Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Martin KaFai Lau | 974 | 41.32% | 7 | 38.89% |
Alexei Starovoitov | 809 | 34.32% | 3 | 16.67% |
Daniel T. Lee | 329 | 13.96% | 2 | 11.11% |
David Herrmann | 219 | 9.29% | 1 | 5.56% |
Andrii Nakryiko | 22 | 0.93% | 2 | 11.11% |
Thomas Gleixner | 2 | 0.08% | 1 | 5.56% |
Jakub Kiciński | 1 | 0.04% | 1 | 5.56% |
Joel A Fernandes | 1 | 0.04% | 1 | 5.56% |
Total | 2357 | 18 |
// SPDX-License-Identifier: GPL-2.0-only /* Copyright (c) 2016 Facebook */ #define _GNU_SOURCE #include <sched.h> #include <stdio.h> #include <sys/types.h> #include <asm/unistd.h> #include <unistd.h> #include <assert.h> #include <sys/wait.h> #include <stdlib.h> #include <signal.h> #include <string.h> #include <time.h> #include <arpa/inet.h> #include <errno.h> #include <bpf/bpf.h> #include <bpf/libbpf.h> #define TEST_BIT(t) (1U << (t)) #define MAX_NR_CPUS 1024 static __u64 time_get_ns(void) { struct timespec ts; clock_gettime(CLOCK_MONOTONIC, &ts); return ts.tv_sec * 1000000000ull + ts.tv_nsec; } enum test_type { HASH_PREALLOC, PERCPU_HASH_PREALLOC, HASH_KMALLOC, PERCPU_HASH_KMALLOC, LRU_HASH_PREALLOC, NOCOMMON_LRU_HASH_PREALLOC, LPM_KMALLOC, HASH_LOOKUP, ARRAY_LOOKUP, INNER_LRU_HASH_PREALLOC, LRU_HASH_LOOKUP, NR_TESTS, }; const char *test_map_names[NR_TESTS] = { [HASH_PREALLOC] = "hash_map", [PERCPU_HASH_PREALLOC] = "percpu_hash_map", [HASH_KMALLOC] = "hash_map_alloc", [PERCPU_HASH_KMALLOC] = "percpu_hash_map_alloc", [LRU_HASH_PREALLOC] = "lru_hash_map", [NOCOMMON_LRU_HASH_PREALLOC] = "nocommon_lru_hash_map", [LPM_KMALLOC] = "lpm_trie_map_alloc", [HASH_LOOKUP] = "hash_map", [ARRAY_LOOKUP] = "array_map", [INNER_LRU_HASH_PREALLOC] = "inner_lru_hash_map", [LRU_HASH_LOOKUP] = "lru_hash_lookup_map", }; enum map_idx { array_of_lru_hashs_idx, hash_map_alloc_idx, lru_hash_lookup_idx, NR_IDXES, }; static int map_fd[NR_IDXES]; static int test_flags = ~0; static uint32_t num_map_entries; static uint32_t inner_lru_hash_size; static int lru_hash_lookup_test_entries = 32; static uint32_t max_cnt = 10000; static int check_test_flags(enum test_type t) { return test_flags & TEST_BIT(t); } static void test_hash_prealloc(int cpu) { __u64 start_time; int i; start_time = time_get_ns(); for (i = 0; i < max_cnt; i++) syscall(__NR_getuid); printf("%d:hash_map_perf pre-alloc %lld events per sec\n", cpu, max_cnt * 1000000000ll / (time_get_ns() - start_time)); } static int pre_test_lru_hash_lookup(int tasks) { int fd = map_fd[lru_hash_lookup_idx]; uint32_t key; long val = 1; int ret; if (num_map_entries > lru_hash_lookup_test_entries) lru_hash_lookup_test_entries = num_map_entries; /* Populate the lru_hash_map for LRU_HASH_LOOKUP perf test. * * It is fine that the user requests for a map with * num_map_entries < 32 and some of the later lru hash lookup * may return not found. For LRU map, we are not interested * in such small map performance. */ for (key = 