Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Courtney Cavin | 3192 | 57.26% | 1 | 1.79% |
Björn Andersson | 1979 | 35.50% | 16 | 28.57% |
Loic Poulain | 99 | 1.78% | 5 | 8.93% |
Matthew Wilcox | 33 | 0.59% | 1 | 1.79% |
Ziyang Xuan | 33 | 0.59% | 2 | 3.57% |
Arun Kumar Neelakantam | 32 | 0.57% | 2 | 3.57% |
Dan Carpenter | 29 | 0.52% | 3 | 5.36% |
Eric Dumazet | 29 | 0.52% | 2 | 3.57% |
Pavel Skripkin | 22 | 0.39% | 3 | 5.36% |
Qinglang Miao | 22 | 0.39% | 1 | 1.79% |
Vignesh Viswanathan | 18 | 0.32% | 1 | 1.79% |
Carl Huang | 17 | 0.30% | 2 | 3.57% |
Wang Wenhu | 12 | 0.22% | 1 | 1.79% |
Nicholas Mc Guire | 12 | 0.22% | 1 | 1.79% |
Arnd Bergmann | 10 | 0.18% | 2 | 3.57% |
Jia-Ju Bai | 7 | 0.13% | 1 | 1.79% |
Américo Wang | 5 | 0.09% | 1 | 1.79% |
Manivannan Sadhasivam | 5 | 0.09% | 3 | 5.36% |
Nicolas Dechesne | 5 | 0.09% | 1 | 1.79% |
Denys Vlasenko | 4 | 0.07% | 1 | 1.79% |
Xiaolong Huang | 3 | 0.05% | 1 | 1.79% |
Thomas Gleixner | 2 | 0.04% | 1 | 1.79% |
Linus Torvalds | 2 | 0.04% | 1 | 1.79% |
Johannes Berg | 2 | 0.04% | 2 | 3.57% |
Necip Fazil Yildiran | 1 | 0.02% | 1 | 1.79% |
Total | 5575 | 56 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2015, Sony Mobile Communications Inc. * Copyright (c) 2013, The Linux Foundation. All rights reserved. */ #include <linux/module.h> #include <linux/netlink.h> #include <linux/qrtr.h> #include <linux/termios.h> /* For TIOCINQ/OUTQ */ #include <linux/spinlock.h> #include <linux/wait.h> #include <net/sock.h> #include "qrtr.h" #define QRTR_PROTO_VER_1 1 #define QRTR_PROTO_VER_2 3 /* auto-bind range */ #define QRTR_MIN_EPH_SOCKET 0x4000 #define QRTR_MAX_EPH_SOCKET 0x7fff #define QRTR_EPH_PORT_RANGE \ XA_LIMIT(QRTR_MIN_EPH_SOCKET, QRTR_MAX_EPH_SOCKET) #define QRTR_PORT_CTRL_LEGACY 0xffff /** * struct qrtr_hdr_v1 - (I|R)PCrouter packet header version 1 * @version: protocol version * @type: packet type; one of QRTR_TYPE_* * @src_node_id: source node * @src_port_id: source port * @confirm_rx: boolean; whether a resume-tx packet should be send in reply * @size: length of packet, excluding this header * @dst_node_id: destination node * @dst_port_id: destination port */ struct qrtr_hdr_v1 { __le32 version; __le32 type; __le32 src_node_id; __le32 src_port_id; __le32 confirm_rx; __le32 size; __le32 dst_node_id; __le32 dst_port_id; } __packed; /** * struct qrtr_hdr_v2 - (I|R)PCrouter packet header later versions * @version: protocol version * @type: packet type; one of QRTR_TYPE_* * @flags: bitmask of QRTR_FLAGS_* * @optlen: length of optional header data * @size: length of packet, excluding this header and optlen * @src_node_id: source node * @src_port_id: source port * @dst_node_id: destination node * @dst_port_id: destination port */ struct qrtr_hdr_v2 { u8 version; u8 type; u8 flags; u8 optlen; __le32 size; __le16 src_node_id; __le16 src_port_id; __le16 dst_node_id; __le16 dst_port_id; }; #define QRTR_FLAGS_CONFIRM_RX BIT(0) struct qrtr_cb { u32 src_node; u32 src_port; u32 dst_node; u32 dst_port; u8 type; u8 confirm_rx; }; #define QRTR_HDR_MAX_SIZE max_t(size_t, sizeof(struct qrtr_hdr_v1), \ sizeof(struct qrtr_hdr_v2)) struct qrtr_sock { /* WARNING: sk must be the first member */ struct sock sk; struct sockaddr_qrtr us; struct sockaddr_qrtr peer; }; static inline struct qrtr_sock *qrtr_sk(struct sock *sk) { BUILD_BUG_ON(offsetof(struct qrtr_sock, sk) != 0); return container_of(sk, struct qrtr_sock, sk); } static unsigned int qrtr_local_nid = 1; /* for node ids */ static RADIX_TREE(qrtr_nodes, GFP_ATOMIC); static DEFINE_SPINLOCK(qrtr_nodes_lock); /* broadcast list */ static LIST_HEAD(qrtr_all_nodes); /* lock for qrtr_all_nodes and node reference */ static DEFINE_MUTEX(qrtr_node_lock); /* local port allocation management */ static DEFINE_XARRAY_ALLOC(qrtr_ports); /** * struct qrtr_node - endpoint node * @ep_lock: