htable_gc(struct work_struct *work); static int htable_create(struct net *net, struct hashlimit_cfg3 *cfg, const char *name, u_int8_t family, struct xt_hashlimit_htable **out_hinfo, int revision) { struct hashlimit_net *hashlimit_net = hashlimit_pernet(net); struct xt_hashlimit_htable *hinfo; const struct seq_operations *ops; unsigned int size, i; unsigned long nr_pages = totalram_pages(); int ret; if (cfg->size) { size = cfg->size; } else { size = (nr_pages << PAGE_SHIFT) / 16384 / sizeof(struct hlist_head); if (nr_pages > 1024 * 1024 * 1024 / PAGE_SIZE) size = 8192; if (size < 16) size = 16; } /* FIXME: don't use vmalloc() here or anywhere else -HW */ hinfo = vmalloc(struct_size(hinfo, hash, size)); if (hinfo == NULL) return -ENOMEM; *out_hinfo = hinfo; /* copy match config into hashtable config */ ret = cfg_copy(&hinfo->cfg, (void *)cfg, 3); if (ret) { vfree(hinfo); return ret; } hinfo->cfg.size = size; if (hinfo->cfg.max == 0) hinfo->cfg.max = 8 * hinfo->cfg.size; else if (hinfo->cfg.max < hinfo->cfg.size) hinfo->cfg.max = hinfo->cfg.size; for (i = 0; i < hinfo->cfg.size; i++) INIT_HLIST_HEAD(&hinfo->hash[i]); refcount_set(&hinfo->use, 1); hinfo->count = 0; hinfo->family = family; hinfo->rnd_initialized = false; hinfo->name = kstrdup(name, GFP_KERNEL); if (!hinfo->name) { vfree(hinfo); return -ENOMEM; } spin_lock_init(&hinfo->lock); switch (revision) { case 1: ops = &dl_seq_ops_v1; break; case 2: ops = &dl_seq_ops_v2; break; default: ops = &dl_seq_ops; } hinfo->pde = proc_create_seq_data(name, 0, (family == NFPROTO_IPV4) ? hashlimit_net->ipt_hashlimit : hashlimit_net->ip6t_hashlimit, ops, hinfo); if (hinfo->pde == NULL) { kfree(hinfo->name); vfree(hinfo); return -ENOMEM; } hinfo->net = net; INIT_DEFERRABLE_WORK(&hinfo->gc_work, htable_gc); queue_delayed_work(system_power_efficient_wq, &hinfo->gc_work, msecs_to_jiffies(hinfo->cfg.gc_interval)); hlist_add_head(&hinfo->node, &hashlimit_net->htables); return 0; } static void htable_selective_cleanup(struct xt_hashlimit_htable *ht, bool select_all) { unsigned int i; for (i = 0; i < ht->cfg.size; i++) { struct dsthash_ent *dh; struct hlist_node *n; spin_lock_bh(&ht->lock); hlist_for_each_entry_safe(dh, n, &ht->hash[i], node) { if (time_after_eq(jiffies, dh->expires) || select_all) dsthash_free(ht, dh); } spin_unlock_bh(&ht->lock); cond_resched(); } } static void htable_gc(struct work_struct *work) { struct xt_hashlimit_htable *ht; ht = container_of(work, struct xt_hashlimit_htable, gc_work.work); htable_selective_cleanup(ht, false); queue_delayed_work(system_power_efficient_wq, &ht->gc_work, msecs_to_jiffies(ht->cfg.gc_interval)); } static void htable_remove_proc_entry(struct xt_hashlimit_htable *hinfo) { struct hashlimit_net *hashlimit_net = hashlimit_pernet(hinfo->net); struct proc_dir_entry *parent; if (hinfo->family == NFPROTO_IPV4) parent = hashlimit_net->ipt_hashlimit; else parent = hashlimit_net->ip6t_hashlimit; if (parent != NULL) remove_proc_entry(hinfo->name, parent); } static struct xt_hashlimit_htable *htable_find_get(struct net *net, const char *name, u_int8_t family) { struct hashlimit_net *hashlimit_net = hashlimit_pernet(net); struct xt_hashlimit_htable *hinfo; hlist_for_each_entry(hinfo, &hashlimit_net->htables, node) { if (!strcmp(name, hinfo->name) && hinfo->family == family) { refcount_inc(&hinfo->use); return hinfo; } } return NULL; } static void htable_put(struct xt_hashlimit_htable *hinfo) { if (refcount_dec_and_mutex_lock(&hinfo->use, &hashlimit_mutex)) { hlist_del(&hinfo->node); htable_remove_proc_entry(hinfo); mutex_unlock(&hashlimit_mutex); cancel_delayed_work_sync(&hinfo->gc_work); htable_selective_cleanup(hinfo, true); kfree(hinfo->name); vfree(hinfo); } } /* The algorithm used is the Simple Token Bucket Filter (TBF) * see net/sched/sch_tbf.c in the linux source tree */ /* Rusty: This is my (non-mathematically-inclined) understanding of this algorithm. The `average rate' in jiffies becomes your initial amount of credit `credit' and the most credit you can ever have `credit_cap'. The `peak rate' becomes the cost of passing the test, `cost'. `prev' tracks the last packet hit: you gain one credit per jiffy. If you get credit balance more than this, the extra credit is discarded. Every time the match passes, you lose `cost' credits; if you don't have that many, the test fails. See Alexey's formal explanation in net/sched/sch_tbf.c. To get the maximum range, we multiply by this factor (ie. you get N credits per jiffy). We want to allow a rate as low as 1 per day (slowest userspace tool allows), which means CREDITS_PER_JIFFY*HZ*60*60*24 < 2^32 ie. */ #define MAX_CPJ_v1 (0xFFFFFFFF / (HZ*60*60*24)) #define MAX_CPJ (0xFFFFFFFFFFFFFFFFULL / (HZ*60*60*24)) /* Repeated shift and or gives us all 1s, final shift and add 1 gives * us the power of 2 below the theoretical max, so GCC simply does a * shift. */ #define _POW2_BELOW2(x) ((x)|((x)>>1)) #define _POW2_BELOW4(x) (_POW2_BELOW2(x)|_POW2_BELOW2((x)>>2)) #define _POW2_BELOW8(x) (_POW2_BELOW4(x)|_POW2_BELOW4((x)>>4)) #define _POW2_BELOW16(x) (_POW2_BELOW8(x)|_POW2_BELOW8((x)>>8)) #define _POW2_BELOW32(x) (_POW2_BELOW16(x)|_POW2_BELOW16((x)>>16)) #define _POW2_BELOW64(x) (_POW2_BELOW32(x)|_POW2_BELOW32((x)>>32)) #define POW2_BELOW32(x) ((_POW2_BELOW32(x)>>1) + 1) #define POW2_BELOW64(x) ((_POW2_BELOW64(x)>>1) + 1) #define CREDITS_PER_JIFFY POW2_BELOW64(MAX_CPJ) #define CREDITS_PER_JIFFY_v1 POW2_BELOW32(MAX_CPJ_v1) /* in byte mode, the lowest possible rate is one packet/second. * credit_cap is used as a counter that tells us how many times we can * refill the "credits available" counter when it becomes empty. */ #define MAX_CPJ_BYTES (0xFFFFFFFF / HZ) #define CREDITS_PER_JIFFY_BYTES POW2_BELOW32(MAX_CPJ_BYTES) static u32 xt_hashlimit_len_to_chunks(u32 len) { return (len >> XT_HASHLIMIT_BYTE_SHIFT) + 1; } /* Precision saver. */ static u64 user2credits(u64 user, int revision) { u64 scale = (revision == 1) ? XT_HASHLIMIT_SCALE : XT_HASHLIMIT_SCALE_v2; u64 cpj = (revision == 1) ? CREDITS_PER_JIFFY_v1 : CREDITS_PER_JIFFY; /* Avoid overflow: divide the constant operands first */ if (scale >= HZ * cpj) return div64_u64(user, div64_u64(scale, HZ * cpj)); return user * div64_u64(HZ * cpj, scale); } static u32 user2credits_byte(u32 user) { u64 us = user; us *= HZ * CREDITS_PER_JIFFY_BYTES; return (u32) (us >> 32); } static u64 user2rate(u64 user) { if (user != 0) { return div64_u64(XT_HASHLIMIT_SCALE_v2, user); } else { pr_info_ratelimited("invalid