0; key < lru_hash_lookup_test_entries; key++) { ret = bpf_map_update_elem(fd, &key, &val, BPF_NOEXIST); if (ret) return ret; } return 0; } static void do_test_lru(enum test_type test, int cpu) { static int inner_lru_map_fds[MAX_NR_CPUS]; struct sockaddr_in6 in6 = { .sin6_family = AF_INET6 }; const char *test_name; __u64 start_time; int i, ret; if (test == INNER_LRU_HASH_PREALLOC && cpu) { /* If CPU is not 0, create inner_lru hash map and insert the fd * value into the array_of_lru_hash map. In case of CPU 0, * 'inner_lru_hash_map' was statically inserted on the map init */ int outer_fd = map_fd[array_of_lru_hashs_idx]; unsigned int mycpu, mynode; LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_NUMA_NODE, ); assert(cpu < MAX_NR_CPUS); ret = syscall(__NR_getcpu, &mycpu, &mynode, NULL); assert(!ret); opts.numa_node = mynode; inner_lru_map_fds[cpu] = bpf_map_create(BPF_MAP_TYPE_LRU_HASH, test_map_names[INNER_LRU_HASH_PREALLOC], sizeof(uint32_t), sizeof(long), inner_lru_hash_size, &opts); if (inner_lru_map_fds[cpu] == -1) { printf("cannot create BPF_MAP_TYPE_LRU_HASH %s(%d)\n", strerror(errno), errno); exit(1); } ret = bpf_map_update_elem(outer_fd, &cpu, &inner_lru_map_fds[cpu], BPF_ANY); if (ret) { printf("cannot update ARRAY_OF_LRU_HASHS with key:%u. %s(%d)\n", cpu, strerror(errno), errno); exit(1); } } in6.sin6_addr.s6_addr16[0] = 0xdead; in6.sin6_addr.s6_addr16[1] = 0xbeef; if (test == LRU_HASH_PREALLOC) { test_name = "lru_hash_map_perf"; in6.sin6_addr.s6_addr16[2] = 0; } else if (test == NOCOMMON_LRU_HASH_PREALLOC) { test_name = "nocommon_lru_hash_map_perf"; in6.sin6_addr.s6_addr16[2] = 1; } else if (test == INNER_LRU_HASH_PREALLOC) { test_name = "inner_lru_hash_map_perf"; in6.sin6_addr.s6_addr16[2] = 2; } else if (test == LRU_HASH_LOOKUP) { test_name = "lru_hash_lookup_perf"; in6.sin6_addr.s6_addr16[2] = 3; in6.sin6_addr.s6_addr32[3] = 0; } else { assert(0); } start_time = time_get_ns(); for (i = 0; i < max_cnt; i++) { ret = connect(-1, (const struct sockaddr *)&in6, sizeof(in6)); assert(ret == -1 && errno == EBADF); if (in6.sin6_addr.s6_addr32[3] < lru_hash_lookup_test_entries - 32) in6.sin6_addr.s6_addr32[3] += 32; else in6.sin6_addr.s6_addr32[3] = 0; } printf("%d:%s pre-alloc %lld events per sec\n", cpu, test_name, max_cnt * 1000000000ll / (time_get_ns() - start_time)); } static void test_lru_hash_prealloc(int cpu) { do_test_lru(LRU_HASH_PREALLOC, cpu); } static void test_nocommon_lru_hash_prealloc(int cpu) { do_test_lru(NOCOMMON_LRU_HASH_PREALLOC, cpu); } static void test_inner_lru_hash_prealloc(int cpu) { do_test_lru(INNER_LRU_HASH_PREALLOC, cpu); } static void test_lru_hash_lookup(int cpu) { do_test_lru(LRU_HASH_LOOKUP, cpu); } static void test_percpu_hash_prealloc(int cpu) { __u64 start_time; int i; start_time = time_get_ns(); for (i = 0; i < max_cnt; i++) syscall(__NR_geteuid); printf("%d:percpu_hash_map_perf pre-alloc %lld events per