lock for endpoint management and callbacks * @ep: endpoint * @ref: reference count for node * @nid: node id * @qrtr_tx_flow: tree of qrtr_tx_flow, keyed by node << 32 | port * @qrtr_tx_lock: lock for qrtr_tx_flow inserts * @rx_queue: receive queue * @item: list item for broadcast list */ struct qrtr_node { struct mutex ep_lock; struct qrtr_endpoint *ep; struct kref ref; unsigned int nid; struct radix_tree_root qrtr_tx_flow; struct mutex qrtr_tx_lock; /* for qrtr_tx_flow */ struct sk_buff_head rx_queue; struct list_head item; }; /** * struct qrtr_tx_flow - tx flow control * @resume_tx: waiters for a resume tx from the remote * @pending: number of waiting senders * @tx_failed: indicates that a message with confirm_rx flag was lost */ struct qrtr_tx_flow { struct wait_queue_head resume_tx; int pending; int tx_failed; }; #define QRTR_TX_FLOW_HIGH 10 #define QRTR_TX_FLOW_LOW 5 static int qrtr_local_enqueue(struct qrtr_node *node, struct sk_buff *skb, int type, struct sockaddr_qrtr *from, struct sockaddr_qrtr *to); static int qrtr_bcast_enqueue(struct qrtr_node *node, struct sk_buff *skb, int type, struct sockaddr_qrtr *from, struct sockaddr_qrtr *to); static struct qrtr_sock *qrtr_port_lookup(int port); static void qrtr_port_put(struct qrtr_sock *ipc); /* Release node resources and free the node. * * Do not call directly, use qrtr_node_release. To be used with * kref_put_mutex. As such, the node mutex is expected to be locked on call. */ static void __qrtr_node_release(struct kref *kref) { struct qrtr_node *node = container_of(kref, struct qrtr_node, ref); struct radix_tree_iter iter; struct qrtr_tx_flow *flow; unsigned long flags; void __rcu **slot; spin_lock_irqsave(&qrtr_nodes_lock, flags); /* If the node is a bridge for other nodes, there are possibly * multiple entries pointing to our released node, delete them all. */ radix_tree_for_each_slot(slot, &qrtr_nodes, &iter, 0) { if (*slot == node) radix_tree_iter_delete(&qrtr_nodes, &iter, slot); } spin_unlock_irqrestore(&qrtr_nodes_lock, flags); list_del(&node->item); mutex_unlock(&qrtr_node_lock); skb_queue_purge(&node->rx_queue); /* Free tx flow counters */ radix_tree_for_each_slot(slot, &node->qrtr_tx_flow, &iter, 0) { flow = *slot; radix_tree_iter_delete(&node->qrtr_tx_flow, &iter, slot); kfree(flow); } kfree(node); } /* Increment reference to node. */ static struct qrtr_node *qrtr_node_acquire(struct qrtr_node *node) { if (node) kref_get(&node->ref); return node; } /* Decrement reference to node and release as necessary. */ static void qrtr_node_release(struct qrtr_node *node) { if (!node) return; kref_put_mutex(&node->ref, __qrtr_node_release, &qrtr_node_lock); } /** * qrtr_tx_resume() - reset flow control counter * @node: qrtr_node that the QRTR_TYPE_RESUME_TX packet arrived on * @skb: resume_tx packet */ static void qrtr_tx_resume(struct qrtr_node *node, struct sk_buff *skb) { struct qrtr_ctrl_pkt *pkt = (struct qrtr_ctrl_pkt *)skb->data; u64 remote_node = le32_to_cpu(pkt->client.node); u32 remote_port = le32_to_cpu(pkt->client.port); struct qrtr_tx_flow *flow; unsigned long key; key = remote_node << 32 | remote_port; rcu_read_lock(); flow = radix_tree_lookup(&node->qrtr_tx_flow, key); rcu_read_unlock(); if (flow) { spin_lock(&flow->resume_tx.lock); flow->pending = 0; spin_unlock(&flow->resume_tx.lock); wake_up_interruptible_all(&flow->resume_tx); } consume_skb(skb); } /** * qrtr_tx_wait() - flow control for outgoing packets * @node: qrtr_node that the packet is to be send to * @dest_node: node id of the destination * @dest_port: port number of the destination * @type: type of message * * The flow control scheme is based around the low and high "watermarks". When * the low watermark is passed the confirm_rx flag is set on the outgoing * message, which will trigger the remote to send a control message of