rate from userspace: %llu\n", user); return 0; } } static u64 user2rate_bytes(u32 user) { u64 r; r = user ? U32_MAX / user : U32_MAX; return (r - 1) << XT_HASHLIMIT_BYTE_SHIFT; } static void rateinfo_recalc(struct dsthash_ent *dh, unsigned long now, u32 mode, int revision) { unsigned long delta = now - dh->rateinfo.prev; u64 cap, cpj; if (delta == 0) return; if (revision >= 3 && mode & XT_HASHLIMIT_RATE_MATCH) { u64 interval = dh->rateinfo.interval * HZ; if (delta < interval) return; dh->rateinfo.prev = now; dh->rateinfo.prev_window = ((dh->rateinfo.current_rate * interval) > (delta * dh->rateinfo.rate)); dh->rateinfo.current_rate = 0; return; } dh->rateinfo.prev = now; if (mode & XT_HASHLIMIT_BYTES) { u64 tmp = dh->rateinfo.credit; dh->rateinfo.credit += CREDITS_PER_JIFFY_BYTES * delta; cap = CREDITS_PER_JIFFY_BYTES * HZ; if (tmp >= dh->rateinfo.credit) {/* overflow */ dh->rateinfo.credit = cap; return; } } else { cpj = (revision == 1) ? CREDITS_PER_JIFFY_v1 : CREDITS_PER_JIFFY; dh->rateinfo.credit += delta * cpj; cap = dh->rateinfo.credit_cap; } if (dh->rateinfo.credit > cap) dh->rateinfo.credit = cap; } static void rateinfo_init(struct dsthash_ent *dh, struct xt_hashlimit_htable *hinfo, int revision) { dh->rateinfo.prev = jiffies; if (revision >= 3 && hinfo->cfg.mode & XT_HASHLIMIT_RATE_MATCH) { dh->rateinfo.prev_window = 0; dh->rateinfo.current_rate = 0; if (hinfo->cfg.mode & XT_HASHLIMIT_BYTES) { dh->rateinfo.rate = user2rate_bytes((u32)hinfo->cfg.avg); if (hinfo->cfg.burst) dh->rateinfo.burst = hinfo->cfg.burst * dh->rateinfo.rate; else dh->rateinfo.burst = dh->rateinfo.rate; } else { dh->rateinfo.rate = user2rate(hinfo->cfg.avg); dh->rateinfo.burst = hinfo->cfg.burst + dh->rateinfo.rate; } dh->rateinfo.interval = hinfo->cfg.interval; } else if (hinfo->cfg.mode & XT_HASHLIMIT_BYTES) { dh->rateinfo.credit = CREDITS_PER_JIFFY_BYTES * HZ; dh->rateinfo.cost = user2credits_byte(hinfo->cfg.avg); dh->rateinfo.credit_cap = hinfo->cfg.burst; } else { dh->rateinfo.credit = user2credits(hinfo->cfg.avg * hinfo->cfg.burst, revision); dh->rateinfo.cost = user2credits(hinfo->cfg.avg, revision); dh->rateinfo.credit_cap = dh->rateinfo.credit; } } static inline __be32 maskl(__be32 a, unsigned int l) { return l ? htonl(ntohl(a) & ~0 << (32 - l)) : 0; } #if IS_ENABLED(CONFIG_IP6_NF_IPTABLES) static void hashlimit_ipv6_mask(__be32 *i, unsigned int p) { switch (p) { case 0 ... 31: i[0] = maskl(i[0], p); i[1] = i[2] = i[3] = 0; break; case 32 ... 63: i[1] = maskl(i[1], p - 32); i[2] = i[3] = 0; break; case 64 ... 95: i[2] = maskl(i[2], p - 64); i[3] = 0; break; case 96 ... 127: i[3] = maskl(i[3], p - 96); break; case 128: break; } } #endif static int hashlimit_init_dst(const struct xt_hashlimit_htable *hinfo, struct dsthash_dst *dst, const struct sk_buff *skb, unsigned int protoff) { __be16 _ports[2], *ports; u8 nexthdr; int poff; memset(dst, 0, sizeof(*dst)); switch (hinfo->family) { case NFPROTO_IPV4: if (hinfo->cfg.mode & XT_HASHLIMIT_HASH_DIP) dst->ip.dst = maskl(ip_hdr(skb)->daddr, hinfo->cfg.dstmask); if (hinfo->cfg.mode & XT_HASHLIMIT_HASH_SIP) dst->ip.src = maskl(ip_hdr(skb)->saddr, hinfo->cfg.srcmask); if (!