Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Pravin B Shelar | 1712 | 30.73% | 12 | 14.46% |
Jesse Gross | 1187 | 21.31% | 4 | 4.82% |
Toms Atteka | 458 | 8.22% | 1 | 1.20% |
Jarno Rajahalme | 360 | 6.46% | 6 | 7.23% |
Andy Zhou | 343 | 6.16% | 3 | 3.61% |
Yi Yang | 241 | 4.33% | 1 | 1.20% |
Greg Rose | 240 | 4.31% | 1 | 1.20% |
Eric Garver | 185 | 3.32% | 1 | 1.20% |
Paul Blakey | 156 | 2.80% | 5 | 6.02% |
Simon Horman | 122 | 2.19% | 2 | 2.41% |
Jiri Benc | 115 | 2.06% | 6 | 7.23% |
Joe Stringer | 88 | 1.58% | 3 | 3.61% |
Thadeu Lima de Souza Cascardo | 61 | 1.09% | 2 | 2.41% |
Yi-Hung Wei | 61 | 1.09% | 3 | 3.61% |
Martin Varghese | 55 | 0.99% | 1 | 1.20% |
wenxu | 32 | 0.57% | 2 | 2.41% |
Ben Pfaff | 23 | 0.41% | 3 | 3.61% |
Tonghao Zhang | 18 | 0.32% | 2 | 2.41% |
Davide Caratti | 14 | 0.25% | 1 | 1.20% |
Willem de Bruijn | 14 | 0.25% | 1 | 1.20% |
Li RongQing | 9 | 0.16% | 1 | 1.20% |
Justin Pettit | 9 | 0.16% | 1 | 1.20% |
Hannes Frederic Sowa | 8 | 0.14% | 1 | 1.20% |
Thomas Graf | 8 | 0.14% | 4 | 4.82% |
David S. Miller | 7 | 0.13% | 1 | 1.20% |
Michał Mirosław | 6 | 0.11% | 1 | 1.20% |
David Rientjes | 5 | 0.09% | 1 | 1.20% |
Arnd Bergmann | 5 | 0.09% | 1 | 1.20% |
Joe Perches | 4 | 0.07% | 1 | 1.20% |
Ansis Atteka | 4 | 0.07% | 1 | 1.20% |
Pablo Neira Ayuso | 4 | 0.07% | 1 | 1.20% |
Mehak Mahajan | 3 | 0.05% | 1 | 1.20% |
Randy Dunlap | 3 | 0.05% | 1 | 1.20% |
Gustavo A. R. Silva | 2 | 0.04% | 1 | 1.20% |
Thomas Gleixner | 2 | 0.04% | 1 | 1.20% |
Alexander Duyck | 2 | 0.04% | 1 | 1.20% |
Lance Richardson | 2 | 0.04% | 1 | 1.20% |
Jiri Pirko | 1 | 0.02% | 1 | 1.20% |
Rosemarie O'Riorden | 1 | 0.02% | 1 | 1.20% |
Andreea-Cristina Bernat | 1 | 0.02% | 1 | 1.20% |
Total | 5571 | 83 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2007-2014 Nicira, Inc. */ #include <linux/uaccess.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/if_ether.h> #include <linux/if_vlan.h> #include <net/llc_pdu.h> #include <linux/kernel.h> #include <linux/jhash.h> #include <linux/jiffies.h> #include <linux/llc.h> #include <linux/module.h> #include <linux/in.h> #include <linux/rcupdate.h> #include <linux/cpumask.h> #include <linux/if_arp.h> #include <linux/ip.h> #include <linux/ipv6.h> #include <linux/mpls.h> #include <linux/sctp.h> #include <linux/smp.h> #include <linux/tcp.h> #include <linux/udp.h> #include <linux/icmp.h> #include <linux/icmpv6.h> #include <linux/rculist.h> #include <net/ip.h> #include <net/ip_tunnels.h> #include <net/ipv6.h> #include <net/mpls.h> #include <net/ndisc.h> #include <net/nsh.h> #include <net/pkt_cls.h> #include <net/netfilter/nf_conntrack_zones.h> #include "conntrack.h" #include "datapath.h" #include "flow.h" #include "flow_netlink.h" #include "vport.h" u64 ovs_flow_used_time(unsigned long flow_jiffies) { struct timespec64 cur_ts; u64 cur_ms, idle_ms; ktime_get_ts64(&cur_ts); idle_ms = jiffies_to_msecs(jiffies - flow_jiffies); cur_ms = (u64)(u32)cur_ts.tv_sec * MSEC_PER_SEC + cur_ts.tv_nsec / NSEC_PER_MSEC; return cur_ms - idle_ms; } #define TCP_FLAGS_BE16(tp) (*(__be16 *)&tcp_flag_word(tp) & htons(0x0FFF)) void ovs_flow_stats_update(struct sw_flow *flow, __be16 tcp_flags, const struct sk_buff *skb) { struct sw_flow_stats *stats; unsigned int cpu = smp_processor_id(); int len = skb->len + (skb_vlan_tag_present(skb) ? VLAN_HLEN : 0); stats = rcu_dereference(flow->stats[cpu]); /* Check if already have CPU-specific stats. */ if (likely(stats)) { spin_lock(&stats->lock); /* Mark if we write on the pre-allocated stats. */ if (cpu == 0 && unlikely(flow->stats_last_writer != cpu)) flow->stats_last_writer = cpu; } else { stats = rcu_dereference(flow->stats[0]); /* Pre-allocated. */ spin_lock(&stats->lock); /* If the current CPU is the only writer on the * pre-allocated stats keep using them. */ if (unlikely(flow->stats_last_writer != cpu)) { /* A previous locker may have already allocated the * stats, so we need to check again. If CPU-specific * stats were already allocated, we update the pre- * allocated stats as we have already locked them. */ if (likely(flow->stats_last_writer != -1) && likely(!rcu_access_pointer(flow->stats[cpu]))) { /* Try to allocate CPU-specific stats. */ struct sw_flow_stats *new_stats; new_stats = kmem_cache_alloc_node(flow_stats_cache, GFP_NOWAIT | __GFP_THISNODE | __GFP_NOWARN | __GFP_NOMEMALLOC, numa_node_id()); if (likely(new_stats)) { new_stats->used = jiffies; new_stats->packet_count = 1; new_stats->byte_count = len; new_stats->tcp_flags = tcp_flags; spin_lock_init(&new_stats->lock); rcu_assign_pointer(flow->stats[cpu], new_stats); cpumask_set_cpu(cpu, flow->cpu_used_mask); goto unlock; } } flow->stats_last_writer = cpu; } } stats->used = jiffies; stats->packet_count++; stats->byte_count += len; stats->tcp_flags |= tcp_flags; unlock: spin_unlock(&stats->lock); } /* Must be called with rcu_read_lock or ovs_mutex. */ void ovs_flow_stats_get(const struct sw_flow *flow, struct ovs_flow_stats *ovs_stats, unsigned long *used, __be16 *tcp_flags) { int cpu; *used = 0; *tcp_flags = 0; memset(ovs_stats, 0, sizeof(*ovs_stats)); /* We open code this to make sure cpu 0 is always considered */ for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, flow->cpu_used_mask)) { struct sw_flow_stats *stats = rcu_dereference_ovsl(flow->stats[cpu]); if (stats) { /* Local CPU may write on non-local stats, so we must * block bottom-halves here. */ spin_lock_bh(&stats->lock); if (!*used || time_after(stats->used, *used)) *used = stats->used; *tcp_flags |= stats->tcp_flags; ovs_stats->n_packets += stats->packet_count; ovs_stats->n_bytes += stats->byte_count; spin_unlock_bh(&stats->lock); } } } /* Called with ovs_mutex. */ void ovs_flow_stats_clear(struct sw_flow *flow) { int cpu; /* We open code this to make sure cpu 0 is always considered */ for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, flow->cpu_used_mask)) { struct sw_flow_stats *stats = ovsl_dereference(flow->stats[cpu]); if (stats) { spin_lock_bh(&stats->lock); stats->used = 0; stats->packet_count = 0; stats->byte_count = 0; stats->tcp_flags = 0; spin_unlock_bh(&stats->lock); } } } static int check_header(struct sk_buff *skb, int len) { if (unlikely(skb->len < len)) return -EINVAL; if (unlikely(!pskb_may_pull(skb, len))) return -ENOMEM; return 0; } static bool arphdr_ok(struct sk_buff *skb) { return pskb_may_pull(skb, skb_network_offset(skb) + sizeof(struct arp_eth_header)); } static int check_iphdr(struct sk_buff *skb) { unsigned int nh_ofs = skb_network_offset(skb); unsigned int ip_len; int err; err = check_header(skb, nh_ofs + sizeof(struct iphdr)); if (unlikely(err)) return err; ip_len = ip_hdrlen(skb); if (unlikely(ip_len < sizeof(struct iphdr) || skb->len < nh_ofs + ip_len)) return -EINVAL; skb_set_transport_header(skb, nh_ofs + ip_len); return 0; } static bool tcphdr_ok(struct sk_buff *skb) { int th_ofs = skb_transport_offset(skb); int tcp_len; if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr)))) return false; tcp_len = tcp_hdrlen(skb); if (unlikely(tcp_len < sizeof(struct tcphdr) || skb->len < th_ofs + tcp_len)) return false; return true; } static bool udphdr_ok(struct sk_buff *skb) { return pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)); } static bool sctphdr_ok(struct sk_buff *skb) { return pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct sctphdr)); } static bool icmphdr_ok(struct sk_buff *skb) { return pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct icmphdr)); } /** * get_ipv6_ext_hdrs() - Parses packet and sets IPv6 extension header flags. * * @skb: buffer where extension header data starts in packet * @nh: ipv6 header * @ext_hdrs: flags are stored here * * OFPIEH12_UNREP is set if more than one of a given IPv6 extension header * is unexpectedly encountered. (Two destination options headers may be * expected and would not cause this bit to be set.) * * OFPIEH12_UNSEQ is set if IPv6 extension headers were not in the order * preferred (but not required) by RFC 2460: * * When more than one extension header is used in the same packet, it is * recommended that those headers appear in the following order: * IPv6 header * Hop-by-Hop Options header * Destination Options header * Routing header * Fragment header * Authentication header * Encapsulating Security Payload header * Destination Options header * upper-layer header */ static void get_ipv6_ext_hdrs(struct sk_buff *skb, struct ipv6hdr *nh, u16 *ext_hdrs) { u8 next_type = nh->nexthdr; unsigned int start = skb_network_offset(skb) + sizeof(struct ipv6hdr); int dest_options_header_count = 0; *ext_hdrs = 0; while (ipv6_ext_hdr(next_type)) { struct ipv6_opt_hdr _hdr, *hp; switch (next_type) { case IPPROTO_NONE: *ext_hdrs |= OFPIEH12_NONEXT; /* stop parsing */ return; case IPPROTO_ESP: if (*ext_hdrs & OFPIEH12_ESP) *ext_hdrs |= OFPIEH12_UNREP; if ((*ext_hdrs & ~(OFPIEH12_HOP | OFPIEH12_DEST | OFPIEH12_ROUTER | IPPROTO_FRAGMENT | OFPIEH12_AUTH | OFPIEH12_UNREP)) || dest_options_header_count >= 2) { *ext_hdrs |= OFPIEH12_UNSEQ; } *ext_hdrs |= OFPIEH12_ESP; break; case IPPROTO_AH: if (*ext_hdrs & OFPIEH12_AUTH) *ext_hdrs |= OFPIEH12_UNREP; if ((*ext_hdrs & ~(OFPIEH12_HOP | OFPIEH12_DEST | OFPIEH12_ROUTER | IPPROTO_FRAGMENT | OFPIEH12_UNREP)) || dest_options_header_count >= 2) { *ext_hdrs |= OFPIEH12_UNSEQ; } *ext_hdrs |= OFPIEH12_AUTH; break; case IPPROTO_DSTOPTS: if (dest_options_header_count == 0) { if (*ext_hdrs & ~(OFPIEH12_HOP | OFPIEH12_UNREP)) *ext_hdrs |= OFPIEH12_UNSEQ; *ext_hdrs |= OFPIEH12_DEST; } else if (dest_options_header_count == 1) { if (*ext_hdrs & ~(OFPIEH12_HOP | OFPIEH12_DEST | OFPIEH12_ROUTER | OFPIEH12_FRAG | OFPIEH12_AUTH | OFPIEH12_ESP | OFPIEH12_UNREP)) { *ext_hdrs |= OFPIEH12_UNSEQ; } } else { *ext_hdrs |= OFPIEH12_UNREP; } dest_options_header_count++; break; case IPPROTO_FRAGMENT: if (*ext_hdrs & OFPIEH12_FRAG) *ext_hdrs |= OFPIEH12_UNREP; if ((*ext_hdrs & ~(OFPIEH12_HOP | OFPIEH12_DEST | OFPIEH12_ROUTER | OFPIEH12_UNREP)) || dest_options_header_count >= 2) { *ext_hdrs |= OFPIEH12_UNSEQ; } *ext_hdrs |= OFPIEH12_FRAG; break; case IPPROTO_ROUTING: if (*ext_hdrs & OFPIEH12_ROUTER) *ext_hdrs |= OFPIEH12_UNREP; if ((*ext_hdrs & ~(OFPIEH12_HOP | OFPIEH12_DEST | OFPIEH12_UNREP)) || dest_options_header_count >= 2) { *ext_hdrs |= OFPIEH12_UNSEQ; } *ext_hdrs |= OFPIEH12_ROUTER; break; case IPPROTO_HOPOPTS: if (*ext_hdrs & OFPIEH12_HOP) *ext_hdrs |= OFPIEH12_UNREP; /* OFPIEH12_HOP is set to 1 if a hop-by-hop IPv6 * extension header is present as the first * extension header in the packet. */ if (*ext_hdrs == 0) *ext_hdrs |= OFPIEH12_HOP; else *ext_hdrs |= OFPIEH12_UNSEQ; break; default: return; } hp = skb_header_pointer(skb, start, sizeof(_hdr), &_hdr); if (!hp) break; next_type = hp->nexthdr; start += ipv6_optlen(hp); } } static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key) { unsigned short frag_off; unsigned int payload_ofs = 0; unsigned int nh_ofs = skb_network_offset(skb); unsigned int nh_len; struct ipv6hdr *nh; int err, nexthdr, flags = 0; err = check_header(skb, nh_ofs + sizeof(*nh)); if (unlikely(err)) return err; nh = ipv6_hdr(skb); get_ipv6_ext_hdrs(skb, nh, &key->ipv6.exthdrs); key->ip.proto = NEXTHDR_NONE; key->ip.tos = ipv6_get_dsfield(nh); key->ip.ttl = nh->hop_limit; key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL); key->ipv6.addr.src = nh->saddr; key->ipv6.addr.dst = nh->daddr; nexthdr = ipv6_find_hdr(skb, &payload_ofs, -1, &frag_off, &flags); if (flags & IP6_FH_F_FRAG) { if (frag_off) { key->ip.frag = OVS_FRAG_TYPE_LATER; key->ip.proto = NEXTHDR_FRAGMENT; return 0; } key->ip.frag = OVS_FRAG_TYPE_FIRST; } else { key->ip.frag = OVS_FRAG_TYPE_NONE; } /* Delayed handling of error in ipv6_find_hdr() as it * always sets flags and frag_off to a valid value which may be * used to set key->ip.frag above. */ if (unlikely(nexthdr < 0)) return -EPROTO; nh_len = payload_ofs - nh_ofs; skb_set_transport_header(skb, nh_ofs + nh_len); key->ip.proto = nexthdr; return nh_len; } static bool icmp6hdr_ok(struct sk_buff *skb) { return pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct icmp6hdr)); } /** * parse_vlan_tag - Parse vlan tag from vlan header. * @skb: skb containing frame to parse * @key_vh: pointer to parsed vlan tag * @untag_vlan: should the vlan header be removed from the frame * * Return: ERROR on memory error. * %0 if it encounters a non-vlan or incomplete packet. * %1 after successfully parsing vlan tag. */ static int parse_vlan_tag(struct sk_buff *skb, struct vlan_head *key_vh, bool untag_vlan) { struct vlan_head *vh = (struct vlan_head *)skb->data; if (likely(!eth_type_vlan(vh->tpid))) return 0; if (unlikely(skb->len < sizeof(struct vlan_head) + sizeof(__be16))) return 0; if (unlikely(!pskb_may_pull(skb, sizeof(struct vlan_head) + sizeof(__be16)))) return -ENOMEM; vh = (struct vlan_head *)skb->data; key_vh->tci = vh->tci | htons(VLAN_CFI_MASK); key_vh->tpid = vh->tpid; if (unlikely(untag_vlan)) { int offset = skb->data - skb_mac_header(skb); u16 tci; int err; __skb_push(skb, offset); err = __skb_vlan_pop(skb, &tci); __skb_pull(skb, offset); if (err) return err; __vlan_hwaccel_put_tag(skb, key_vh->tpid, tci); } else { __skb_pull(skb, sizeof(struct vlan_head)); } return 1; } static void clear_vlan(struct sw_flow_key *key) { key->eth.vlan.tci = 0; key->eth.vlan.tpid = 0; key->eth.cvlan.tci = 0; key->eth.cvlan.tpid = 0; } static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key) { int res; if (skb_vlan_tag_present(skb)) { key->eth.vlan.tci = htons(skb->vlan_tci) | htons(VLAN_CFI_MASK); key->eth.vlan.tpid = skb->vlan_proto; } else { /* Parse outer vlan tag in the non-accelerated case. */ res = parse_vlan_tag(skb, &key->eth.vlan, true); if (res <= 0) return res; } /* Parse inner vlan tag. */ res = parse_vlan_tag(skb, &key->eth.cvlan, false); if (res <= 0) return res; return 0; } static __be16 parse_ethertype(struct sk_buff *skb) { struct llc_snap_hdr { u8 dsap; /* Always 0xAA */ u8 ssap; /* Always 0xAA */ u8 ctrl; u8 oui[3]; __be16 ethertype; }; struct llc_snap_hdr *llc; __be16 proto; proto = *(__be16 *) skb->data; __skb_pull(skb, sizeof(__be16)); if (eth_proto_is_802_3(proto)) return proto; if (skb->len < sizeof(struct llc_snap_hdr)) return htons(ETH_P_802_2); if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr)))) return htons(0); llc = (struct