Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jaroslav Kysela | 3725 | 87.75% | 14 | 25.00% |
Takashi Iwai | 368 | 8.67% | 13 | 23.21% |
Linus Torvalds (pre-git) | 126 | 2.97% | 21 | 37.50% |
Ingo Molnar | 11 | 0.26% | 1 | 1.79% |
Pierre-Louis Bossart | 5 | 0.12% | 1 | 1.79% |
Bhumika Goyal | 2 | 0.05% | 1 | 1.79% |
Jesper Juhl | 2 | 0.05% | 1 | 1.79% |
Clemens Ladisch | 2 | 0.05% | 1 | 1.79% |
Thomas Gleixner | 2 | 0.05% | 1 | 1.79% |
David Woodhouse | 1 | 0.02% | 1 | 1.79% |
Martin Olsson | 1 | 0.02% | 1 | 1.79% |
Total | 4245 | 56 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Driver for Digigram VX222 V2/Mic soundcards * * VX222-specific low-level routines * * Copyright (c) 2002 by Takashi Iwai <tiwai@suse.de> */ #include <linux/delay.h> #include <linux/device.h> #include <linux/firmware.h> #include <linux/mutex.h> #include <linux/io.h> #include <sound/core.h> #include <sound/control.h> #include <sound/tlv.h> #include "vx222.h" static const int vx2_reg_offset[VX_REG_MAX] = { [VX_ICR] = 0x00, [VX_CVR] = 0x04, [VX_ISR] = 0x08, [VX_IVR] = 0x0c, [VX_RXH] = 0x14, [VX_RXM] = 0x18, [VX_RXL] = 0x1c, [VX_DMA] = 0x10, [VX_CDSP] = 0x20, [VX_CFG] = 0x24, [VX_RUER] = 0x28, [VX_DATA] = 0x2c, [VX_STATUS] = 0x30, [VX_LOFREQ] = 0x34, [VX_HIFREQ] = 0x38, [VX_CSUER] = 0x3c, [VX_SELMIC] = 0x40, [VX_COMPOT] = 0x44, // Write: POTENTIOMETER ; Read: COMPRESSION LEVEL activate [VX_SCOMPR] = 0x48, // Read: COMPRESSION THRESHOLD activate [VX_GLIMIT] = 0x4c, // Read: LEVEL LIMITATION activate [VX_INTCSR] = 0x4c, // VX_INTCSR_REGISTER_OFFSET [VX_CNTRL] = 0x50, // VX_CNTRL_REGISTER_OFFSET [VX_GPIOC] = 0x54, // VX_GPIOC (new with PLX9030) }; static const int vx2_reg_index[VX_REG_MAX] = { [VX_ICR] = 1, [VX_CVR] = 1, [VX_ISR] = 1, [VX_IVR] = 1, [VX_RXH] = 1, [VX_RXM] = 1, [VX_RXL] = 1, [VX_DMA] = 1, [VX_CDSP] = 1, [VX_CFG] = 1, [VX_RUER] = 1, [VX_DATA] = 1, [VX_STATUS] = 1, [VX_LOFREQ] = 1, [VX_HIFREQ] = 1, [VX_CSUER] = 1, [VX_SELMIC] = 1, [VX_COMPOT] = 1, [VX_SCOMPR] = 1, [VX_GLIMIT] = 1, [VX_INTCSR] = 0, /* on the PLX */ [VX_CNTRL] = 0, /* on the PLX */ [VX_GPIOC] = 0, /* on the PLX */ }; static inline unsigned long vx2_reg_addr(struct vx_core *_chip, int reg) { struct snd_vx222 *chip = to_vx222(_chip); return chip->port[vx2_reg_index[reg]] + vx2_reg_offset[reg]; } /** * vx2_inb - read a byte from the register * @chip: VX core instance * @offset: register enum */ static unsigned char vx2_inb(struct vx_core *chip, int offset) { return inb(vx2_reg_addr(chip, offset)); } /** * vx2_outb - write a byte on the register * @chip: VX core instance * @offset: the register offset * @val: the value to write */ static void vx2_outb(struct vx_core *chip, int offset, unsigned char val) { outb(val, vx2_reg_addr(chip, offset)); /* dev_dbg(chip->card->dev, "outb: %x -> %x\n", val, vx2_reg_addr(chip, offset)); */ } /** * vx2_inl - read a 32bit word from the register * @chip: VX core instance * @offset: register enum */ static unsigned int vx2_inl(struct vx_core *chip, int offset) { return inl(vx2_reg_addr(chip, offset)); } /** * vx2_outl - write a 32bit word on the register * @chip: VX core instance * @offset: the register enum * @val: the value to write */ static void vx2_outl(struct vx_core *chip, int offset, unsigned int val) { /* dev_dbg(chip->card->dev, "outl: %x -> %x\n", val, vx2_reg_addr(chip, offset)); */ outl(val, vx2_reg_addr(chip, offset)); } /* * redefine macros to call directly */ #undef vx_inb #define vx_inb(chip,reg) vx2_inb((struct vx_core*)(chip), VX_##reg) #undef vx_outb #define vx_outb(chip,reg,val) vx2_outb((struct vx_core*)(chip), VX_##reg, val) #undef vx_inl #define vx_inl(chip,reg) vx2_inl((struct vx_core*)(chip), VX_##reg) #undef vx_outl #define vx_outl(chip,reg,val) vx2_outl((struct vx_core*)(chip), VX_##reg, val) /* * vx_reset_dsp - reset the DSP */ #define XX_DSP_RESET_WAIT_TIME 2 /* ms */ static void vx2_reset_dsp(struct vx_core *_chip) { struct snd_vx222 *chip = to_vx222(_chip); /* set the reset dsp bit to 0 */ vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_DSP_RESET_MASK); mdelay(XX_DSP_RESET_WAIT_TIME); chip->regCDSP |= VX_CDSP_DSP_RESET_MASK; /* set the reset dsp bit to 1 */ vx_outl(chip, CDSP, chip->regCDSP); } static int vx2_test_xilinx(struct vx_core *_chip) { struct snd_vx222 *chip = to_vx222(_chip); unsigned int data; dev_dbg(_chip->card->dev, "testing xilinx...\n"); /* This test uses several write/read sequences on TEST0 and TEST1 bits * to figure out whever or not the xilinx was correctly loaded */ /* We write 1 on CDSP.TEST0. We should get 0 on STATUS.TEST0. */ vx_outl(chip, CDSP, chip->regCDSP | VX_CDSP_TEST0_MASK); vx_inl(chip, ISR); data = vx_inl(chip, STATUS); if ((data & VX_STATUS_VAL_TEST0_MASK) == VX_STATUS_VAL_TEST0_MASK) { dev_dbg(_chip->card->dev, "bad!\n"); return -ENODEV; } /* We write 0 on CDSP.TEST0. We should get 1 on STATUS.TEST0. */ vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_TEST0_MASK); vx_inl(chip, ISR); data = vx_inl(chip, STATUS); if (! (data & VX_STATUS_VAL_TEST0_MASK)) { dev_dbg(_chip->card->dev, "bad! #2\n"); return -ENODEV; } if (_chip->type == VX_TYPE_BOARD) { /* not implemented on VX_2_BOARDS */ /* We write 1 on CDSP.TEST1. We should get 0 on STATUS.TEST1. */ vx_outl(chip, CDSP, chip->regCDSP | VX_CDSP_TEST1_MASK); vx_inl(chip, ISR); data = vx_inl(chip, STATUS); if ((data & VX_STATUS_VAL_TEST1_MASK) == VX_STATUS_VAL_TEST1_MASK) { dev_dbg(_chip->card->dev, "bad! #3\n"); return -ENODEV; } /* We write 0 on CDSP.TEST1. We should get 1 on STATUS.TEST1. */ vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_TEST1_MASK); vx_inl(chip, ISR); data = vx_inl(chip, STATUS); if (! (data & VX_STATUS_VAL_TEST1_MASK)) { dev_dbg(_chip->card->dev, "bad! #4\n"); return -ENODEV; } } dev_dbg(_chip->card->dev, "ok, xilinx fine.