(hinfo->cfg.mode & (XT_HASHLIMIT_HASH_DPT | XT_HASHLIMIT_HASH_SPT))) return 0; nexthdr = ip_hdr(skb)->protocol; break; #if IS_ENABLED(CONFIG_IP6_NF_IPTABLES) case NFPROTO_IPV6: { __be16 frag_off; if (hinfo->cfg.mode & XT_HASHLIMIT_HASH_DIP) { memcpy(&dst->ip6.dst, &ipv6_hdr(skb)->daddr, sizeof(dst->ip6.dst)); hashlimit_ipv6_mask(dst->ip6.dst, hinfo->cfg.dstmask); } if (hinfo->cfg.mode & XT_HASHLIMIT_HASH_SIP) { memcpy(&dst->ip6.src, &ipv6_hdr(skb)->saddr, sizeof(dst->ip6.src)); hashlimit_ipv6_mask(dst->ip6.src, hinfo->cfg.srcmask); } if (!(hinfo->cfg.mode & (XT_HASHLIMIT_HASH_DPT | XT_HASHLIMIT_HASH_SPT))) return 0; nexthdr = ipv6_hdr(skb)->nexthdr; protoff = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &nexthdr, &frag_off); if ((int)protoff < 0) return -1; break; } #endif default: BUG(); return 0; } poff = proto_ports_offset(nexthdr); if (poff >= 0) { ports = skb_header_pointer(skb, protoff + poff, sizeof(_ports), &_ports); } else { _ports[0] = _ports[1] = 0; ports = _ports; } if (!ports) return -1; if (hinfo->cfg.mode & XT_HASHLIMIT_HASH_SPT) dst->src_port = ports[0]; if (hinfo->cfg.mode & XT_HASHLIMIT_HASH_DPT) dst->dst_port = ports[1]; return 0; } static u32 hashlimit_byte_cost(unsigned int len, struct dsthash_ent *dh) { u64 tmp = xt_hashlimit_len_to_chunks(len); tmp = tmp * dh->rateinfo.cost; if (unlikely(tmp > CREDITS_PER_JIFFY_BYTES * HZ)) tmp = CREDITS_PER_JIFFY_BYTES * HZ; if (dh->rateinfo.credit < tmp && dh->rateinfo.credit_cap) { dh->rateinfo.credit_cap--; dh->rateinfo.credit = CREDITS_PER_JIFFY_BYTES * HZ; } return (u32) tmp; } static bool hashlimit_mt_common(const struct sk_buff *skb, struct xt_action_param *par, struct xt_hashlimit_htable *hinfo, const struct hashlimit_cfg3 *cfg, int revision) { unsigned long now = jiffies; struct dsthash_ent *dh; struct dsthash_dst dst; bool race = false; u64 cost; if (hashlimit_init_dst(hinfo, &dst, skb, par->thoff) < 0) goto hotdrop; local_bh_disable(); dh = dsthash_find(hinfo, &dst); if (dh == NULL) { dh = dsthash_alloc_init(hinfo, &dst, &race); if (dh == NULL) { local_bh_enable(); goto hotdrop; } else if (race) { /* Already got an entry, update expiration timeout */ dh->expires = now + msecs_to_jiffies(hinfo->cfg.expire); rateinfo_recalc(dh, now, hinfo->cfg.mode, revision); } else { dh->expires = jiffies + msecs_to_jiffies(hinfo->cfg.expire); rateinfo_init(dh, hinfo, revision); } } else { /* update expiration timeout */ dh->expires = now + msecs_to_jiffies(hinfo->cfg.expire); rateinfo_recalc(dh, now, hinfo->cfg.mode, revision); } if (cfg->mode & XT_HASHLIMIT_RATE_MATCH) { cost = (cfg->mode & XT_HASHLIMIT_BYTES) ? skb->len : 1; dh->rateinfo.current_rate += cost; if (!dh->rateinfo.prev_window && (dh->rateinfo.current_rate <= dh->rateinfo.burst)) { spin_unlock(&dh->lock); local_bh_enable(); return !(cfg->mode & XT_HASHLIMIT_INVERT); } else { goto overlimit; } } if (cfg->mode & XT_HASHLIMIT_BYTES) cost = hashlimit_byte_cost(skb->len, dh); else cost = dh->rateinfo.cost; if (dh->rateinfo.credit >= cost) { /* below the limit */ dh->rateinfo.credit -= cost; spin_unlock(&dh->lock); local_bh_enable(); return !