the type * QRTR_TYPE_RESUME_TX to reset the counter. If the high watermark is hit * further transmision should be paused. * * Return: 1 if confirm_rx should be set, 0 otherwise or errno failure */ static int qrtr_tx_wait(struct qrtr_node *node, int dest_node, int dest_port, int type) { unsigned long key = (u64)dest_node << 32 | dest_port; struct qrtr_tx_flow *flow; int confirm_rx = 0; int ret; /* Never set confirm_rx on non-data packets */ if (type != QRTR_TYPE_DATA) return 0; mutex_lock(&node->qrtr_tx_lock); flow = radix_tree_lookup(&node->qrtr_tx_flow, key); if (!flow) { flow = kzalloc(sizeof(*flow), GFP_KERNEL); if (flow) { init_waitqueue_head(&flow->resume_tx); if (radix_tree_insert(&node->qrtr_tx_flow, key, flow)) { kfree(flow); flow = NULL; } } } mutex_unlock(&node->qrtr_tx_lock); /* Set confirm_rx if we where unable to find and allocate a flow */ if (!flow) return 1; spin_lock_irq(&flow->resume_tx.lock); ret = wait_event_interruptible_locked_irq(flow->resume_tx, flow->pending < QRTR_TX_FLOW_HIGH || flow->tx_failed || !node->ep); if (ret < 0) { confirm_rx = ret; } else if (!node->ep) { confirm_rx = -EPIPE; } else if (flow->tx_failed) { flow->tx_failed = 0; confirm_rx = 1; } else { flow->pending++; confirm_rx = flow->pending == QRTR_TX_FLOW_LOW; } spin_unlock_irq(&flow->resume_tx.lock); return confirm_rx; } /** * qrtr_tx_flow_failed() - flag that tx of confirm_rx flagged messages failed * @node: qrtr_node that the packet is to be send to * @dest_node: node id of the destination * @dest_port: port number of the destination * * Signal that the transmission of a message with confirm_rx flag failed. The * flow's "pending" counter will keep incrementing towards QRTR_TX_FLOW_HIGH, * at which point transmission would stall forever waiting for the resume TX * message associated with the dropped confirm_rx message. * Work around this by marking the flow as having a failed transmission and * cause the next transmission attempt to be sent with the confirm_rx. */ static void qrtr_tx_flow_failed(struct qrtr_node *node, int dest_node, int dest_port) { unsigned long key = (u64)dest_node << 32 | dest_port; struct qrtr_tx_flow *flow; rcu_read_lock(); flow = radix_tree_lookup(&node->qrtr_tx_flow, key); rcu_read_unlock(); if (flow) { spin_lock_irq(&flow->resume_tx.lock); flow->tx_failed = 1; spin_unlock_irq(&flow->resume_tx.lock); } } /* Pass an outgoing packet socket buffer to the endpoint driver. */ static int qrtr_node_enqueue(struct qrtr_node *node, struct sk_buff *skb, int type, struct sockaddr_qrtr *from, struct sockaddr_qrtr *to) { struct qrtr_hdr_v1 *hdr; size_t len = skb->len; int rc, confirm_rx; confirm_rx = qrtr_tx_wait(node, to->sq_node, to->sq_port, type); if (confirm_rx < 0) { kfree_skb(skb); return confirm_rx; } hdr = skb_push(skb, sizeof(*hdr)); hdr->version = cpu_to_le32(QRTR_PROTO_VER_1); hdr->type = cpu_to_le32(type); hdr->src_node_id = cpu_to_le32(from->sq_node); hdr->src_port_id = cpu_to_le32(from->sq_port); if (to->sq_port == QRTR_PORT_CTRL) { hdr->dst_node_id = cpu_to_le32(node->nid); hdr->dst_port_id = cpu_to_le32(QRTR_PORT_CTRL); } else { hdr->dst_node_id = cpu_to_le32(to->sq_node); hdr->dst_port_id = cpu_to_le32(to->sq_port); } hdr->size = cpu_to_le32(len); hdr->confirm_rx = !!confirm_rx; rc = skb_put_padto(skb, ALIGN(len, 4) + sizeof(*hdr)); if (!rc) { mutex_lock(&node->ep_lock); rc = -ENODEV; if (node->ep) rc = node->ep->xmit(node->ep, skb); else kfree_skb(skb); mutex_unlock(&node->ep_lock); } /* Need to ensure that a subsequent message carries the otherwise lost * confirm_rx flag if we dropped this one */ if (rc && confirm_rx) qrtr_tx_flow_failed(node, to->sq_node, to->sq_port); return rc; } /* Lookup node by id. * * callers must release with qrtr_node_release() */ static struct qrtr_node *qrtr_node_lookup(unsigned int nid) { struct qrtr_node *node; unsigned long flags; mutex_lock(&qrtr_node_lock); spin_lock_irqsave(&qrtr_nodes_lock, flags); node = radix_tree_lookup(&qrtr_nodes, nid); node = qrtr_node_acquire(node); spin_unlock_irqrestore(&qrtr_nodes_lock, flags); mutex_unlock(&qrtr_node_lock); return node; } /* Assign node id to node. * * This is mostly useful for automatic node id assignment, based on * the source id in the incoming packet. */ static void qrtr_node_assign(struct qrtr_node *node, unsigned int nid) { unsigned long flags; if (nid == QRTR_EP_NID_AUTO) return; spin_lock_irqsave(&qrtr_nodes_lock, flags); radix_tree_insert(&qrtr_nodes, nid, node); if (node->nid == QRTR_EP_NID_AUTO) node->nid = nid; spin_unlock_irqrestore(&qrtr_nodes_lock, flags); } /** * qrtr_endpoint_post() - post incoming data * @ep: endpoint handle * @data: data pointer * @len: size of data in bytes * * Return: 0 on success; negative error code on failure */ int qrtr_endpoint_post(struct qrtr_endpoint *ep, const void *data, size_t len) { struct qrtr_node *node = ep->node; const struct qrtr_hdr_v1 *v1; const struct qrtr_hdr_v2 *v2; struct qrtr_sock *ipc; struct sk_buff *skb; struct qrtr_cb *cb; size_t size; unsigned int ver; size_t hdrlen; if (len == 0 || len & 3) return -EINVAL; skb = __netdev_alloc_skb(NULL, len, GFP_ATOMIC | __GFP_NOWARN); if (!skb) return -ENOMEM; cb = (struct qrtr_cb *)skb->cb; /* Version field in v1 is little endian, so this works for both cases */ ver = *(u8*)data; switch (ver) { case QRTR_PROTO_VER_1: if (len < sizeof(*v1)) goto err; v1 = data; hdrlen = sizeof(*v1); cb->type = le32_to_cpu(v1->type); cb->src_node = le32_to_cpu(v1->src_node_id); cb->src_port = le32_to_cpu(v1->src_port_id); cb->confirm_rx = !!v1->confirm_rx; cb->dst_node = le32_to_cpu(v1->dst_node_id); cb->dst_port = le32_to_cpu(v1->dst_port_id); size = le32_to_cpu(v1->size); break; case QRTR_PROTO_VER_2: if (len < sizeof(*v2)) goto err; v2 = data; hdrlen = sizeof(*v2) + v2->optlen; cb->type = v2->type; cb->confirm_rx = !!(v2->flags & QRTR_FLAGS_CONFIRM_RX); cb->src_node = le16_to_cpu(v2->src_node_id); cb->src_port = le16_to_cpu(v2->src_port_id); cb->dst_node = le16_to_cpu(v2->dst_node_id); cb->dst_port = le16_to_cpu(v2->dst_port_id); if (cb->src_port == (u16)QRTR_PORT_CTRL) cb->src_port = QRTR_PORT_CTRL; if (cb->dst_port == (u16)QRTR_PORT_CTRL) cb->dst_port = QRTR_PORT_CTRL; size = le32_to_cpu(v2->size); break; default: pr_err("qrtr: Invalid version %d\n", ver); goto err; } if (cb->dst_port == QRTR_PORT_CTRL_LEGACY) cb->dst_port = QRTR_PORT_CTRL; if (!size || len != ALIGN(size, 4) + hdrlen) goto err; if ((cb->type == QRTR_TYPE_NEW_SERVER || cb->type == QRTR_TYPE_RESUME_TX) && size < sizeof(struct qrtr_ctrl_pkt)) goto err; if (cb->dst_port != QRTR_PORT_CTRL && cb->type != QRTR_TYPE_DATA && cb->type != QRTR_TYPE_RESUME_TX) goto err; skb_put_data(skb, data + hdrlen, size); qrtr_node_assign(node, cb->src_node); if (cb->type == QRTR_TYPE_NEW_SERVER) { /* Remote node endpoint can bridge other distant nodes */ const struct qrtr_ctrl_pkt *pkt; pkt = data + hdrlen; qrtr_node_assign(node, le32_to_cpu(pkt->server.node)); } if (cb->type == QRTR_TYPE_RESUME_TX) { qrtr_tx_resume(node, skb); } else { ipc = qrtr_port_lookup(cb->dst_port); if (!ipc) goto err; if (sock_queue_rcv_skb(&ipc->sk, skb)) { qrtr_port_put(ipc); goto err; } qrtr_port_put(ipc); } return 0; err: kfree_skb(skb); return -EINVAL; } EXPORT_SYMBOL_GPL(qrtr_endpoint_post); /** * qrtr_alloc_ctrl_packet() - allocate control packet skb * @pkt: reference to qrtr_ctrl_pkt pointer * @flags: the type of memory to allocate * * Returns newly allocated sk_buff, or NULL on failure * * This function allocates a sk_buff large enough to carry a qrtr_ctrl_pkt and * on success returns a reference to the control packet in @pkt. */ static struct sk_buff *qrtr_alloc_ctrl_packet(struct qrtr_ctrl_pkt **pkt, gfp_t flags) { const int pkt_len = sizeof(struct qrtr_ctrl_pkt); struct sk_buff *skb; skb = alloc_skb(QRTR_HDR_MAX_SIZE + pkt_len, flags); if (!skb) return NULL; skb_reserve(skb, QRTR_HDR_MAX_SIZE); *pkt = skb_put_zero(skb, pkt_len); return skb; } /** * qrtr_endpoint_register() - register a new endpoint * @ep: endpoint to register * @nid: desired node id; may be QRTR_EP_NID_AUTO for auto-assignment * Return: 0 on success; negative error code on failure * * The specified endpoint must have the xmit function pointer set on call. */ int qrtr_endpoint_register(struct qrtr_endpoint *ep, unsigned int nid) { struct qrtr_node *node; if (!ep || !ep->xmit) return -EINVAL; node = kzalloc(sizeof(*node), GFP_KERNEL); if (!node) return -ENOMEM; kref_init(&node->ref); mutex_init(&node->ep_lock); skb_queue_head_init(&node->rx_queue); node->nid = QRTR_EP_NID_AUTO; node->ep = ep; INIT_RADIX_TREE(&node->qrtr_tx_flow, GFP_KERNEL); mutex_init(&node->qrtr_tx_lock); qrtr_node_assign(node, nid); mutex_lock(&qrtr_node_lock); list_add(&node->item, &qrtr_all_nodes); mutex_unlock(&qrtr_node_lock); ep->node = node; return 0; } EXPORT_SYMBOL_GPL(qrtr_endpoint_register); /** * qrtr_endpoint_unregister - unregister endpoint * @ep: endpoint to unregister */ void qrtr_endpoint_unregister(struct qrtr_endpoint *ep) { struct qrtr_node *node = ep->node; struct sockaddr_qrtr src = {AF_QIPCRTR, node->nid, QRTR_PORT_CTRL}; struct sockaddr_qrtr dst = {AF_QIPCRTR, qrtr_local_nid, QRTR_PORT_CTRL}; struct radix_tree_iter iter; struct qrtr_ctrl_pkt *pkt; struct qrtr_tx_flow *flow; struct sk_buff *skb; unsigned long flags; void __rcu **slot; mutex_lock(&node->ep_lock); node->ep = NULL; mutex_unlock(&node->ep_lock); /* Notify the local controller about the event */ spin_lock_irqsave(&qrtr_nodes_lock, flags); radix_tree_for_each_slot(slot, &qrtr_nodes, &iter, 0) { if (*slot != node) continue; src.sq_node = iter.index; skb = qrtr_alloc_ctrl_packet(&pkt, GFP_ATOMIC); if (skb) { pkt->cmd = cpu_to_le32(QRTR_TYPE_BYE); qrtr_local_enqueue(NULL, skb, QRTR_TYPE_BYE, &src, &dst); } } spin_unlock_irqrestore(&qrtr_nodes_lock, flags); /* Wake up any transmitters waiting for resume-tx from the node */ mutex_lock(&node->qrtr_tx_lock); radix_tree_for_each_slot(slot, &node->qrtr_tx_flow, &iter, 0) { flow = *slot; wake_up_interruptible_all(&flow->resume_tx); } mutex_unlock(&node->qrtr_tx_lock); qrtr_node_release(node); ep->node = NULL; } EXPORT_SYMBOL_GPL(qrtr_endpoint_unregister); /* Lookup socket by port. * * Callers must release with qrtr_port_put() */ static struct qrtr_sock *qrtr_port_lookup(int port) { struct qrtr_sock *ipc; if (port == QRTR_PORT_CTRL) port = 0; rcu_read_lock(); ipc = xa_load(&qrtr_ports, port); if (ipc) sock_hold(&ipc->sk); rcu_read_unlock(); return ipc; } /* Release acquired socket. */ static void qrtr_port_put(struct qrtr_sock *ipc) { sock_put(&ipc->sk); } /* Remove port assignment. */ static void qrtr_port_remove(struct qrtr_sock *ipc) { struct qrtr_ctrl_pkt *pkt; struct sk_buff *skb; int port = ipc->us.sq_port; struct sockaddr_qrtr to; to.sq_family = AF_QIPCRTR; to.sq_node = QRTR_NODE_BCAST; to.sq_port = QRTR_PORT_CTRL; skb = qrtr_alloc_ctrl_packet(&pkt, GFP_KERNEL); if (skb) { pkt->cmd = cpu_to_le32(QRTR_TYPE_DEL_CLIENT); pkt->client.node = cpu_to_le32(ipc->us.sq_node); pkt->client.port = cpu_to_le32(ipc->us.sq_port); skb_set_owner_w(skb, &ipc->sk); qrtr_bcast_enqueue(NULL, skb, QRTR_TYPE_DEL_CLIENT, &ipc->us, &to); } if (port == QRTR_PORT_CTRL) port = 0; __sock_put(&ipc->sk); xa_erase(&qrtr_ports, port); /* Ensure that if qrtr_port_lookup() did enter the RCU read section we * wait for it to up increment the refcount */ synchronize_rcu(); } /* Assign port number to socket. * * Specify port in the integer pointed to by port, and it will be adjusted * on return as necesssary. * * Port may be: * 0: Assign ephemeral port in [QRTR_MIN_EPH_SOCKET, QRTR_MAX_EPH_SOCKET] * <QRTR_MIN_EPH_SOCKET: Specified; requires CAP_NET_ADMIN * >QRTR_MIN_EPH_SOCKET: Specified; available to all */ static int qrtr_port_assign(struct qrtr_sock *ipc, int *port) { int rc; if (!