llc_snap_hdr *) skb->data; if (llc->dsap != LLC_SAP_SNAP || llc->ssap != LLC_SAP_SNAP || (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0) return htons(ETH_P_802_2); __skb_pull(skb, sizeof(struct llc_snap_hdr)); if (eth_proto_is_802_3(llc->ethertype)) return llc->ethertype; return htons(ETH_P_802_2); } static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key, int nh_len) { struct icmp6hdr *icmp = icmp6_hdr(skb); /* The ICMPv6 type and code fields use the 16-bit transport port * fields, so we need to store them in 16-bit network byte order. */ key->tp.src = htons(icmp->icmp6_type); key->tp.dst = htons(icmp->icmp6_code); memset(&key->ipv6.nd, 0, sizeof(key->ipv6.nd)); if (icmp->icmp6_code == 0 && (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION || icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) { int icmp_len = skb->len - skb_transport_offset(skb); struct nd_msg *nd; int offset; /* In order to process neighbor discovery options, we need the * entire packet. */ if (unlikely(icmp_len < sizeof(*nd))) return 0; if (unlikely(skb_linearize(skb))) return -ENOMEM; nd = (struct nd_msg *)skb_transport_header(skb); key->ipv6.nd.target = nd->target; icmp_len -= sizeof(*nd); offset = 0; while (icmp_len >= 8) { struct nd_opt_hdr *nd_opt = (struct nd_opt_hdr *)(nd->opt + offset); int opt_len = nd_opt->nd_opt_len * 8; if (unlikely(!opt_len || opt_len > icmp_len)) return 0; /* Store the link layer address if the appropriate * option is provided. It is considered an error if * the same link layer option is specified twice. */ if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR && opt_len == 8) { if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll))) goto invalid; ether_addr_copy(key->ipv6.nd.sll, &nd->opt[offset+sizeof(*nd_opt)]); } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR && opt_len == 8) { if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll))) goto invalid; ether_addr_copy(key->ipv6.nd.tll, &nd->opt[offset+sizeof(*nd_opt)]); } icmp_len -= opt_len; offset += opt_len; } } return 0; invalid: memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target)); memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll)); memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll)); return 0; } static int parse_nsh(struct sk_buff *skb, struct sw_flow_key *key) { struct nshhdr *nh; unsigned int nh_ofs = skb_network_offset(skb); u8 version, length; int err; err = check_header(skb, nh_ofs + NSH_BASE_HDR_LEN); if (unlikely(err)) return err; nh = nsh_hdr(skb); version = nsh_get_ver(nh); length = nsh_hdr_len(nh); if (version != 0) return -EINVAL; err = check_header(skb, nh_ofs + length); if (unlikely(err)) return err; nh = nsh_hdr(skb); key->nsh.base.flags = nsh_get_flags(nh); key->nsh.base.ttl = nsh_get_ttl(nh); key->nsh.base.mdtype = nh->mdtype; key->nsh.base.np = nh->np; key->nsh.base.path_hdr = nh->path_hdr; switch (key->nsh.base.mdtype) { case NSH_M_TYPE1: if (length != NSH_M_TYPE1_LEN) return -EINVAL; memcpy(key->nsh.context, nh->md1.context, sizeof(nh->md1)); break; case NSH_M_TYPE2: memset(key->nsh.context, 0, sizeof(nh->md1)); break; default: return -EINVAL; } return 0; } /** * key_extract_l3l4 - extracts L3/L4 header information. * @skb: sk_buff that contains the frame, with skb->data pointing to the * L3 header * @key: output flow key * * Return: %0 if successful, otherwise a negative errno value. */ static int key_extract_l3l4(struct sk_buff *skb, struct sw_flow_key *key) { int error; /* Network layer. */ if (key->eth.type == htons(ETH_P_IP)) { struct iphdr *nh; __be16 offset; error = check_iphdr(skb); if (unlikely(error)) { memset(&key->ip, 0, sizeof(key->ip)); memset(&key->ipv4, 0, sizeof(key->ipv4)); if (error == -EINVAL) { skb->transport_header = skb->network_header; error = 0; } return error; } nh = ip_hdr(skb); key->ipv4.addr.src = nh->saddr; key->ipv4.addr.dst = nh->daddr; key->ip.proto = nh->protocol; key->ip.tos = nh->tos; key->ip.ttl = nh->ttl; offset = nh->frag_off & htons(IP_OFFSET); if (offset) { key->ip.frag = OVS_FRAG_TYPE_LATER; memset(&key->tp, 0, sizeof(key->tp)); return 0; } if (nh->frag_off & htons(IP_MF) || skb_shinfo(skb)->gso_type & SKB_GSO_UDP) key->ip.frag = OVS_FRAG_TYPE_FIRST; else key->ip.frag = OVS_FRAG_TYPE_NONE; /* Transport layer. */ if (key->ip.proto == IPPROTO_TCP) { if (tcphdr_ok(skb)) { struct tcphdr *tcp = tcp_hdr(skb); key->tp.src = tcp->source; key->tp.dst = tcp->dest; key->tp.flags = TCP_FLAGS_BE16(tcp); } else { memset(&key->tp, 0, sizeof(key->tp)); } } else if (key->ip.proto == IPPROTO_UDP) { if (udphdr_ok(skb)) { struct udphdr *udp = udp_hdr(skb); key->tp.src = udp->source; key->tp.dst = udp->dest; } else { memset(&key->tp, 0, sizeof(key->tp)); } } else if (key->ip.proto == IPPROTO_SCTP) { if (sctphdr_ok(skb)) { struct sctphdr *sctp = sctp_hdr(skb); key->tp.src = sctp->source; key->tp.dst = sctp->dest; } else { memset(&key->tp, 0, sizeof(key->tp)); } } else if (key->ip.proto == IPPROTO_ICMP) { if (icmphdr_ok(skb)) { struct icmphdr *icmp = icmp_hdr(skb); /* The ICMP type and code fields use the 16-bit * transport port fields, so we need to store * them in 16-bit network byte order. */ key->tp.src = htons(icmp->type); key->tp.dst = htons(icmp->code); } else { memset(&key->tp, 0, sizeof(key->tp)); } } } else if (key->eth.type == htons(ETH_P_ARP) || key->eth.type == htons(ETH_P_RARP)) { struct arp_eth_header *arp; bool arp_available = arphdr_ok(skb); arp = (struct arp_eth_header *)skb_network_header(skb); if (arp_available && arp->ar_hrd == htons(ARPHRD_ETHER) && arp->ar_pro == htons(ETH_P_IP) && arp->ar_hln == ETH_ALEN && arp->ar_pln == 4) { /* We only match on the lower 8 bits of the opcode. */ if (ntohs(arp->ar_op) <= 0xff) key->ip.proto = ntohs(arp->ar_op); else key->ip.proto = 0; memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src)); memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst)); ether_addr_copy(key->ipv4.arp.sha, arp->ar_sha); ether_addr_copy(key->ipv4.arp.tha, arp->ar_tha); } else { memset(&key->ip, 0, sizeof(key->ip)); memset(&key->ipv4, 0, sizeof(key->ipv4)); } } else if (eth_p_mpls(key->eth.type)) { u8 label_count = 1; memset(&key->mpls, 0, sizeof(key->mpls)); skb_set_inner_network_header(skb, skb->mac_len); while (1) { __be32 lse; error = check_header(skb, skb->mac_len + label_count * MPLS_HLEN); if (unlikely(error)) return 0; memcpy(&lse, skb_inner_network_header(skb), MPLS_HLEN); if (label_count <= MPLS_LABEL_DEPTH) memcpy(&key->mpls.lse[label_count - 1], &lse, MPLS_HLEN); skb_set_inner_network_header(skb, skb->mac_len + label_count * MPLS_HLEN); if (lse & htonl(MPLS_LS_S_MASK)) break; label_count++; } if (label_count > MPLS_LABEL_DEPTH) label_count = MPLS_LABEL_DEPTH; key->mpls.num_labels_mask = GENMASK(label_count - 1, 0); } else if (key->eth.type == htons(ETH_P_IPV6)) { int nh_len; /* IPv6 Header + Extensions */ nh_len = parse_ipv6hdr(skb, key); if (unlikely(nh_len < 0)) { switch (nh_len) { case -EINVAL: memset(&key->ip, 0, sizeof(key->ip)); memset(&key->ipv6.addr, 0, sizeof(key->ipv6.addr)); fallthrough; case -EPROTO: skb->transport_header = skb->network_header; error = 0; break; default: error = nh_len; } return error; } if (key->ip.frag == OVS_FRAG_TYPE_LATER) { memset(&key->tp, 0, sizeof(key->tp)); return 0; } if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP) key->ip.frag = OVS_FRAG_TYPE_FIRST; /* Transport layer. */ if (key->ip.proto == NEXTHDR_TCP) { if (tcphdr_ok(skb)) { struct tcphdr *tcp = tcp_hdr(skb); key->tp.src = tcp->source; key->tp.dst = tcp->dest; key->tp.flags = TCP_FLAGS_BE16(tcp); } else { memset(&key->tp, 0, sizeof(key->tp)); } } else if (key->ip.proto == NEXTHDR_UDP) { if (udphdr_ok(skb)) { struct udphdr *udp = udp_hdr(skb); key->tp.src = udp->source; key->tp.dst = udp->dest; } else { memset(&key->tp, 0, sizeof(key->tp)); } } else if (key->ip.proto == NEXTHDR_SCTP) { if (sctphdr_ok(skb)) { struct sctphdr *sctp = sctp_hdr(skb); key->tp.src = sctp->source; key->tp.dst = sctp->dest; } else { memset(&key->tp, 0, sizeof(key->tp)); } } else if (key->ip.proto == NEXTHDR_ICMP) { if (icmp6hdr_ok(skb)) { error = parse_icmpv6(skb, key, nh_len); if (error) return error; } else { memset(&key->tp, 0, sizeof(key->tp)); } } } else if (key->eth.type == htons(ETH_P_NSH)) { error = parse_nsh(skb, key); if (error) return error; } return 0; } /** * key_extract - extracts a flow key from an Ethernet frame. * @skb: sk_buff that contains the frame, with skb->data pointing to the * Ethernet header * @key: output flow key * * The caller must ensure that skb->len >= ETH_HLEN. * * Initializes @skb header fields as follows: * * - skb->mac_header: the L2 header. * * - skb->network_header: just past the L2 header, or just past the * VLAN header, to the first byte of the L2 payload. * * - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6 * on output, then just past the IP header, if one is present and * of a correct length, otherwise the same as skb->network_header. * For other key->eth.type values it is left untouched. * * - skb->protocol: the type of the data starting at skb->network_header. * Equals to key->eth.type. * * Return: %0 if successful, otherwise a negative errno value. */ static int key_extract(struct sk_buff *skb, struct sw_flow_key *key) { struct ethhdr *eth; /* Flags are always used as part of stats */ key->tp.flags = 0; skb_reset_mac_header(skb); /* Link layer. */ clear_vlan(key); if (ovs_key_mac_proto(key) == MAC_PROTO_NONE) { if (unlikely(eth_type_vlan(skb->protocol))) return -EINVAL; skb_reset_network_header(skb); key->eth.type = skb->protocol; } else { eth = eth_hdr(skb); ether_addr_copy(key->eth.src, eth->h_source); ether_addr_copy(key->eth.dst, eth->h_dest); __skb_pull(skb, 2 * ETH_ALEN); /* We are going to push all headers that we pull, so no need to * update skb->csum here. */ if (unlikely(parse_vlan(skb, key))) return -ENOMEM; key->eth.type = parse_ethertype(skb); if (unlikely(key->eth.type == htons(0))) return -ENOMEM; /* Multiple tagged packets need to retain TPID to satisfy * skb_vlan_pop(), which will later shift the ethertype into * skb->protocol. */ if (key->eth.cvlan.tci & htons(VLAN_CFI_MASK)) skb->protocol = key->eth.cvlan.tpid; else skb->protocol = key->eth.type; skb_reset_network_header(skb); __skb_push(skb, skb->data - skb_mac_header(skb)); } skb_reset_mac_len(skb); /* Fill out L3/L4 key info, if any */ return key_extract_l3l4(skb, key); } /* In the case of conntrack fragment handling it expects L3 headers, * add a helper. */ int ovs_flow_key_update_l3l4(struct sk_buff *skb, struct sw_flow_key *key) { return key_extract_l3l4(skb, key); } int ovs_flow_key_update(struct sk_buff *skb, struct sw_flow_key *key) { int res; res = key_extract(skb, key); if (!res) key->mac_proto &= ~SW_FLOW_KEY_INVALID; return res; } static int key_extract_mac_proto(struct sk_buff *skb) { switch (skb->dev->type) { case ARPHRD_ETHER: return MAC_PROTO_ETHERNET; case ARPHRD_NONE: if (skb->protocol == htons(ETH_P_TEB)) return MAC_PROTO_ETHERNET; return MAC_PROTO_NONE; } WARN_ON_ONCE(1); return -EINVAL; } int ovs_flow_key_extract(const struct ip_tunnel_info *tun_info, struct sk_buff *skb, struct sw_flow_key *key) { #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) struct tc_skb_ext *tc_ext; #endif bool post_ct = false, post_ct_snat = false, post_ct_dnat = false; int res, err; u16 zone = 0; /* Extract metadata from packet. */ if (tun_info) { key->tun_proto = ip_tunnel_info_af(tun_info); memcpy(&key->tun_key, &tun_info->key, sizeof(key->tun_key)); if (tun_info->options_len) { BUILD_BUG_ON((1 << (sizeof(tun_info->options_len) * 8)) - 1 > sizeof(key->tun_opts)); ip_tunnel_info_opts_get(TUN_METADATA_OPTS(key, tun_info->options_len), tun_info); key->tun_opts_len = tun_info->options_len; } else { key->tun_opts_len = 0; } } else { key->tun_proto = 0; key->tun_opts_len = 0; memset(&key->tun_key, 0, sizeof(key->tun_key)); } key->phy.priority = skb->priority; key->phy.in_port = OVS_CB(skb)->input_vport->port_no; key->phy.skb_mark = skb->mark; key->ovs_flow_hash = 0; res = key_extract_mac_proto(skb); if (res < 0) return res; key->mac_proto = res; #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) if (tc_skb_ext_tc_enabled()) { tc_ext = skb_ext_find(skb, TC_SKB_EXT); key->recirc_id = tc_ext && !tc_ext->act_miss ? tc_ext->chain : 0; OVS_CB(skb)->mru = tc_ext ? tc_ext->mru : 0; post_ct = tc_ext ? tc_ext->post_ct : false; post_ct_snat = post_ct ? tc_ext->post_ct_snat : false; post_ct_dnat = post_ct ? tc_ext->post_ct_dnat : false; zone = post_ct ? tc_ext->zone : 0; } else { key->recirc_id = 0; } #else key->recirc_id = 0; #endif err = key_extract(skb, key); if (!err) { ovs_ct_fill_key(skb, key, post_ct); /* Must be after key_extract(). */ if (post_ct) { if (!skb_get_nfct(skb)) { key->ct_zone = zone; } else { if (!post_ct_dnat) key->ct_state &= ~OVS_CS_F_DST_NAT; if (!post_ct_snat) key->ct_state &= ~OVS_CS_F_SRC_NAT; } } } return err; } int ovs_flow_key_extract_userspace(struct net *net, const struct nlattr *attr, struct sk_buff *skb, struct sw_flow_key *key, bool log) { const struct nlattr *a[OVS_KEY_ATTR_MAX + 1]; u64 attrs = 0; int err; err = parse_flow_nlattrs(attr, a, &attrs, log); if (err) return -EINVAL; /* Extract metadata from netlink attributes. */ err = ovs_nla_get_flow_metadata(net, a, attrs, key, log); if (err) return err; /* key_extract assumes that skb->protocol is set-up for * layer 3 packets which is the case for other callers, * in particular packets received from the network stack. * Here the correct value can be set from the metadata * extracted above. * For L2 packet key eth type would be zero. skb protocol * would be set to correct value later during key-extact. */ skb->protocol = key->eth.type; err = key_extract(skb, key); if (err) return err; /* Check that we have conntrack original direction tuple metadata only * for packets for which it makes sense. Otherwise the key may be * corrupted due to overlapping key fields. */ if (attrs & (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4) && key->eth.type != htons(ETH_P_IP)) return -EINVAL; if (attrs & (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6) && (key->eth.type != htons(ETH_P_IPV6) || sw_flow_key_is_nd(key))) return -EINVAL; return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1