\n"); return 0; } /** * vx2_setup_pseudo_dma - set up the pseudo dma read/write mode. * @chip: VX core instance * @do_write: 0 = read, 1 = set up for DMA write */ static void vx2_setup_pseudo_dma(struct vx_core *chip, int do_write) { /* Interrupt mode and HREQ pin enabled for host transmit data transfers * (in case of the use of the pseudo-dma facility). */ vx_outl(chip, ICR, do_write ? ICR_TREQ : ICR_RREQ); /* Reset the pseudo-dma register (in case of the use of the * pseudo-dma facility). */ vx_outl(chip, RESET_DMA, 0); } /* * vx_release_pseudo_dma - disable the pseudo-DMA mode */ static inline void vx2_release_pseudo_dma(struct vx_core *chip) { /* HREQ pin disabled. */ vx_outl(chip, ICR, 0); } /* pseudo-dma write */ static void vx2_dma_write(struct vx_core *chip, struct snd_pcm_runtime *runtime, struct vx_pipe *pipe, int count) { unsigned long port = vx2_reg_addr(chip, VX_DMA); int offset = pipe->hw_ptr; u32 *addr = (u32 *)(runtime->dma_area + offset); if (snd_BUG_ON(count % 4)) return; vx2_setup_pseudo_dma(chip, 1); /* Transfer using pseudo-dma. */ if (offset + count >= pipe->buffer_bytes) { int length = pipe->buffer_bytes - offset; count -= length; length >>= 2; /* in 32bit words */ /* Transfer using pseudo-dma. */ for (; length > 0; length--) { outl(*addr, port); addr++; } addr = (u32 *)runtime->dma_area; pipe->hw_ptr = 0; } pipe->hw_ptr += count; count >>= 2; /* in 32bit words */ /* Transfer using pseudo-dma. */ for (; count > 0; count--) { outl(*addr, port); addr++; } vx2_release_pseudo_dma(chip); } /* pseudo dma read */ static void vx2_dma_read(struct vx_core *chip, struct snd_pcm_runtime *runtime, struct vx_pipe *pipe, int count) { int offset = pipe->hw_ptr; u32 *addr = (u32 *)(runtime->dma_area + offset); unsigned long port = vx2_reg_addr(chip, VX_DMA); if (snd_BUG_ON(count % 4)) return; vx2_setup_pseudo_dma(chip, 0); /* Transfer using pseudo-dma. */ if (offset + count >= pipe->buffer_bytes) { int length = pipe->buffer_bytes - offset; count -= length; length >>= 2; /* in 32bit words */ /* Transfer using pseudo-dma. */ for (; length > 0; length--) *addr++ = inl(port); addr = (u32 *)runtime->dma_area; pipe->hw_ptr = 0; } pipe->hw_ptr += count; count >>= 2; /* in 32bit words */ /* Transfer using pseudo-dma. */ for (; count > 0; count--) *addr++ = inl(port); vx2_release_pseudo_dma(chip); } #define VX_XILINX_RESET_MASK 0x40000000 #define VX_USERBIT0_MASK 0x00000004 #define VX_USERBIT1_MASK 0x00000020 #define VX_CNTRL_REGISTER_VALUE 0x00172012 /* * transfer counts bits to PLX */ static int put_xilinx_data(struct vx_core *chip, unsigned int port, unsigned