*port) { rc = xa_alloc(&qrtr_ports, port, ipc, QRTR_EPH_PORT_RANGE, GFP_KERNEL); } else if (*port < QRTR_MIN_EPH_SOCKET && !capable(CAP_NET_ADMIN)) { rc = -EACCES; } else if (*port == QRTR_PORT_CTRL) { rc = xa_insert(&qrtr_ports, 0, ipc, GFP_KERNEL); } else { rc = xa_insert(&qrtr_ports, *port, ipc, GFP_KERNEL); } if (rc == -EBUSY) return -EADDRINUSE; else if (rc < 0) return rc; sock_hold(&ipc->sk); return 0; } /* Reset all non-control ports */ static void qrtr_reset_ports(void) { struct qrtr_sock *ipc; unsigned long index; rcu_read_lock(); xa_for_each_start(&qrtr_ports, index, ipc, 1) { sock_hold(&ipc->sk); ipc->sk.sk_err = ENETRESET; sk_error_report(&ipc->sk); sock_put(&ipc->sk); } rcu_read_unlock(); } /* Bind socket to address. * * Socket should be locked upon call. */ static int __qrtr_bind(struct socket *sock, const struct sockaddr_qrtr *addr, int zapped) { struct qrtr_sock *ipc = qrtr_sk(sock->sk); struct sock *sk = sock->sk; int port; int rc; /* rebinding ok */ if (!zapped && addr->sq_port == ipc->us.sq_port) return 0; port = addr->sq_port; rc = qrtr_port_assign(ipc, &port); if (rc) return rc; /* unbind previous, if any */ if (!zapped) qrtr_port_remove(ipc); ipc->us.sq_port = port; sock_reset_flag(sk, SOCK_ZAPPED); /* Notify all open ports about the new controller */ if (port == QRTR_PORT_CTRL) qrtr_reset_ports(); return 0; } /* Auto bind to an ephemeral port. */ static int qrtr_autobind(struct socket *sock) { struct sock *sk = sock->sk; struct sockaddr_qrtr addr; if (!sock_flag(sk, SOCK_ZAPPED)) return 0; addr.sq_family = AF_QIPCRTR; addr.sq_node = qrtr_local_nid; addr.sq_port = 0; return __qrtr_bind(sock, &addr, 1); } /* Bind socket to specified sockaddr. */ static int qrtr_bind(struct socket *sock, struct sockaddr *saddr, int len) { DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, saddr); struct qrtr_sock *ipc = qrtr_sk(sock->sk); struct sock *sk = sock->sk; int rc; if (len < sizeof(*addr) || addr->sq_family != AF_QIPCRTR) return -EINVAL; if (addr->sq_node != ipc->us.sq_node) return -EINVAL; lock_sock(sk); rc = __qrtr_bind(sock, addr, sock_flag(sk, SOCK_ZAPPED)); release_sock(sk); return rc; } /* Queue packet to local peer socket. */ static int qrtr_local_enqueue(struct qrtr_node *node, struct sk_buff *skb, int type, struct sockaddr_qrtr *from, struct sockaddr_qrtr *to) { struct qrtr_sock *ipc; struct qrtr_cb *cb; ipc = qrtr_port_lookup(to->sq_port); if (!ipc || &ipc->sk == skb->sk) { /* do not send to self */ if (ipc) qrtr_port_put(ipc); kfree_skb(skb); return -ENODEV; } cb = (struct qrtr_cb *)skb->cb; cb->src_node = from->sq_node; cb->src_port = from->sq_port; if (sock_queue_rcv_skb(&ipc->sk, skb)) { qrtr_port_put(ipc); kfree_skb(skb); return -ENOSPC; } qrtr_port_put(ipc); return 0; } /* Queue packet for broadcast. */ static int qrtr_bcast_enqueue(struct qrtr_node *node, struct sk_buff *skb, int type, struct sockaddr_qrtr *from, struct sockaddr_qrtr *to) { struct sk_buff *skbn; mutex_lock(&qrtr_node_lock); list_for_each_entry(node, &qrtr_all_nodes, item) { skbn = skb_clone(skb, GFP_KERNEL); if (!skbn) break; skb_set_owner_w(skbn, skb->sk); qrtr_node_enqueue(node, skbn, type, from, to); } mutex_unlock(&qrtr_node_lock); qrtr_local_enqueue(NULL, skb, type, from, to); return 0; } static int qrtr_sendmsg(struct socket *sock, struct msghdr *msg, size_t len) { DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, msg->msg_name); int (*enqueue_fn)(struct qrtr_node *, struct sk_buff *, int, struct sockaddr_qrtr *, struct sockaddr_qrtr *); __le32 qrtr_type = cpu_to_le32(QRTR_TYPE_DATA); struct