Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
David Howells | 6033 | 89.98% | 74 | 64.35% |
Mat Martineau | 430 | 6.41% | 4 | 3.48% |
Eric Biggers | 87 | 1.30% | 5 | 4.35% |
Kevin Coffman | 39 | 0.58% | 1 | 0.87% |
Toshiyuki Okajima | 14 | 0.21% | 1 | 0.87% |
Eric W. Biedermann | 10 | 0.15% | 3 | 2.61% |
Linus Torvalds (pre-git) | 9 | 0.13% | 5 | 4.35% |
Davidlohr Bueso A | 6 | 0.09% | 1 | 0.87% |
Davi Arnaut | 6 | 0.09% | 1 | 0.87% |
Linus Torvalds | 6 | 0.09% | 1 | 0.87% |
Oleg Nesterov | 6 | 0.09% | 1 | 0.87% |
Thomas Gleixner | 6 | 0.09% | 2 | 1.74% |
Baolin Wang | 6 | 0.09% | 1 | 0.87% |
Andrey Vagin | 5 | 0.07% | 1 | 0.87% |
Colin Ian King | 5 | 0.07% | 1 | 0.87% |
Waiman Long | 5 | 0.07% | 1 | 0.87% |
Michael LeMay | 5 | 0.07% | 1 | 0.87% |
Serge E. Hallyn | 4 | 0.06% | 1 | 0.87% |
Elena Reshetova | 4 | 0.06% | 1 | 0.87% |
Andrew Morton | 4 | 0.06% | 1 | 0.87% |
Greg Kroah-Hartman | 3 | 0.04% | 1 | 0.87% |
Cédric Le Goater | 3 | 0.04% | 1 | 0.87% |
Ingo Molnar | 2 | 0.03% | 1 | 0.87% |
Randy Dunlap | 2 | 0.03% | 1 | 0.87% |
David Woodhouse | 2 | 0.03% | 1 | 0.87% |
Paul Gortmaker | 1 | 0.01% | 1 | 0.87% |
Chihau Chau | 1 | 0.01% | 1 | 0.87% |
Adrian Bunk | 1 | 0.01% | 1 | 0.87% |
Total | 6705 | 115 |
// SPDX-License-Identifier: GPL-2.0-or-later /* Keyring handling * * Copyright (C) 2004-2005, 2008, 2013 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) */ #include <linux/export.h> #include <linux/init.h> #include <linux/sched.h> #include <linux/slab.h> #include <linux/security.h> #include <linux/seq_file.h> #include <linux/err.h> #include <linux/user_namespace.h> #include <linux/nsproxy.h> #include <keys/keyring-type.h> #include <keys/user-type.h> #include <linux/assoc_array_priv.h> #include <linux/uaccess.h> #include <net/net_namespace.h> #include "internal.h" /* * When plumbing the depths of the key tree, this sets a hard limit * set on how deep we're willing to go. */ #define KEYRING_SEARCH_MAX_DEPTH 6 /* * We mark pointers we pass to the associative array with bit 1 set if * they're keyrings and clear otherwise. */ #define KEYRING_PTR_SUBTYPE 0x2UL static inline bool keyring_ptr_is_keyring(const struct assoc_array_ptr *x) { return (unsigned long)x & KEYRING_PTR_SUBTYPE; } static inline struct key *keyring_ptr_to_key(const struct assoc_array_ptr *x) { void *object = assoc_array_ptr_to_leaf(x); return (struct key *)((unsigned long)object & ~KEYRING_PTR_SUBTYPE); } static inline void *keyring_key_to_ptr(struct key *key) { if (key->type == &key_type_keyring) return (void *)((unsigned long)key | KEYRING_PTR_SUBTYPE); return key; } static DEFINE_RWLOCK(keyring_name_lock); /* * Clean up the bits of user_namespace that belong to us. */ void key_free_user_ns(struct user_namespace *ns) { write_lock(&keyring_name_lock); list_del_init(&ns->keyring_name_list); write_unlock(&keyring_name_lock); key_put(ns->user_keyring_register); #ifdef CONFIG_PERSISTENT_KEYRINGS key_put(ns->persistent_keyring_register); #endif } /* * The keyring key type definition. Keyrings are simply keys of this type and * can be treated as ordinary keys in addition to having their own special * operations. */ static int keyring_preparse(struct key_preparsed_payload *prep); static void keyring_free_preparse(struct key_preparsed_payload *prep); static int keyring_instantiate(struct key *keyring, struct key_preparsed_payload *prep); static void keyring_revoke(struct key *keyring); static void keyring_destroy(struct key *keyring); static void keyring_describe(const struct key *keyring, struct seq_file *m); static long keyring_read(const struct key *keyring, char *buffer, size_t buflen); struct key_type key_type_keyring = { .name = "keyring", .def_datalen = 0, .preparse = keyring_preparse, .free_preparse = keyring_free_preparse, .instantiate = keyring_instantiate, .revoke = keyring_revoke, .destroy = keyring_destroy, .describe = keyring_describe, .read = keyring_read, }; EXPORT_SYMBOL(key_type_keyring); /* * Semaphore to serialise link/link calls to prevent two link calls in parallel * introducing a cycle. */ static DEFINE_MUTEX(keyring_serialise_link_lock); /* * Publish the name of a keyring so that it can be found by name (if it has * one and it doesn't begin with a dot). */ static void keyring_publish_name(struct key *keyring) { struct user_namespace *ns = current_user_ns(); if (keyring->description && keyring->description[0] && keyring->description[0] != '.') { write_lock(&keyring_name_lock); list_add_tail(&keyring->name_link, &ns->keyring_name_list); write_unlock(&keyring_name_lock); } } /* * Preparse a keyring payload */ static int keyring_preparse(struct key_preparsed_payload *prep) { return prep->datalen != 0 ? -EINVAL : 0; } /* * Free a preparse of a user defined key payload */ static void keyring_free_preparse(struct key_preparsed_payload *prep) { } /* * Initialise a keyring. * * Returns 0 on success, -EINVAL if given any data. */ static int keyring_instantiate(struct key *keyring, struct key_preparsed_payload *prep) { assoc_array_init(&keyring->keys); /* make the keyring available by name if it has one */ keyring_publish_name(keyring); return 0; } /* * Multiply 64-bits by 32-bits to 96-bits and fold back to 64-bit. Ideally we'd * fold the carry back too, but that requires inline asm. */ static u64 mult_64x32_and_fold(u64 x, u32 y) { u64 hi = (u64)(u32)(x >> 32) * y; u64 lo = (u64)(u32)(x) * y; return lo + ((u64)(u32)hi << 32) + (u32)(hi >> 32); } /* * Hash a key type and description. */ static void hash_key_type_and_desc(struct keyring_index_key *index_key) { const unsigned level_shift = ASSOC_ARRAY_LEVEL_STEP; const unsigned long fan_mask = ASSOC_ARRAY_FAN_MASK; const char *description = index_key->description; unsigned long hash, type; u32 piece; u64 acc; int n, desc_len = index_key->desc_len; type = (unsigned long)index_key->type; acc = mult_64x32_and_fold(type, desc_len + 13); acc = mult_64x32_and_fold(acc, 9207); piece = (unsigned long)index_key->domain_tag; acc = mult_64x32_and_fold(acc, piece); acc = mult_64x32_and_fold(acc, 9207); for (;;) { n = desc_len; if (n <= 0) break; if (n > 4) n = 4; piece = 0; memcpy(&piece, description, n); description += n; desc_len -= n; acc = mult_64x32_and_fold(acc, piece); acc = mult_64x32_and_fold(acc, 9207); } /* Fold the hash down to 32 bits if need be. */ hash = acc; if (ASSOC_ARRAY_KEY_CHUNK_SIZE == 32) hash ^= acc >> 32; /* Squidge all the keyrings into a separate part of the tree to * ordinary keys by making sure the lowest level segment in the hash is * zero for keyrings and non-zero otherwise. */ if (index_key->type != &key_type_keyring && (hash & fan_mask) == 0) hash |= (hash >> (ASSOC_ARRAY_KEY_CHUNK_SIZE - level_shift)) | 1; else if (index_key->type == &key_type_keyring && (hash & fan_mask) != 0) hash = (hash + (hash << level_shift)) & ~fan_mask; index_key->hash = hash; } /* * Finalise an index key to include a part of the description actually in the * index key, to set the domain tag and to calculate the hash. */ void key_set_index_key(struct keyring_index_key *index_key) { static struct key_tag default_domain_tag = { .usage = REFCOUNT_INIT(1), }; size_t n = min_t(size_t, index_key->desc_len, sizeof(index_key->desc)); memcpy(index_key->desc, index_key->description, n); if (!index_key->domain_tag) { if (index_key->type->flags & KEY_TYPE_NET_DOMAIN) index_key->domain_tag = current->nsproxy->net_ns->key_domain; else index_key->domain_tag = &default_domain_tag; } hash_key_type_and_desc(index_key); } /** * key_put_tag - Release a ref on a tag. * @tag: The tag to release. * * This releases a reference the given tag and returns true if that ref was the * last one. */ bool key_put_tag(struct key_tag *tag) { if (refcount_dec_and_test(&tag->usage)) { kfree_rcu(tag, rcu); return true; } return false; } /** * key_remove_domain - Kill off a key domain and gc its keys * @domain_tag: The domain tag to release. * * This marks a domain tag as being dead and releases a ref on it. If that * wasn't the last reference, the garbage collector is poked to try and delete * all keys that were in the domain. */ void key_remove_domain(struct key_tag *domain_tag) { domain_tag->removed = true; if (!key_put_tag(domain_tag)) key_schedule_gc_links(); } /* * Build the next index key chunk. * * We return it one word-sized chunk at a time. */ static unsigned long keyring_get_key_chunk(const void *data, int level) { const struct keyring_index_key *index_key = data; unsigned long chunk = 0; const u8 *d; int desc_len = index_key->desc_len, n = sizeof(chunk); level /= ASSOC_ARRAY_KEY_CHUNK_SIZE; switch (level) { case 0: return index_key->hash; case 1: return index_key->x; case 2: return (unsigned long)index_key->type; case 3: return (unsigned long)index_key->domain_tag; default: level -= 4; if (desc_len <= sizeof(index_key->desc)) return 0; d = index_key->description + sizeof(index_key->desc); d += level * sizeof(long); desc_len -= sizeof(index_key->desc); if (desc_len > n) desc_len = n; do { chunk <<= 8; chunk |= *d++; } while (--desc_len > 0); return chunk; } } static unsigned long keyring_get_object_key_chunk(const void *object, int level) { const struct key *key = keyring_ptr_to_key(object); return keyring_get_key_chunk(&key->index_key, level); } static bool keyring_compare_object(const void *object, const void *data) { const struct keyring_index_key *index_key = data; const struct key *key = keyring_ptr_to_key(object); return key->index_key.type == index_key->type && key->index_key.domain_tag == index_key->domain_tag && key->index_key.desc_len == index_key->desc_len && memcmp(key->index_key.description, index_key->description, index_key->desc_len) == 0; } /* * Compare the index keys of a pair of objects and determine the bit position * at which they differ - if they differ. */ static int keyring_diff_objects(const void *object, const void *data) { const struct key *key_a = keyring_ptr_to_key(object); const struct keyring_index_key *a = &key_a->index_key; const struct keyring_index_key *b = data; unsigned long seg_a, seg_b; int level, i; level = 0; seg_a = a->hash; seg_b = b->hash; if ((seg_a ^ seg_b) != 0) goto differ; level += ASSOC_ARRAY_KEY_CHUNK_SIZE / 8; /* The number of bits contributed by the hash is controlled by a * constant in the assoc_array headers. Everything else thereafter we * can deal with as being machine word-size dependent. */ seg_a = a->x; seg_b = b->x; if ((seg_a ^ seg_b) != 0) goto differ; level += sizeof(unsigned long); /* The next bit may not work on big endian */ seg_a = (unsigned long)a->type; seg_b = (unsigned long)b->type; if ((seg_a ^ seg_b) != 0) goto differ; level += sizeof(unsigned long); seg_a = (unsigned long)a->domain_tag; seg_b = (unsigned long)b->domain_tag; if ((seg_a ^ seg_b) != 0) goto differ; level += sizeof(unsigned long); i = sizeof(a->desc); if (a->desc_len <= i) goto same; for (; i < a->desc_len; i++) { seg_a = *(unsigned char *)(a->description + i); seg_b = *(unsigned char *)(b->description + i); if ((seg_a ^ seg_b) != 0) goto differ_plus_i; } same: return -1; differ_plus_i: level += i; differ: i = level * 8 + __ffs(seg_a ^ seg_b); return i; } /* * Free an object after stripping the keyring flag off of the pointer. */ static void keyring_free_object(void *object) { key_put(keyring_ptr_to_key(object)); } /* * Operations for keyring management by the index-tree routines. */ static const struct assoc_array_ops keyring_assoc_array_ops = { .get_key_chunk = keyring_get_key_chunk, .get_object_key_chunk = keyring_get_object_key_chunk, .compare_object = keyring_compare_object, .diff_objects = keyring_diff_objects, .free_object = keyring_free_object, }; /* * Clean up a keyring when it is destroyed. Unpublish its name if it had one * and dispose of its data. * * The garbage collector detects the final key_put(), removes the keyring from * the serial number tree and then does RCU synchronisation before coming here, * so we shouldn't need to