sec\n", cpu, max_cnt * 1000000000ll / (time_get_ns() - start_time)); } static void test_hash_kmalloc(int cpu) { __u64 start_time; int i; start_time = time_get_ns(); for (i = 0; i < max_cnt; i++) syscall(__NR_getgid); printf("%d:hash_map_perf kmalloc %lld events per sec\n", cpu, max_cnt * 1000000000ll / (time_get_ns() - start_time)); } static void test_percpu_hash_kmalloc(int cpu) { __u64 start_time; int i; start_time = time_get_ns(); for (i = 0; i < max_cnt; i++) syscall(__NR_getegid); printf("%d:percpu_hash_map_perf kmalloc %lld events per sec\n", cpu, max_cnt * 1000000000ll / (time_get_ns() - start_time)); } static void test_lpm_kmalloc(int cpu) { __u64 start_time; int i; start_time = time_get_ns(); for (i = 0; i < max_cnt; i++) syscall(__NR_gettid); printf("%d:lpm_perf kmalloc %lld events per sec\n", cpu, max_cnt * 1000000000ll / (time_get_ns() - start_time)); } static void test_hash_lookup(int cpu) { __u64 start_time; int i; start_time = time_get_ns(); for (i = 0; i < max_cnt; i++) syscall(__NR_getpgid, 0); printf("%d:hash_lookup %lld lookups per sec\n", cpu, max_cnt * 1000000000ll * 64 / (time_get_ns() - start_time)); } static void test_array_lookup(int cpu) { __u64 start_time; int i; start_time = time_get_ns(); for (i = 0; i < max_cnt; i++) syscall(__NR_getppid, 0); printf("%d:array_lookup %lld lookups per sec\n", cpu, max_cnt * 1000000000ll * 64 / (time_get_ns() - start_time)); } typedef int (*pre_test_func)(int tasks); const pre_test_func pre_test_funcs[] = { [LRU_HASH_LOOKUP] = pre_test_lru_hash_lookup, }; typedef void (*test_func)(int cpu); const test_func test_funcs[] = { [HASH_PREALLOC] = test_hash_prealloc, [PERCPU_HASH_PREALLOC] = test_percpu_hash_prealloc, [HASH_KMALLOC] = test_hash_kmalloc, [PERCPU_HASH_KMALLOC] = test_percpu_hash_kmalloc, [LRU_HASH_PREALLOC] = test_lru_hash_prealloc, [NOCOMMON_LRU_HASH_PREALLOC] = test_nocommon_lru_hash_prealloc, [LPM_KMALLOC] = test_lpm_kmalloc, [HASH_LOOKUP] = test_hash_lookup, [ARRAY_LOOKUP] = test_array_lookup, [INNER_LRU_HASH_PREALLOC] = test_inner_lru_hash_prealloc, [LRU_HASH_LOOKUP] = test_lru_hash_lookup, }; static int pre_test(int tasks) { int i; for (i = 0; i < NR_TESTS; i++) { if (pre_test_funcs[i] && check_test_flags(i)) { int ret = pre_test_funcs[i](tasks); if (ret) return ret; } } return 0; } static void loop(int cpu) { cpu_set_t cpuset; int i; CPU_ZERO(&cpuset); CPU_SET(cpu, &cpuset); sched_setaffinity(0, sizeof(cpuset), &cpuset); for (i = 0; i < NR_TESTS; i++) { if (check_test_flags(i)) test_funcs[i](cpu); } } static void run_perf_test(int tasks) { pid_t pid[tasks]; int i; assert(!pre_test(tasks)); for (i = 0; i < tasks; i++) { pid[i] = fork(); if (pid[i] == 0) { loop(i); exit(0); } else if (pid[i] == -1) { printf("couldn't spawn #%d process\n", i); exit(1); } } for (i = 0; i < tasks; i++) { int status; assert(waitpid(pid[i], &status, 0) == pid[i]); assert(status == 0); } } static