(cfg->mode & XT_HASHLIMIT_INVERT); } overlimit: spin_unlock(&dh->lock); local_bh_enable(); /* default match is underlimit - so over the limit, we need to invert */ return cfg->mode & XT_HASHLIMIT_INVERT; hotdrop: par->hotdrop = true; return false; } static bool hashlimit_mt_v1(const struct sk_buff *skb, struct xt_action_param *par) { const struct xt_hashlimit_mtinfo1 *info = par->matchinfo; struct xt_hashlimit_htable *hinfo = info->hinfo; struct hashlimit_cfg3 cfg = {}; int ret; ret = cfg_copy(&cfg, (void *)&info->cfg, 1); if (ret) return ret; return hashlimit_mt_common(skb, par, hinfo, &cfg, 1); } static bool hashlimit_mt_v2(const struct sk_buff *skb, struct xt_action_param *par) { const struct xt_hashlimit_mtinfo2 *info = par->matchinfo; struct xt_hashlimit_htable *hinfo = info->hinfo; struct hashlimit_cfg3 cfg = {}; int ret; ret = cfg_copy(&cfg, (void *)&info->cfg, 2); if (ret) return ret; return hashlimit_mt_common(skb, par, hinfo, &cfg, 2); } static bool hashlimit_mt(const struct sk_buff *skb, struct xt_action_param *par) { const struct xt_hashlimit_mtinfo3 *info = par->matchinfo; struct xt_hashlimit_htable *hinfo = info->hinfo; return hashlimit_mt_common(skb, par, hinfo, &info->cfg, 3); } #define HASHLIMIT_MAX_SIZE 1048576 static int hashlimit_mt_check_common(const struct xt_mtchk_param *par, struct xt_hashlimit_htable **hinfo, struct hashlimit_cfg3 *cfg, const char *name, int revision) { struct net *net = par->net; int ret; if (cfg->gc_interval == 0 || cfg->expire == 0) return -EINVAL; if (cfg->size > HASHLIMIT_MAX_SIZE) { cfg->size = HASHLIMIT_MAX_SIZE; pr_info_ratelimited("size too large, truncated to %u\n", cfg->size); } if (cfg->max > HASHLIMIT_MAX_SIZE) { cfg->max = HASHLIMIT_MAX_SIZE; pr_info_ratelimited("max too large, truncated to %u\n", cfg->max); } if (par->family == NFPROTO_IPV4) { if (cfg->srcmask > 32 || cfg->dstmask > 32) return -EINVAL; } else { if (cfg->srcmask > 128 || cfg->dstmask > 128) return -EINVAL; } if (cfg->mode & ~XT_HASHLIMIT_ALL) { pr_info_ratelimited("Unknown mode mask %X, kernel too old?\n", cfg->mode); return -EINVAL; } /* Check for overflow. */ if (revision >= 3 && cfg->mode & XT_HASHLIMIT_RATE_MATCH) { if (cfg->avg == 0 || cfg->avg > U32_MAX) { pr_info_ratelimited("invalid rate\n"); return -ERANGE; } if (cfg->interval == 0) { pr_info_ratelimited("invalid interval\n"); return -EINVAL; } } else if (cfg->mode & XT_HASHLIMIT_BYTES) { if (user2credits_byte(cfg->avg) == 0) { pr_info_ratelimited("overflow, rate too high: %llu\n", cfg->avg); return -EINVAL; } } else if (cfg->burst == 0 || user2credits(cfg->avg * cfg->burst, revision) < user2credits(cfg->avg, revision)) { pr_info_ratelimited("overflow, try lower: %llu/%llu\n", cfg->avg, cfg->burst); return -ERANGE; } mutex_lock(&hashlimit_mutex); *hinfo = htable_find_get(net, name, par->family); if (*hinfo == NULL) { ret = htable_create(net, cfg, name, par->family, hinfo, revision); if (ret < 0) { mutex_unlock(&hashlimit_mutex); return ret; } } mutex_unlock(&hashlimit_mutex); return 0; } static int hashlimit_mt_check_v1(const struct xt_mtchk_param *par) { struct xt_hashlimit_mtinfo1 *info = par->matchinfo; struct hashlimit_cfg3 cfg = {}; int ret; ret = xt_check_proc_name(info->name, sizeof(info->name)); if (ret) return ret; ret = cfg_copy(&cfg, (void *)&info->cfg, 1); if (ret) return ret; return hashlimit_mt_check_common(par, &info->hinfo, &cfg, info->name, 1); } static int hashlimit_mt_check_v2(const