int counts, unsigned char data) { unsigned int i; for (i = 0; i < counts; i++) { unsigned int val; /* set the clock bit to 0. */ val = VX_CNTRL_REGISTER_VALUE & ~VX_USERBIT0_MASK; vx2_outl(chip, port, val); vx2_inl(chip, port); udelay(1); if (data & (1 << i)) val |= VX_USERBIT1_MASK; else val &= ~VX_USERBIT1_MASK; vx2_outl(chip, port, val); vx2_inl(chip, port); /* set the clock bit to 1. */ val |= VX_USERBIT0_MASK; vx2_outl(chip, port, val); vx2_inl(chip, port); udelay(1); } return 0; } /* * load the xilinx image */ static int vx2_load_xilinx_binary(struct vx_core *chip, const struct firmware *xilinx) { unsigned int i; unsigned int port; const unsigned char *image; /* XILINX reset (wait at least 1 millisecond between reset on and off). */ vx_outl(chip, CNTRL, VX_CNTRL_REGISTER_VALUE | VX_XILINX_RESET_MASK); vx_inl(chip, CNTRL); msleep(10); vx_outl(chip, CNTRL, VX_CNTRL_REGISTER_VALUE); vx_inl(chip, CNTRL); msleep(10); if (chip->type == VX_TYPE_BOARD) port = VX_CNTRL; else port = VX_GPIOC; /* VX222 V2 and VX222_MIC_BOARD with new PLX9030 use this register */ image = xilinx->data; for (i = 0; i < xilinx->size; i++, image++) { if (put_xilinx_data(chip, port, 8, *image) < 0) return -EINVAL; /* don't take too much time in this loop... */ cond_resched(); } put_xilinx_data(chip, port, 4, 0xff); /* end signature */ msleep(200); /* test after loading (is buggy with VX222) */ if (chip->type != VX_TYPE_BOARD) { /* Test if load successful: test bit 8 of register GPIOC (VX222: use CNTRL) ! */ i = vx_inl(chip, GPIOC); if (i & 0x0100) return 0; dev_err(chip->card->dev, "xilinx test failed after load, GPIOC=0x%x\n", i); return -EINVAL; } return 0; } /* * load the boot/dsp images */ static int vx2_load_dsp(struct vx_core *vx, int index, const struct firmware *dsp) { int err; switch (index) { case 1: /* xilinx image */ err = vx2_load_xilinx_binary(vx, dsp); if (err < 0) return err; err = vx2_test_xilinx(vx); if (err < 0) return err; return 0; case 2: /* DSP boot */ return snd_vx_dsp_boot(vx, dsp); case 3: /* DSP image */ return snd_vx_dsp_load(vx, dsp); default: snd_BUG(); return -EINVAL; } } /* * vx_test_and_ack - test and acknowledge interrupt * * called from irq hander, too * * spinlock held! */ static int vx2_test_and_ack(struct vx_core *chip) { /* not booted yet? */ if (! (chip->chip_status & VX_STAT_XILINX_LOADED)) return -ENXIO; if (! (vx_inl(chip, STATUS) & VX_STATUS_MEMIRQ_MASK)) return -EIO; /* ok, interrupts generated, now ack it */ /* set ACQUIT bit up and down */ vx_outl(chip, STATUS, 0); /* useless read just to spend some time and maintain * the ACQUIT signal up for a while ( a bus cycle ) */ vx_inl(chip, STATUS); /* ack */ vx_outl(chip, STATUS, VX_STATUS_MEMIRQ_MASK); /* useless read just to spend some time and maintain * the ACQUIT signal up for a while ( a bus cycle ) */ vx_inl(chip, STATUS); /* clear */ vx_outl(chip, STATUS, 0); return 0; } /* * vx_validate_irq - enable/disable IRQ */ static void vx2_validate_irq(struct vx_core *_chip, int enable) { struct snd_vx222 *chip = to_vx222(_chip); /* Set the interrupt enable bit to 1 in CDSP register */ if (enable) { /* Set the PCI interrupt enable bit to 1.