worry about code poking around here with the RCU * readlock held by this time. */ static void keyring_destroy(struct key *keyring) { if (keyring->description) { write_lock(&keyring_name_lock); if (keyring->name_link.next != NULL && !list_empty(&keyring->name_link)) list_del(&keyring->name_link); write_unlock(&keyring_name_lock); } if (keyring->restrict_link) { struct key_restriction *keyres = keyring->restrict_link; key_put(keyres->key); kfree(keyres); } assoc_array_destroy(&keyring->keys, &keyring_assoc_array_ops); } /* * Describe a keyring for /proc. */ static void keyring_describe(const struct key *keyring, struct seq_file *m) { if (keyring->description) seq_puts(m, keyring->description); else seq_puts(m, "[anon]"); if (key_is_positive(keyring)) { if (keyring->keys.nr_leaves_on_tree != 0) seq_printf(m, ": %lu", keyring->keys.nr_leaves_on_tree); else seq_puts(m, ": empty"); } } struct keyring_read_iterator_context { size_t buflen; size_t count; key_serial_t *buffer; }; static int keyring_read_iterator(const void *object, void *data) { struct keyring_read_iterator_context *ctx = data; const struct key *key = keyring_ptr_to_key(object); kenter("{%s,%d},,{%zu/%zu}", key->type->name, key->serial, ctx->count, ctx->buflen); if (ctx->count >= ctx->buflen) return 1; *ctx->buffer++ = key->serial; ctx->count += sizeof(key->serial); return 0; } /* * Read a list of key IDs from the keyring's contents in binary form * * The keyring's semaphore is read-locked by the caller. This prevents someone * from modifying it under us - which could cause us to read key IDs multiple * times. */ static long keyring_read(const struct key *keyring, char *buffer, size_t buflen) { struct keyring_read_iterator_context ctx; long ret; kenter("{%d},,%zu", key_serial(keyring), buflen); if (buflen & (sizeof(key_serial_t) - 1)) return -EINVAL; /* Copy as many key IDs as fit into the buffer */ if (buffer && buflen) { ctx.buffer = (key_serial_t *)buffer; ctx.buflen = buflen; ctx.count = 0; ret = assoc_array_iterate(&keyring->keys, keyring_read_iterator, &ctx); if (ret < 0) { kleave(" = %ld [iterate]", ret); return ret; } } /* Return the size of the buffer needed */ ret = keyring->keys.nr_leaves_on_tree * sizeof(key_serial_t); if (ret <= buflen) kleave("= %ld [ok]", ret); else kleave("= %ld [buffer too small]", ret); return ret; } /* * Allocate a keyring and link into the destination keyring. */ struct key *keyring_alloc(const char *description, kuid_t uid, kgid_t gid, const struct cred *cred, key_perm_t perm, unsigned long flags, struct key_restriction *restrict_link, struct key *dest) { struct key *keyring; int ret; keyring = key_alloc(&key_type_keyring, description, uid, gid, cred, perm, flags, restrict_link); if (!IS_ERR(keyring)) { ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL); if (ret < 0) { key_put(keyring); keyring = ERR_PTR(ret); } } return keyring; } EXPORT_SYMBOL(keyring_alloc); /** * restrict_link_reject - Give -EPERM to restrict link * @keyring: The keyring being added to. * @type: The type of key being added. * @payload: The payload of the key intended to be added. * @restriction_key: Keys providing additional data for evaluating restriction. * * Reject the addition of any links to a keyring. It can be overridden by * passing KEY_ALLOC_BYPASS_RESTRICTION to key_instantiate_and_link() when * adding a key to a keyring. * * This is meant to be stored in a key_restriction structure which is passed * in the restrict_link parameter to keyring_alloc(). */ int restrict_link_reject(struct key *keyring, const struct key_type *type, const union key_payload *payload, struct key *restriction_key) { return -EPERM; } /* * By default, we keys found by getting an exact match on their descriptions. */ bool key_default_cmp(const struct key *key, const struct key_match_data *match_data) { return strcmp(key->description, match_data->raw_data) == 0; } /* * Iteration function to consider each key found. */ static int keyring_search_iterator(const void *object, void *iterator_data) { struct keyring_search_context *ctx = iterator_data; const struct key *key = keyring_ptr_to_key(object); unsigned long kflags = READ_ONCE(key->flags); short state = READ_ONCE(key->state); kenter("{%d}", key->serial); /* ignore keys not of this type */ if (key->type != ctx->index_key.type) { kleave(" = 0 [!type]"); return 0; } /* skip invalidated, revoked and expired keys */ if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) { time64_t expiry = READ_ONCE(key->expiry); if (kflags & ((1 << KEY_FLAG_INVALIDATED) | (1 << KEY_FLAG_REVOKED))) { ctx->result = ERR_PTR(-EKEYREVOKED); kleave(" = %d [invrev]", ctx->skipped_ret); goto skipped; } if (expiry && ctx->now >= expiry) { if (!(ctx->flags & KEYRING_SEARCH_SKIP_EXPIRED)) ctx->result = ERR_PTR(-EKEYEXPIRED); kleave(" = %d [expire]", ctx->skipped_ret); goto skipped; } } /* keys that don't match */ if (!ctx->match_data.cmp(key, &ctx->match_data)) { kleave(" = 0 [!match]"); return 0; } /* key must have search permissions */ if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) && key_task_permission(make_key_ref(key, ctx->possessed), ctx->cred, KEY_NEED_SEARCH) < 0) { ctx->result = ERR_PTR(-EACCES); kleave(" = %d [!perm]", ctx->skipped_ret); goto skipped; } if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) { /* we set a different error code if we pass a negative key */ if (state < 0) { ctx->result = ERR_PTR(state); kleave(" = %d [neg]", ctx->skipped_ret); goto skipped; } } /* Found */ ctx->result = make_key_ref(key, ctx->possessed); kleave(" = 1 [found]"); return 1; skipped: return ctx->skipped_ret; } /* * Search inside a keyring for a key. We can search by walking to it * directly based on its index-key or we can iterate over the entire * tree looking for it, based on the match function. */ static int search_keyring(struct key *keyring, struct keyring_search_context *ctx) { if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_DIRECT) { const void *object; object = assoc_array_find(&keyring->keys, &keyring_assoc_array_ops, &ctx->index_key); return object ? ctx->iterator(object, ctx) : 0; } return assoc_array_iterate(&keyring->keys, ctx->iterator, ctx); } /* * Search a tree of keyrings that point to other keyrings up to the maximum * depth. */ static bool search_nested_keyrings(struct key *keyring, struct keyring_search_context *ctx) { struct { struct key *keyring; struct assoc_array_node *node; int slot; } stack[KEYRING_SEARCH_MAX_DEPTH]; struct assoc_array_shortcut *shortcut; struct assoc_array_node *node; struct assoc_array_ptr *ptr; struct key *key; int sp = 0, slot; kenter("{%d},{%s,%s}", keyring->serial, ctx->index_key.type->name, ctx->index_key.description); #define STATE_CHECKS (KEYRING_SEARCH_NO_STATE_CHECK | KEYRING_SEARCH_DO_STATE_CHECK) BUG_ON((ctx->flags & STATE_CHECKS) == 0 || (ctx->flags & STATE_CHECKS) == STATE_CHECKS); if (ctx->index_key.description) key_set_index_key(&ctx->index_key); /* Check to see if this top-level keyring is what we are looking for * and whether it is valid or not. */ if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_ITERATE || keyring_compare_object(keyring, &ctx->index_key)) { ctx->skipped_ret = 2; switch (ctx->iterator(keyring_key_to_ptr(keyring), ctx)) { case 1: goto found; case 2: return false; default: break; } } ctx->skipped_ret = 0; /* Start processing a new keyring */ descend_to_keyring: kdebug("descend to %d", keyring->serial); if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) | (1 << KEY_FLAG_REVOKED))) goto not_this_keyring; /* Search through the keys in this keyring before its searching its * subtrees. */ if (search_keyring(keyring, ctx)) goto found; /* Then manually iterate through the keyrings nested in this one. * * Start from the root node of the index tree. Because of the way the * hash function has been set up, keyrings cluster on the leftmost * branch of the root node (root slot 0) or in the root node itself. * Non-keyrings avoid the leftmost branch of the root entirely (root * slots 1-15). */ if (!(ctx->flags & KEYRING_SEARCH_RECURSE)) goto not_this_keyring; ptr = READ_ONCE(keyring->keys.root); if (!ptr) goto not_this_keyring; if (assoc_array_ptr_is_shortcut(ptr)) { /* If the root is a shortcut, either the keyring only contains * keyring pointers (everything clusters behind root slot 0) or * doesn't contain any keyring pointers. */ shortcut = assoc_array_ptr_to_shortcut(ptr); if ((shortcut->index_key[0] & ASSOC_ARRAY_FAN_MASK) != 0) goto not_this_keyring; ptr = READ_ONCE(shortcut->next_node); node = assoc_array_ptr_to_node(ptr); goto begin_node; } node = assoc_array_ptr_to_node(ptr); ptr = node->slots[0]; if (!assoc_array_ptr_is_meta(ptr)) goto begin_node; descend_to_node: /* Descend to a more distal node in this keyring's content tree and go * through that. */ kdebug("descend"); if (assoc_array_ptr_is_shortcut(ptr)) { shortcut = assoc_array_ptr_to_shortcut(ptr); ptr = READ_ONCE(shortcut->next_node); BUG_ON(!assoc_array_ptr_is_node(ptr)); } node = assoc_array_ptr_to_node(ptr); begin_node: kdebug("begin_node"); slot = 0; ascend_to_node: /* Go through the slots in a node */ for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) { ptr = READ_ONCE(node->slots[slot]); if (assoc_array_ptr_is_meta(ptr) && node->back_pointer) goto descend_to_node; if (!keyring_ptr_is_keyring(ptr)) continue; key = keyring_ptr_to_key(ptr); if (sp >= KEYRING_SEARCH_MAX_DEPTH) { if (ctx->flags & KEYRING_SEARCH_DETECT_TOO_DEEP) { ctx->result = ERR_PTR(-ELOOP); return false; } goto not_this_keyring; } /* Search a nested keyring */ if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) && key_task_permission(make_key_ref(key, ctx->possessed), ctx->cred, KEY_NEED_SEARCH) < 0) continue; /* stack the current position */ stack[sp].keyring = keyring; stack[sp].node = node; stack[sp].slot = slot; sp++; /* begin again with the new keyring */ keyring = key; goto descend_to_keyring; } /* We've dealt with all the slots in the current node, so now we need * to ascend to the parent and continue processing there. */ ptr = READ_ONCE(node->back_pointer); slot = node->parent_slot; if (ptr && assoc_array_ptr_is_shortcut(ptr)) { shortcut = assoc_array_ptr_to_shortcut(ptr); ptr = READ_ONCE(shortcut->back_pointer); slot = shortcut->parent_slot; } if (!ptr) goto not_this_keyring; node = assoc_array_ptr_to_node(ptr); slot++; /* If we've ascended to the root (zero backpointer), we must have just * finished processing the leftmost branch rather than the root slots - * so there can't be any more keyrings for us to find. */ if (node->back_pointer) { kdebug("ascend %d", slot); goto ascend_to_node; } /* The keyring we're looking at was disqualified or didn't contain a * matching key. */ not_this_keyring: kdebug("not_this_keyring %d", sp); if (sp <= 0) { kleave(" = false"); return false; } /* Resume the processing of a keyring higher up in the tree */ sp--; keyring = stack[sp].keyring; node = stack[sp].node; slot = stack[sp].slot + 1; kdebug("ascend to %d [%d]", keyring->serial, slot); goto ascend_to_node; /* We found a viable match */ found: key = key_ref_to_ptr(ctx->result); key_check(key); if (!