struct xt_mtchk_param *par) { struct xt_hashlimit_mtinfo2 *info = par->matchinfo; struct hashlimit_cfg3 cfg = {}; int ret; ret = xt_check_proc_name(info->name, sizeof(info->name)); if (ret) return ret; ret = cfg_copy(&cfg, (void *)&info->cfg, 2); if (ret) return ret; return hashlimit_mt_check_common(par, &info->hinfo, &cfg, info->name, 2); } static int hashlimit_mt_check(const struct xt_mtchk_param *par) { struct xt_hashlimit_mtinfo3 *info = par->matchinfo; int ret; ret = xt_check_proc_name(info->name, sizeof(info->name)); if (ret) return ret; return hashlimit_mt_check_common(par, &info->hinfo, &info->cfg, info->name, 3); } static void hashlimit_mt_destroy_v2(const struct xt_mtdtor_param *par) { const struct xt_hashlimit_mtinfo2 *info = par->matchinfo; htable_put(info->hinfo); } static void hashlimit_mt_destroy_v1(const struct xt_mtdtor_param *par) { const struct xt_hashlimit_mtinfo1 *info = par->matchinfo; htable_put(info->hinfo); } static void hashlimit_mt_destroy(const struct xt_mtdtor_param *par) { const struct xt_hashlimit_mtinfo3 *info = par->matchinfo; htable_put(info->hinfo); } static struct xt_match hashlimit_mt_reg[] __read_mostly = { { .name = "hashlimit", .revision = 1, .family = NFPROTO_IPV4, .match = hashlimit_mt_v1, .matchsize = sizeof(struct xt_hashlimit_mtinfo1), .usersize = offsetof(struct xt_hashlimit_mtinfo1, hinfo), .checkentry = hashlimit_mt_check_v1, .destroy = hashlimit_mt_destroy_v1, .me = THIS_MODULE, }, { .name = "hashlimit", .revision = 2, .family = NFPROTO_IPV4, .match = hashlimit_mt_v2, .matchsize = sizeof(struct xt_hashlimit_mtinfo2), .usersize = offsetof(struct xt_hashlimit_mtinfo2, hinfo), .checkentry = hashlimit_mt_check_v2, .destroy = hashlimit_mt_destroy_v2, .me = THIS_MODULE, }, { .name = "hashlimit", .revision = 3, .family = NFPROTO_IPV4, .match = hashlimit_mt, .matchsize = sizeof(struct xt_hashlimit_mtinfo3), .usersize = offsetof(struct xt_hashlimit_mtinfo3, hinfo), .checkentry = hashlimit_mt_check, .destroy = hashlimit_mt_destroy, .me = THIS_MODULE, }, #if IS_ENABLED(CONFIG_IP6_NF_IPTABLES) { .name = "hashlimit", .revision = 1, .family = NFPROTO_IPV6, .match = hashlimit_mt_v1, .matchsize = sizeof(struct xt_hashlimit_mtinfo1), .usersize = offsetof(struct xt_hashlimit_mtinfo1, hinfo), .checkentry = hashlimit_mt_check_v1, .destroy = hashlimit_mt_destroy_v1, .me = THIS_MODULE, }, { .name = "hashlimit", .revision = 2, .family = NFPROTO_IPV6, .match = hashlimit_mt_v2, .matchsize = sizeof(struct xt_hashlimit_mtinfo2), .usersize = offsetof(struct xt_hashlimit_mtinfo2, hinfo), .checkentry = hashlimit_mt_check_v2, .destroy = hashlimit_mt_destroy_v2, .me = THIS_MODULE, }, { .name = "hashlimit", .revision = 3, .family = NFPROTO_IPV6, .match = hashlimit_mt, .matchsize = sizeof(struct xt_hashlimit_mtinfo3), .usersize = offsetof(struct xt_hashlimit_mtinfo3, hinfo), .checkentry = hashlimit_mt_check, .destroy = hashlimit_mt_destroy, .me = THIS_MODULE, }, #endif }; /* PROC stuff */ static void *dl_seq_start(struct seq_file *s, loff_t *pos) __acquires(htable->lock) { struct xt_hashlimit_htable *htable = pde_data(file_inode(s->file)); unsigned int *bucket; spin_lock_bh(&htable->lock); if (*pos >= htable->cfg.size) return NULL; bucket = kmalloc(sizeof(unsigned