qrtr_sock *ipc = qrtr_sk(sock->sk); struct sock *sk = sock->sk; struct qrtr_node *node; struct sk_buff *skb; size_t plen; u32 type; int rc; if (msg->msg_flags & ~(MSG_DONTWAIT)) return -EINVAL; if (len > 65535) return -EMSGSIZE; lock_sock(sk); if (addr) { if (msg->msg_namelen < sizeof(*addr)) { release_sock(sk); return -EINVAL; } if (addr->sq_family != AF_QIPCRTR) { release_sock(sk); return -EINVAL; } rc = qrtr_autobind(sock); if (rc) { release_sock(sk); return rc; } } else if (sk->sk_state == TCP_ESTABLISHED) { addr = &ipc->peer; } else { release_sock(sk); return -ENOTCONN; } node = NULL; if (addr->sq_node == QRTR_NODE_BCAST) { if (addr->sq_port != QRTR_PORT_CTRL && qrtr_local_nid != QRTR_NODE_BCAST) { release_sock(sk); return -ENOTCONN; } enqueue_fn = qrtr_bcast_enqueue; } else if (addr->sq_node == ipc->us.sq_node) { enqueue_fn = qrtr_local_enqueue; } else { node = qrtr_node_lookup(addr->sq_node); if (!node) { release_sock(sk); return -ECONNRESET; } enqueue_fn = qrtr_node_enqueue; } plen = (len + 3) & ~3; skb = sock_alloc_send_skb(sk, plen + QRTR_HDR_MAX_SIZE, msg->msg_flags & MSG_DONTWAIT, &rc); if (!skb) { rc = -ENOMEM; goto out_node; } skb_reserve(skb, QRTR_HDR_MAX_SIZE); rc = memcpy_from_msg(skb_put(skb, len), msg, len); if (rc) { kfree_skb(skb); goto out_node; } if (ipc->us.sq_port == QRTR_PORT_CTRL) { if (len < 4) { rc = -EINVAL; kfree_skb(skb); goto out_node; } /* control messages already require the type as 'command' */ skb_copy_bits(skb, 0, &qrtr_type, 4); } type = le32_to_cpu(qrtr_type); rc = enqueue_fn(node, skb, type, &ipc->us, addr); if (rc >= 0) rc = len; out_node: qrtr_node_release(node); release_sock(sk); return rc; } static int qrtr_send_resume_tx(struct qrtr_cb *cb) { struct sockaddr_qrtr remote = { AF_QIPCRTR, cb->src_node, cb->src_port }; struct sockaddr_qrtr local = { AF_QIPCRTR, cb->dst_node, cb->dst_port }; struct qrtr_ctrl_pkt *pkt; struct qrtr_node *node; struct sk_buff *skb; int ret; node = qrtr_node_lookup(remote.sq_node); if (!node) return -EINVAL; skb = qrtr_alloc_ctrl_packet(&pkt, GFP_KERNEL); if (!skb) return -ENOMEM; pkt->cmd = cpu_to_le32(QRTR_TYPE_RESUME_TX); pkt->client.node = cpu_to_le32(cb->dst_node); pkt->client.port = cpu_to_le32(cb->dst_port); ret = qrtr_node_enqueue(node, skb, QRTR_TYPE_RESUME_TX, &local, &remote); qrtr_node_release(node); return ret; } static int qrtr_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, int flags) { DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, msg->msg_name); struct sock *sk = sock->sk; struct sk_buff *skb; struct qrtr_cb *cb; int copied, rc; lock_sock(sk); if (sock_flag(sk, SOCK_ZAPPED)) { release_sock(sk); return -EADDRNOTAVAIL; } skb = skb_recv_datagram(sk, flags, &rc); if (!skb) { release_sock(sk); return rc; } cb = (struct qrtr_cb *)skb->cb; copied = skb->len; if (copied > size) { copied = size; msg->msg_flags |= MSG_TRUNC; } rc = skb_copy_datagram_msg(skb, 0, msg, copied); if (rc < 0) goto out; rc = copied; if (addr) { /* There is an anonymous 2-byte hole after sq_family, * make sure to clear it. */ memset(addr, 0, sizeof(*addr)); addr->sq_family = AF_QIPCRTR; addr->sq_node = cb->src_node; addr->sq_port = cb->src_port; msg->msg_namelen = sizeof(*addr); } out: if (cb->confirm_rx) qrtr_send_resume_tx(cb); skb_free_datagram(sk, skb); release_sock(sk); return rc; } static int qrtr_connect(struct socket *sock, struct sockaddr *saddr, int len, int flags) { DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, saddr); struct qrtr_sock *ipc = qrtr_sk(sock->sk); struct sock *sk = sock->sk; int rc; if (len < sizeof(*addr) || addr->sq_family != AF_QIPCRTR) return -EINVAL; lock_sock(sk); sk->sk_state = TCP_CLOSE; sock->state = SS_UNCONNECTED; rc = qrtr_autobind(sock); if (rc) { release_sock(sk); return rc; } ipc->peer = *addr; sock->state = SS_CONNECTED; sk->sk_state = TCP_ESTABLISHED; release_sock(sk); return 0; } static int qrtr_getname(struct socket *sock, struct sockaddr *saddr, int peer) { struct qrtr_sock *ipc = qrtr_sk(sock->sk); struct sockaddr_qrtr qaddr; struct sock *sk = sock->sk; lock_sock(sk); if (peer) { if (sk->sk_state != TCP_ESTABLISHED) { release_sock(sk); return -ENOTCONN; } qaddr = ipc->peer; } else { qaddr = ipc->us; } release_sock(sk); qaddr.sq_family = AF_QIPCRTR; memcpy(saddr, &qaddr, sizeof(qaddr)); return sizeof(qaddr); } static int qrtr_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) { void __user *argp = (void __user *)arg; struct qrtr_sock *ipc = qrtr_sk(sock->sk); struct sock *sk = sock->sk; struct sockaddr_qrtr *sq; struct sk_buff *skb; struct ifreq ifr; long len = 0; int rc = 0; lock_sock(sk); switch (cmd) { case TIOCOUTQ: len = sk->sk_sndbuf - sk_wmem_alloc_get(sk); if (len < 0) len = 0; rc = put_user(len, (int __user *)argp); break; case TIOCINQ: skb = skb_peek(&sk->sk_receive_queue); if (skb) len = skb->len; rc = put_user(len, (int __user *)argp); break; case SIOCGIFADDR: if (get_user_ifreq(&ifr, NULL, argp)) { rc = -EFAULT; break; } sq = (struct sockaddr_qrtr *)&ifr.ifr_addr; *sq = ipc->us; if (put_user_ifreq(&ifr, argp)) { rc = -EFAULT; break; } break; case SIOCADDRT: case SIOCDELRT: case SIOCSIFADDR: case SIOCGIFDSTADDR: case SIOCSIFDSTADDR: case SIOCGIFBRDADDR: case SIOCSIFBRDADDR: case SIOCGIFNETMASK: case SIOCSIFNETMASK: rc = -EINVAL; break; default: rc = -ENOIOCTLCMD; break; } release_sock(sk); return rc; } static int qrtr_release(struct socket *sock) { struct sock *sk = sock->sk; struct qrtr_sock *ipc; if (!sk) return 0; lock_sock(sk); ipc = qrtr_sk(sk); sk->sk_shutdown = SHUTDOWN_MASK; if (!sock_flag(sk, SOCK_DEAD)) sk->sk_state_change(sk); sock_set_flag(sk, SOCK_DEAD); sock_orphan(sk); sock->sk = NULL; if (!sock_flag(sk, SOCK_ZAPPED)) qrtr_port_remove(ipc); skb_queue_purge(&sk->sk_receive_queue); release_sock(sk); sock_put(sk); return 0; } static const struct proto_ops qrtr_proto_ops = { .owner = THIS_MODULE, .family = AF_QIPCRTR, .bind = qrtr_bind, .connect = qrtr_connect, .socketpair = sock_no_socketpair, .accept = sock_no_accept, .listen = sock_no_listen, .sendmsg = qrtr_sendmsg, .recvmsg = qrtr_recvmsg, .getname = qrtr_getname, .ioctl = qrtr_ioctl, .gettstamp = sock_gettstamp, .poll = datagram_poll, .shutdown = sock_no_shutdown, .release = qrtr_release, .mmap = sock_no_mmap, }; static struct proto qrtr_proto = { .name = "QIPCRTR", .owner = THIS_MODULE, .obj_size = sizeof(struct qrtr_sock), }; static int qrtr_create(struct net *net, struct socket *sock, int protocol, int kern) { struct qrtr_sock *ipc; struct sock *sk; if (sock->type != SOCK_DGRAM) return -EPROTOTYPE; sk = sk_alloc(net, AF_QIPCRTR, GFP_KERNEL, &qrtr_proto, kern); if (!sk) return -ENOMEM; sock_set_flag(sk, SOCK_ZAPPED); sock_init_data(sock, sk); sock->ops = &qrtr_proto_ops; ipc = qrtr_sk(sk); ipc->us.sq_family = AF_QIPCRTR; ipc->us.sq_node = qrtr_local_nid; ipc->us.sq_port = 0; return 0; } static const struct net_proto_family qrtr_family = { .owner = THIS_MODULE, .family = AF_QIPCRTR, .create = qrtr_create, }; static int __init qrtr_proto_init(void) { int rc; rc = proto_register(&qrtr_proto, 1); if (rc) return rc; rc = sock_register(&qrtr_family); if (rc) goto err_proto; rc = qrtr_ns_init(); if (rc) goto err_sock; return 0; err_sock: sock_unregister(qrtr_family.family); err_proto: proto_unregister(&qrtr_proto); return rc; } postcore_initcall(qrtr_proto_init); static void __exit qrtr_proto_fini(void) { qrtr_ns_remove(); sock_unregister(qrtr_family.family); proto_unregister(&qrtr_proto); } module_exit(qrtr_proto_fini); MODULE_DESCRIPTION("Qualcomm IPC-router driver"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS_NETPROTO(PF_QIPCRTR);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1