(ctx->flags & KEYRING_SEARCH_NO_UPDATE_TIME)) { key->last_used_at = ctx->now; keyring->last_used_at = ctx->now; while (sp > 0) stack[--sp].keyring->last_used_at = ctx->now; } kleave(" = true"); return true; } /** * keyring_search_rcu - Search a keyring tree for a matching key under RCU * @keyring_ref: A pointer to the keyring with possession indicator. * @ctx: The keyring search context. * * Search the supplied keyring tree for a key that matches the criteria given. * The root keyring and any linked keyrings must grant Search permission to the * caller to be searchable and keys can only be found if they too grant Search * to the caller. The possession flag on the root keyring pointer controls use * of the possessor bits in permissions checking of the entire tree. In * addition, the LSM gets to forbid keyring searches and key matches. * * The search is performed as a breadth-then-depth search up to the prescribed * limit (KEYRING_SEARCH_MAX_DEPTH). The caller must hold the RCU read lock to * prevent keyrings from being destroyed or rearranged whilst they are being * searched. * * Keys are matched to the type provided and are then filtered by the match * function, which is given the description to use in any way it sees fit. The * match function may use any attributes of a key that it wishes to * determine the match. Normally the match function from the key type would be * used. * * RCU can be used to prevent the keyring key lists from disappearing without * the need to take lots of locks. * * Returns a pointer to the found key and increments the key usage count if * successful; -EAGAIN if no matching keys were found, or if expired or revoked * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the * specified keyring wasn't a keyring. * * In the case of a successful return, the possession attribute from * @keyring_ref is propagated to the returned key reference. */ key_ref_t keyring_search_rcu(key_ref_t keyring_ref, struct keyring_search_context *ctx) { struct key *keyring; long err; ctx->iterator = keyring_search_iterator; ctx->possessed = is_key_possessed(keyring_ref); ctx->result = ERR_PTR(-EAGAIN); keyring = key_ref_to_ptr(keyring_ref); key_check(keyring); if (keyring->type != &key_type_keyring) return ERR_PTR(-ENOTDIR); if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM)) { err = key_task_permission(keyring_ref, ctx->cred, KEY_NEED_SEARCH); if (err < 0) return ERR_PTR(err); } ctx->now = ktime_get_real_seconds(); if (search_nested_keyrings(keyring, ctx)) __key_get(key_ref_to_ptr(ctx->result)); return ctx->result; } /** * keyring_search - Search the supplied keyring tree for a matching key * @keyring: The root of the keyring tree to be searched. * @type: The type of keyring we want to find. * @description: The name of the keyring we want to find. * @recurse: True to search the children of @keyring also * * As keyring_search_rcu() above, but using the current task's credentials and * type's default matching function and preferred search method. */ key_ref_t keyring_search(key_ref_t keyring, struct key_type *type, const char *description, bool recurse) { struct keyring_search_context ctx = { .index_key.type = type, .index_key.description = description, .index_key.desc_len = strlen(description), .cred = current_cred(), .match_data.cmp = key_default_cmp, .match_data.raw_data = description, .match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT, .flags = KEYRING_SEARCH_DO_STATE_CHECK, }; key_ref_t key; int ret; if (recurse) ctx.flags |= KEYRING_SEARCH_RECURSE; if (type->match_preparse) { ret = type->match_preparse(&ctx.match_data); if (ret < 0) return ERR_PTR(ret); } rcu_read_lock(); key = keyring_search_rcu(keyring, &ctx); rcu_read_unlock(); if (type->match_free) type->match_free(&ctx.match_data); return key; } EXPORT_SYMBOL(keyring_search); static struct key_restriction *keyring_restriction_alloc( key_restrict_link_func_t check) { struct key_restriction *keyres = kzalloc(sizeof(struct key_restriction), GFP_KERNEL); if (!keyres) return ERR_PTR(-ENOMEM); keyres->check = check; return keyres; } /* * Semaphore to serialise restriction setup to prevent reference count * cycles through restriction key pointers. */ static DECLARE_RWSEM(keyring_serialise_restrict_sem); /* * Check for restriction cycles that would prevent keyring garbage collection. * keyring_serialise_restrict_sem must be held. */ static bool keyring_detect_restriction_cycle(const struct key *dest_keyring, struct key_restriction *keyres) { while (keyres && keyres->key && keyres->key->type == &key_type_keyring) { if (keyres->key == dest_keyring) return true; keyres = keyres->key->restrict_link; } return false; } /** * keyring_restrict - Look up and apply a restriction to a keyring * @keyring_ref: The keyring to be restricted * @type: The key type that will provide the restriction checker. * @restriction: The restriction options to apply to the keyring * * Look up a keyring and apply a restriction to it. The restriction is managed * by the specific key type, but can be configured by the options specified in * the restriction string. */ int keyring_restrict(key_ref_t keyring_ref, const char *type, const char *restriction) { struct key *keyring; struct key_type *restrict_type = NULL; struct key_restriction *restrict_link; int ret = 0; keyring = key_ref_to_ptr(keyring_ref); key_check(keyring); if (keyring->type != &key_type_keyring) return -ENOTDIR; if (!type) { restrict_link = keyring_restriction_alloc(restrict_link_reject); } else { restrict_type = key_type_lookup(type); if (IS_ERR(restrict_type)) return PTR_ERR(restrict_type); if (!restrict_type->lookup_restriction) { ret = -ENOENT; goto error; } restrict_link = restrict_type->lookup_restriction(restriction); } if (IS_ERR(restrict_link)) { ret = PTR_ERR(restrict_link); goto error; } down_write(&keyring->sem); down_write(&keyring_serialise_restrict_sem); if (keyring->restrict_link) { ret = -EEXIST; } else if (keyring_detect_restriction_cycle(keyring, restrict_link)) { ret = -EDEADLK; } else { keyring->restrict_link = restrict_link; notify_key(keyring, NOTIFY_KEY_SETATTR, 0); } up_write(&keyring_serialise_restrict_sem); up_write(&keyring->sem); if (ret < 0) { key_put(restrict_link->key); kfree(restrict_link); } error: if (restrict_type) key_type_put(restrict_type); return ret; } EXPORT_SYMBOL(keyring_restrict); /* * Search the given keyring for a key that might be updated. * * The caller must guarantee that the keyring is a keyring and that the * permission is granted to modify the keyring as no check is made here. The * caller must also hold a lock on the keyring semaphore. * * Returns a pointer to the found key with usage count incremented if * successful and returns NULL if not found. Revoked and