int), GFP_ATOMIC); if (!bucket) return ERR_PTR(-ENOMEM); *bucket = *pos; return bucket; } static void *dl_seq_next(struct seq_file *s, void *v, loff_t *pos) { struct xt_hashlimit_htable *htable = pde_data(file_inode(s->file)); unsigned int *bucket = v; *pos = ++(*bucket); if (*pos >= htable->cfg.size) { kfree(v); return NULL; } return bucket; } static void dl_seq_stop(struct seq_file *s, void *v) __releases(htable->lock) { struct xt_hashlimit_htable *htable = pde_data(file_inode(s->file)); unsigned int *bucket = v; if (!IS_ERR(bucket)) kfree(bucket); spin_unlock_bh(&htable->lock); } static void dl_seq_print(struct dsthash_ent *ent, u_int8_t family, struct seq_file *s) { switch (family) { case NFPROTO_IPV4: seq_printf(s, "%ld %pI4:%u->%pI4:%u %llu %llu %llu\n", (long)(ent->expires - jiffies)/HZ, &ent->dst.ip.src, ntohs(ent->dst.src_port), &ent->dst.ip.dst, ntohs(ent->dst.dst_port), ent->rateinfo.credit, ent->rateinfo.credit_cap, ent->rateinfo.cost); break; #if IS_ENABLED(CONFIG_IP6_NF_IPTABLES) case NFPROTO_IPV6: seq_printf(s, "%ld %pI6:%u->%pI6:%u %llu %llu %llu\n", (long)(ent->expires - jiffies)/HZ, &ent->dst.ip6.src, ntohs(ent->dst.src_port), &ent->dst.ip6.dst, ntohs(ent->dst.dst_port), ent->rateinfo.credit, ent->rateinfo.credit_cap, ent->rateinfo.cost); break; #endif default: BUG(); } } static int dl_seq_real_show_v2(struct dsthash_ent *ent, u_int8_t family, struct seq_file *s) { struct xt_hashlimit_htable *ht = pde_data(file_inode(s->file)); spin_lock(&ent->lock); /* recalculate to show accurate numbers */ rateinfo_recalc(ent, jiffies, ht->cfg.mode, 2); dl_seq_print(ent, family, s); spin_unlock(&ent->lock); return seq_has_overflowed(s); } static int dl_seq_real_show_v1(struct dsthash_ent *ent, u_int8_t family, struct seq_file *s) { struct xt_hashlimit_htable *ht = pde_data(file_inode(s->file)); spin_lock(&ent->lock); /* recalculate to show accurate numbers */ rateinfo_recalc(ent, jiffies, ht->cfg.mode, 1); dl_seq_print(ent, family, s); spin_unlock(&ent->lock); return seq_has_overflowed(s); } static int dl_seq_real_show(struct dsthash_ent *ent, u_int8_t family, struct seq_file *s) { struct xt_hashlimit_htable *ht = pde_data(file_inode(s->file)); spin_lock(&ent->lock); /* recalculate to show accurate numbers */ rateinfo_recalc(ent, jiffies, ht->cfg.mode, 3); dl_seq_print(ent, family, s); spin_unlock(&ent->lock); return seq_has_overflowed(s); } static int dl_seq_show_v2(struct seq_file *s, void *v) { struct xt_hashlimit_htable *htable = pde_data(file_inode(s->file)); unsigned int *bucket = (unsigned int *)v; struct dsthash_ent *ent; if (!hlist_empty(&htable->hash[*bucket])) { hlist_for_each_entry(ent, &htable->hash[*bucket], node) if (dl_seq_real_show_v2(ent, htable->family, s)) return -1; } return 0; } static int dl_seq_show_v1(struct seq_file *s, void *v) { struct xt_hashlimit_htable *htable = pde_data(file_inode(s->file)); unsigned int *bucket = v; struct dsthash_ent *ent; if (!hlist_empty(&htable->hash[*bucket])) { hlist_for_each_entry(ent, &htable->hash[*bucket], node) if (dl_seq_real_show_v1(ent, htable->family, s)) return -1; } return 0; } static int dl_seq_show(struct seq_file *s, void *v) { struct xt_hashlimit_htable *htable = pde_data(file_inode(s->file)); unsigned