void fill_lpm_trie(void) { struct bpf_lpm_trie_key *key; unsigned long value = 0; unsigned int i; int r; key = alloca(sizeof(*key) + 4); key->prefixlen = 32; for (i = 0; i < 512; ++i) { key->prefixlen = rand() % 33; key->data[0] = rand() & 0xff; key->data[1] = rand() & 0xff; key->data[2] = rand() & 0xff; key->data[3] = rand() & 0xff; r = bpf_map_update_elem(map_fd[hash_map_alloc_idx], key, &value, 0); assert(!r); } key->prefixlen = 32; key->data[0] = 192; key->data[1] = 168; key->data[2] = 0; key->data[3] = 1; value = 128; r = bpf_map_update_elem(map_fd[hash_map_alloc_idx], key, &value, 0); assert(!r); } static void fixup_map(struct bpf_object *obj) { struct bpf_map *map; int i; bpf_object__for_each_map(map, obj) { const char *name = bpf_map__name(map); /* Only change the max_entries for the enabled test(s) */ for (i = 0; i < NR_TESTS; i++) { if (!strcmp(test_map_names[i], name) && (check_test_flags(i))) { bpf_map__set_max_entries(map, num_map_entries); continue; } } } inner_lru_hash_size = num_map_entries; } int main(int argc, char **argv) { int nr_cpus = sysconf(_SC_NPROCESSORS_ONLN); struct bpf_link *links[8]; struct bpf_program *prog; struct bpf_object *obj; struct bpf_map *map; char filename[256]; int i = 0; if (argc > 1) test_flags = atoi(argv[1]) ? : test_flags; if (argc > 2) nr_cpus = atoi(argv[2]) ? : nr_cpus; if (argc > 3) num_map_entries = atoi(argv[3]); if (argc > 4) max_cnt = atoi(argv[4]); snprintf(filename, sizeof(filename), "%s.bpf.o", argv[0]); obj = bpf_object__open_file(filename, NULL); if (libbpf_get_error(obj)) { fprintf(stderr, "ERROR: opening BPF object file failed\n"); return 0; } map = bpf_object__find_map_by_name(obj, "inner_lru_hash_map"); if (libbpf_get_error(map)) { fprintf(stderr, "ERROR: finding a map in obj file failed\n"); goto cleanup; } inner_lru_hash_size = bpf_map__max_entries(map); if (!inner_lru_hash_size) { fprintf(stderr, "ERROR: failed to get map attribute\n"); goto cleanup; } /* resize BPF map prior to loading */ if (num_map_entries > 0) fixup_map(obj); /* load BPF program */ if (bpf_object__load(obj)) { fprintf(stderr, "ERROR: loading BPF object file failed\n"); goto cleanup; } map_fd[0] = bpf_object__find_map_fd_by_name(obj, "array_of_lru_hashs"); map_fd[1] = bpf_object__find_map_fd_by_name(obj, "hash_map_alloc"); map_fd[2] = bpf_object__find_map_fd_by_name(obj, "lru_hash_lookup_map"); if (map_fd[0] < 0 || map_fd[1] < 0 || map_fd[2] < 0) { fprintf(stderr, "ERROR: finding a map in obj file failed\n"); goto cleanup; } bpf_object__for_each_program(prog, obj) { links[i] = bpf_program__attach(prog); if (libbpf_get_error(links[i])) { fprintf(stderr, "ERROR: bpf_program__attach failed\n"); links[i] = NULL; goto cleanup; } i++; } fill_lpm_trie(); run_perf_test(nr_cpus); cleanup: for (i--; i >= 0; i--) bpf_link__destroy(links[i]); bpf_object__close(obj); return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1