invalidated keys are * skipped over. * * If successful, the possession indicator is propagated from the keyring ref * to the returned key reference. */ key_ref_t find_key_to_update(key_ref_t keyring_ref, const struct keyring_index_key *index_key) { struct key *keyring, *key; const void *object; keyring = key_ref_to_ptr(keyring_ref); kenter("{%d},{%s,%s}", keyring->serial, index_key->type->name, index_key->description); object = assoc_array_find(&keyring->keys, &keyring_assoc_array_ops, index_key); if (object) goto found; kleave(" = NULL"); return NULL; found: key = keyring_ptr_to_key(object); if (key->flags & ((1 << KEY_FLAG_INVALIDATED) | (1 << KEY_FLAG_REVOKED))) { kleave(" = NULL [x]"); return NULL; } __key_get(key); kleave(" = {%d}", key->serial); return make_key_ref(key, is_key_possessed(keyring_ref)); } /* * Find a keyring with the specified name. * * Only keyrings that have nonzero refcount, are not revoked, and are owned by a * user in the current user namespace are considered. If @uid_keyring is %true, * the keyring additionally must have been allocated as a user or user session * keyring; otherwise, it must grant Search permission directly to the caller. * * Returns a pointer to the keyring with the keyring's refcount having being * incremented on success. -ENOKEY is returned if a key could not be found. */ struct key *find_keyring_by_name(const char *name, bool uid_keyring) { struct user_namespace *ns = current_user_ns(); struct key *keyring; if (!name) return ERR_PTR(-EINVAL); read_lock(&keyring_name_lock); /* Search this hash bucket for a keyring with a matching name that * grants Search permission and that hasn't been revoked */ list_for_each_entry(keyring, &ns->keyring_name_list, name_link) { if (!kuid_has_mapping(ns, keyring->user->uid)) continue; if (test_bit(KEY_FLAG_REVOKED, &keyring->flags)) continue; if (strcmp(keyring->description, name) != 0) continue; if (uid_keyring) { if (!test_bit(KEY_FLAG_UID_KEYRING, &keyring->flags)) continue; } else { if (key_permission(make_key_ref(keyring, 0), KEY_NEED_SEARCH) < 0) continue; } /* we've got a match but we might end up racing with * key_cleanup() if the keyring is currently 'dead' * (ie. it has a zero usage count) */ if (!refcount_inc_not_zero(&keyring->usage)) continue; keyring->last_used_at = ktime_get_real_seconds(); goto out; } keyring = ERR_PTR(-ENOKEY); out: read_unlock(&keyring_name_lock); return keyring; } static int keyring_detect_cycle_iterator(const void *object, void *iterator_data) { struct keyring_search_context *ctx = iterator_data; const struct key *key = keyring_ptr_to_key(object); kenter("{%d}", key->serial); /* We might get a keyring with matching index-key that is nonetheless a * different keyring. */ if (key != ctx->match_data.raw_data) return 0; ctx->result = ERR_PTR(-EDEADLK); return 1; } /* * See if a cycle will be created by inserting acyclic tree B in acyclic * tree A at the topmost level (ie: as a direct child of A). * * Since we are adding B to A at the top level, checking for cycles should just * be a matter of seeing if node A is somewhere in tree B. */ static int keyring_detect_cycle(struct key *A, struct key *B) { struct keyring_search_context ctx = { .index_key = A->index_key, .match_data.raw_data = A, .match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT, .iterator = keyring_detect_cycle_iterator, .flags = (KEYRING_SEARCH_NO_STATE_CHECK | KEYRING_SEARCH_NO_UPDATE_TIME | KEYRING_SEARCH_NO_CHECK_PERM | KEYRING_SEARCH_DETECT_TOO_DEEP | KEYRING_SEARCH_RECURSE), }; rcu_read_lock(); search_nested_keyrings(B, &ctx); rcu_read_unlock(); return PTR_ERR(ctx.result) == -EAGAIN ? 0 : PTR_ERR(ctx.result); } /* * Lock keyring for link. */ int __key_link_lock(struct key *keyring, const struct keyring_index_key *index_key) __acquires(&keyring->sem) __acquires(&keyring_serialise_link_lock) { if (keyring->type != &key_type_keyring) return -ENOTDIR; down_write(&keyring->sem); /* Serialise link/link calls to prevent parallel calls causing a cycle * when linking two keyring in opposite orders. */ if (index_key->type == &key_type_keyring) mutex_lock(&keyring_serialise_link_lock); return 0; } /* * Lock keyrings for move (link/unlink combination). */ int __key_move_lock(struct key *l_keyring, struct key *u_keyring, const struct keyring_index_key *index_key) __acquires(&l_keyring->sem) __acquires(&u_keyring->sem) __acquires(&keyring_serialise_link_lock) { if (l_keyring->type != &key_type_keyring || u_keyring->type != &key_type_keyring) return -ENOTDIR; /* We have to be very careful here to take the keyring locks in the * right order, lest we open ourselves to deadlocking against another * move operation. */ if (l_keyring < u_keyring) { down_write(&l_keyring->sem); down_write_nested(&u_keyring->sem, 1); } else { down_write(&u_keyring->sem); down_write_nested(&l_keyring->sem, 1); } /* Serialise link/link calls to prevent parallel calls causing a cycle * when linking two keyring in opposite orders. */ if (index_key->type == &key_type_keyring) mutex_lock(&keyring_serialise_link_lock); return 0; } /* * Preallocate memory so that a key can be linked into to a keyring. */ int __key_link_begin(struct key *keyring, const struct keyring_index_key *index_key, struct assoc_array_edit **_edit) { struct assoc_array_edit *edit; int ret; kenter("%d,%s,%s,", keyring->serial, index_key->type->name, index_key->description); BUG_ON(index_key->desc_len == 0); BUG_ON(*_edit != NULL); *_edit = NULL; ret = -EKEYREVOKED; if (test_bit(KEY_FLAG_REVOKED, &keyring->flags)) goto error; /* Create an edit script that will insert/replace the key in the * keyring tree. */ edit = assoc_array_insert(&keyring->keys, &keyring_assoc_array_ops, index_key, NULL); if (IS_ERR(edit)) { ret = PTR_ERR(edit); goto error; } /* If we're not replacing a link in-place then we're going to need some * extra quota. */ if (!edit->dead_leaf) { ret = key_payload_reserve(keyring, keyring->datalen + KEYQUOTA_LINK_BYTES); if (ret < 0) goto error_cancel; } *_edit = edit; kleave(" = 0"); return 0; error_cancel: assoc_array_cancel_edit(edit); error: kleave(" = %d", ret); return ret; } /* * Check already instantiated keys aren't going to be a problem. * * The caller must have called __key_link_begin(). Don't need to call this for * keys that were created since __key_link_begin() was called. */ int __key_link_check_live_key(struct key *keyring, struct key *key) { if (key->type == &key_type_keyring) /* check that we aren't going to create a cycle by linking one * keyring to another */ return keyring_detect_cycle(keyring, key); return 0; } /* * Link a key into to a keyring. * * Must be called with __key_link_begin() having being called. Discards any * already extant link to matching key if there is one, so that each keyring * holds at most one link to any given key of a particular type+description * combination. */ void __key_link(struct key *keyring, struct key *key, struct assoc_array_edit **_edit) { __key_get(key); assoc_array_insert_set_object(*_edit, keyring_key_to_ptr(key)); assoc_array_apply_edit(*_edit); *_edit = NULL; notify_key(keyring, NOTIFY_KEY_LINKED, key_serial(key)); } /* * Finish linking a key into to a keyring. * * Must be called with __key_link_begin() having being called. */ void __key_link_end(struct key *keyring, const struct keyring_index_key *index_key, struct assoc_array_edit *edit) __releases(&keyring->sem) __releases(&keyring_serialise_link_lock) { BUG_ON(index_key->type == NULL); kenter("%d,%s,", keyring->serial, index_key->type->name); if (edit) { if (!edit->dead_leaf) { key_payload_reserve(keyring, keyring->datalen - KEYQUOTA_LINK_BYTES); } assoc_array_cancel_edit(edit); } up_write(&keyring->sem); if (index_key->type == &key_type_keyring) mutex_unlock(&keyring_serialise_link_lock); } /* * Check addition of keys to restricted keyrings. */ static int __key_link_check_restriction(struct key *keyring, struct key *key) { if (!keyring->restrict_link || !keyring->restrict_link->check) return 0; return keyring->restrict_link->check(keyring, key->type, &key->payload, keyring->restrict_link->key); } /** * key_link - Link a key to a keyring * @keyring: The keyring to make the link in. * @key: The key to link to. * * Make a link in a keyring to a key, such that the keyring holds a reference * on that key and the key can potentially be found by searching that keyring. * * This function will write-lock the keyring's semaphore and will consume some * of the user's key data quota to hold the link. * * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is * full, -EDQUOT if there is insufficient key data quota remaining to add * another link or -ENOMEM if there's insufficient memory. * * It is assumed that the caller has checked that it is permitted for a link to * be made (the keyring should have Write permission and the key Link * permission). */ int key_link(struct key *keyring, struct key *key) { struct assoc_array_edit *edit = NULL; int ret; kenter("{%d,%d}", keyring->serial, refcount_read(&keyring->usage)); key_check(keyring); key_check(key); ret = __key_link_lock(keyring, &key->index_key); if (ret < 0) goto error; ret = __key_link_begin(keyring, &key->index_key, &edit); if (ret < 0) goto error_end; kdebug("begun {%d,%d}", keyring->serial, refcount_read(&keyring->usage)); ret = __key_link_check_restriction(keyring, key); if (ret == 0) ret = __key_link_check_live_key(keyring, key); if (ret == 0) __key_link(keyring, key, &edit); error_end: __key_link_end(keyring, &key->index_key, edit); error: kleave(" = %d {%d,%d}", ret, keyring->serial, refcount_read(&keyring->usage)); return ret; } EXPORT_SYMBOL(key_link); /* * Lock a keyring for unlink. */ static int __key_unlink_lock(struct key *keyring) __acquires(&keyring->sem) { if (keyring->type != &key_type_keyring) return -ENOTDIR; down_write(&keyring->sem); return 0; } /* * Begin the process of unlinking a key from a keyring. */ static int __key_unlink_begin(struct key *keyring, struct key *key, struct assoc_array_edit **_edit) { struct assoc_array_edit *edit; BUG_ON(*_edit != NULL); edit = assoc_array_delete(&keyring->keys, &keyring_assoc_array_ops, &key->index_key); if (IS_ERR(edit)) return PTR_ERR(edit); if (!edit) return -ENOENT; *_edit = edit; return 0; } /* * Apply an unlink change. */ static void __key_unlink(struct key *keyring, struct key *key, struct assoc_array_edit **_edit) { assoc_array_apply_edit(*_edit); notify_key(keyring, NOTIFY_KEY_UNLINKED, key_serial(key)); *_edit = NULL; key_payload_reserve(keyring, keyring->datalen - KEYQUOTA_LINK_BYTES); } /* * Finish unlinking a key from to a keyring. */ static void __key_unlink_end(struct key *keyring, struct key *key, struct assoc_array_edit *edit) __releases(&keyring->sem) { if (edit) assoc_array_cancel_edit(edit); up_write(&keyring->sem); } /** * key_unlink - Unlink the first link to a key from a keyring. * @keyring: The keyring to remove the link from. * @key: The key the link is to. * * Remove a link from a keyring to a key. * * This function will write-lock the keyring's semaphore. * * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if * the key isn't linked to by the keyring or -ENOMEM if there's insufficient * memory. * * It is assumed that the caller has checked that it is permitted for a link to * be removed (the keyring should have Write permission; no permissions are * required on the key). */ int key_unlink(struct key *keyring, struct key *key) { struct assoc_array_edit *edit = NULL; int ret; key_check(keyring); key_check(key); ret = __key_unlink_lock(keyring); if (ret < 0) return ret; ret = __key_unlink_begin(keyring, key, &edit); if (ret == 0) __key_unlink(keyring, key, &edit); __key_unlink_end(keyring, key, edit); return ret; } EXPORT_SYMBOL(key_unlink); /** * key_move - Move a key from one keyring to another * @key: The key to move * @from_keyring: The keyring to remove the link from. * @to_keyring: The keyring to make the link