int *bucket = v; struct dsthash_ent *ent; if (!hlist_empty(&htable->hash[*bucket])) { hlist_for_each_entry(ent, &htable->hash[*bucket], node) if (dl_seq_real_show(ent, htable->family, s)) return -1; } return 0; } static const struct seq_operations dl_seq_ops_v1 = { .start = dl_seq_start, .next = dl_seq_next, .stop = dl_seq_stop, .show = dl_seq_show_v1 }; static const struct seq_operations dl_seq_ops_v2 = { .start = dl_seq_start, .next = dl_seq_next, .stop = dl_seq_stop, .show = dl_seq_show_v2 }; static const struct seq_operations dl_seq_ops = { .start = dl_seq_start, .next = dl_seq_next, .stop = dl_seq_stop, .show = dl_seq_show }; static int __net_init hashlimit_proc_net_init(struct net *net) { struct hashlimit_net *hashlimit_net = hashlimit_pernet(net); hashlimit_net->ipt_hashlimit = proc_mkdir("ipt_hashlimit", net->proc_net); if (!hashlimit_net->ipt_hashlimit) return -ENOMEM; #if IS_ENABLED(CONFIG_IP6_NF_IPTABLES) hashlimit_net->ip6t_hashlimit = proc_mkdir("ip6t_hashlimit", net->proc_net); if (!hashlimit_net->ip6t_hashlimit) { remove_proc_entry("ipt_hashlimit", net->proc_net); return -ENOMEM; } #endif return 0; } static void __net_exit hashlimit_proc_net_exit(struct net *net) { struct xt_hashlimit_htable *hinfo; struct hashlimit_net *hashlimit_net = hashlimit_pernet(net); /* hashlimit_net_exit() is called before hashlimit_mt_destroy(). * Make sure that the parent ipt_hashlimit and ip6t_hashlimit proc * entries is empty before trying to remove it. */ mutex_lock(&hashlimit_mutex); hlist_for_each_entry(hinfo, &hashlimit_net->htables, node) htable_remove_proc_entry(hinfo); hashlimit_net->ipt_hashlimit = NULL; hashlimit_net->ip6t_hashlimit = NULL; mutex_unlock(&hashlimit_mutex); remove_proc_entry("ipt_hashlimit", net->proc_net); #if IS_ENABLED(CONFIG_IP6_NF_IPTABLES) remove_proc_entry("ip6t_hashlimit", net->proc_net); #endif } static int __net_init hashlimit_net_init(struct net *net) { struct hashlimit_net *hashlimit_net = hashlimit_pernet(net); INIT_HLIST_HEAD(&hashlimit_net->htables); return hashlimit_proc_net_init(net); } static void __net_exit hashlimit_net_exit(struct net *net) { hashlimit_proc_net_exit(net); } static struct pernet_operations hashlimit_net_ops = { .init = hashlimit_net_init, .exit = hashlimit_net_exit, .id = &hashlimit_net_id, .size = sizeof(struct hashlimit_net), }; static int __init hashlimit_mt_init(void) { int err; err = register_pernet_subsys(&hashlimit_net_ops); if (err < 0) return err; err = xt_register_matches(hashlimit_mt_reg, ARRAY_SIZE(hashlimit_mt_reg)); if (err < 0) goto err1; err = -ENOMEM; hashlimit_cachep = kmem_cache_create("xt_hashlimit", sizeof(struct dsthash_ent), 0, 0, NULL); if (!hashlimit_cachep) { pr_warn("unable to create slab cache\n"); goto err2; } return 0; err2: xt_unregister_matches(hashlimit_mt_reg, ARRAY_SIZE(hashlimit_mt_reg)); err1: unregister_pernet_subsys(&hashlimit_net_ops); return err; } static void __exit hashlimit_mt_exit(void) { xt_unregister_matches(hashlimit_mt_reg, ARRAY_SIZE(hashlimit_mt_reg)); unregister_pernet_subsys(&hashlimit_net_ops); rcu_barrier(); kmem_cache_destroy(hashlimit_cachep); } module_init(hashlimit_mt_init); module_exit(hashlimit_mt_exit);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1