in. * @flags: Qualifying flags, such as KEYCTL_MOVE_EXCL. * * Make a link in @to_keyring to a key, such that the keyring holds a reference * on that key and the key can potentially be found by searching that keyring * whilst simultaneously removing a link to the key from @from_keyring. * * This function will write-lock both keyring's semaphores and will consume * some of the user's key data quota to hold the link on @to_keyring. * * Returns 0 if successful, -ENOTDIR if either keyring isn't a keyring, * -EKEYREVOKED if either keyring has been revoked, -ENFILE if the second * keyring is full, -EDQUOT if there is insufficient key data quota remaining * to add another link or -ENOMEM if there's insufficient memory. If * KEYCTL_MOVE_EXCL is set, then -EEXIST will be returned if there's already a * matching key in @to_keyring. * * It is assumed that the caller has checked that it is permitted for a link to * be made (the keyring should have Write permission and the key Link * permission). */ int key_move(struct key *key, struct key *from_keyring, struct key *to_keyring, unsigned int flags) { struct assoc_array_edit *from_edit = NULL, *to_edit = NULL; int ret; kenter("%d,%d,%d", key->serial, from_keyring->serial, to_keyring->serial); if (from_keyring == to_keyring) return 0; key_check(key); key_check(from_keyring); key_check(to_keyring); ret = __key_move_lock(from_keyring, to_keyring, &key->index_key); if (ret < 0) goto out; ret = __key_unlink_begin(from_keyring, key, &from_edit); if (ret < 0) goto error; ret = __key_link_begin(to_keyring, &key->index_key, &to_edit); if (ret < 0) goto error; ret = -EEXIST; if (to_edit->dead_leaf && (flags & KEYCTL_MOVE_EXCL)) goto error; ret = __key_link_check_restriction(to_keyring, key); if (ret < 0) goto error; ret = __key_link_check_live_key(to_keyring, key); if (ret < 0) goto error; __key_unlink(from_keyring, key, &from_edit); __key_link(to_keyring, key, &to_edit); error: __key_link_end(to_keyring, &key->index_key, to_edit); __key_unlink_end(from_keyring, key, from_edit); out: kleave(" = %d", ret); return ret; } EXPORT_SYMBOL(key_move); /** * keyring_clear - Clear a keyring * @keyring: The keyring to clear. * * Clear the contents of the specified keyring. * * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring. */ int keyring_clear(struct key *keyring) { struct assoc_array_edit *edit; int ret; if (keyring->type != &key_type_keyring) return -ENOTDIR; down_write(&keyring->sem); edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops); if (IS_ERR(edit)) { ret = PTR_ERR(edit); } else { if (edit) assoc_array_apply_edit(edit); notify_key(keyring, NOTIFY_KEY_CLEARED, 0); key_payload_reserve(keyring, 0); ret = 0; } up_write(&keyring->sem); return ret; } EXPORT_SYMBOL(keyring_clear); /* * Dispose of the links from a revoked keyring. * * This is called with the key sem write-locked. */ static void keyring_revoke(struct key *keyring) { struct assoc_array_edit *edit; edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops); if (!IS_ERR(edit)) { if (edit) assoc_array_apply_edit(edit); key_payload_reserve(keyring, 0); } } static bool keyring_gc_select_iterator(void *object, void *iterator_data) { struct key *key = keyring_ptr_to_key(object); time64_t *limit = iterator_data; if (key_is_dead(key, *limit)) return false; key_get(key); return true; } static int keyring_gc_check_iterator(const void *object, void *iterator_data) { const struct key *key = keyring_ptr_to_key(object); time64_t *limit = iterator_data; key_check(key); return key_is_dead(key, *limit); } /* * Garbage collect pointers from a keyring. * * Not called with any locks held. The keyring's key struct will not be * deallocated under us as only our caller may deallocate it. */ void keyring_gc(struct key *keyring, time64_t limit) { int result; kenter("%x{%s}", keyring->serial, keyring->description ?: ""); if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) | (1 << KEY_FLAG_REVOKED))) goto dont_gc; /* scan the keyring looking for dead keys */ rcu_read_lock(); result = assoc_array_iterate(&keyring->keys, keyring_gc_check_iterator, &limit); rcu_read_unlock(); if (result == true) goto do_gc; dont_gc: kleave(" [no gc]"); return; do_gc: down_write(&keyring->sem); assoc_array_gc(&keyring->keys, &keyring_assoc_array_ops, keyring_gc_select_iterator, &limit); up_write(&keyring->sem); kleave(" [gc]"); } /* * Garbage collect restriction pointers from a keyring. * * Keyring restrictions are associated with a key type, and must be cleaned * up if the key type is unregistered. The restriction is altered to always * reject additional keys so a keyring cannot be opened up by unregistering * a key type. * * Not called with any keyring locks held. The keyring's key struct will not * be deallocated under us as only our caller may deallocate it. * * The caller is required to hold key_types_sem and dead_type->sem. This is * fulfilled by key_gc_keytype() holding the locks on behalf of * key_garbage_collector(), which it invokes on a workqueue. */ void keyring_restriction_gc(struct key *keyring, struct key_type *dead_type) { struct key_restriction *keyres; kenter("%x{%s}", keyring->serial, keyring->description ?: ""); /* * keyring->restrict_link is only assigned at key allocation time * or with the key type locked, so the only values that could be * concurrently assigned to keyring->restrict_link are for key * types other than dead_type. Given this, it's ok to check * the key type before acquiring keyring->sem. */ if (!dead_type || !keyring->restrict_link || keyring->restrict_link->keytype != dead_type) { kleave(" [no restriction gc]"); return; } /* Lock the keyring to ensure that a link is not in progress */ down_write(&keyring->sem); keyres = keyring->restrict_link; keyres->check = restrict_link_reject; key_put(keyres->key); keyres->key = NULL; keyres->keytype = NULL; up_write(&keyring->sem); kleave(" [restriction gc]"); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1