*/ vx_outl(chip, INTCSR, VX_INTCSR_VALUE|VX_PCI_INTERRUPT_MASK); chip->regCDSP |= VX_CDSP_VALID_IRQ_MASK; } else { /* Set the PCI interrupt enable bit to 0. */ vx_outl(chip, INTCSR, VX_INTCSR_VALUE&~VX_PCI_INTERRUPT_MASK); chip->regCDSP &= ~VX_CDSP_VALID_IRQ_MASK; } vx_outl(chip, CDSP, chip->regCDSP); } /* * write an AKM codec data (24bit) */ static void vx2_write_codec_reg(struct vx_core *chip, unsigned int data) { unsigned int i; vx_inl(chip, HIFREQ); /* We have to send 24 bits (3 x 8 bits). Start with most signif. Bit */ for (i = 0; i < 24; i++, data <<= 1) vx_outl(chip, DATA, ((data & 0x800000) ? VX_DATA_CODEC_MASK : 0)); /* Terminate access to codec registers */ vx_inl(chip, RUER); } #define AKM_CODEC_POWER_CONTROL_CMD 0xA007 #define AKM_CODEC_RESET_ON_CMD 0xA100 #define AKM_CODEC_RESET_OFF_CMD 0xA103 #define AKM_CODEC_CLOCK_FORMAT_CMD 0xA240 #define AKM_CODEC_MUTE_CMD 0xA38D #define AKM_CODEC_UNMUTE_CMD 0xA30D #define AKM_CODEC_LEFT_LEVEL_CMD 0xA400 #define AKM_CODEC_RIGHT_LEVEL_CMD 0xA500 static const u8 vx2_akm_gains_lut[VX2_AKM_LEVEL_MAX+1] = { 0x7f, // [000] = +0.000 dB -> AKM(0x7f) = +0.000 dB error(+0.000 dB) 0x7d, // [001] = -0.500 dB -> AKM(0x7d) = -0.572 dB error(-0.072 dB) 0x7c, // [002] = -1.000 dB -> AKM(0x7c) = -0.873 dB error(+0.127 dB) 0x7a, // [003] = -1.500 dB -> AKM(0x7a) = -1.508 dB error(-0.008 dB) 0x79, // [004] = -2.000 dB -> AKM(0x79) = -1.844 dB error(+0.156 dB) 0x77, // [005] = -2.500 dB -> AKM(0x77) = -2.557 dB error(-0.057 dB) 0x76, // [006] = -3.000 dB -> AKM(0x76) = -2.937 dB error(+0.063 dB) 0x75, // [007] = -3.500 dB -> AKM(0x75) = -3.334 dB error(+0.166 dB) 0x73, // [008] = -4.000 dB -> AKM(0x73) = -4.188 dB error(-0.188 dB) 0x72, // [009] = -4.500 dB -> AKM(0x72) = -4.648 dB error(-0.148 dB) 0x71, // [010] = -5.000 dB -> AKM(0x71) = -5.134 dB error(-0.134 dB) 0x70, // [011] = -5.500 dB -> AKM(0x70) = -5.649 dB error(-0.149 dB) 0x6f, // [012] = -6.000 dB -> AKM(0x6f) = -6.056 dB error(-0.056 dB) 0x6d, // [013] = -6.500 dB -> AKM(0x6d) = -6.631 dB error(-0.131 dB) 0x6c, // [014] = -7.000 dB -> AKM(0x6c) = -6.933 dB error(+0.067 dB) 0x6a, // [015] = -7.500 dB -> AKM(0x6a) = -7.571 dB error(-0.071 dB) 0x69, // [016] = -8.000 dB -> AKM(0x69) = -7.909 dB error(+0.091 dB) 0x67, // [017] = -8.500 dB -> AKM(0x67) = -8.626 dB error(-0.126 dB) 0x66, // [018] = -9.000 dB -> AKM(0x66) = -9.008 dB error(-0.008 dB) 0x65, // [019] = -9.500 dB -> AKM(0x65) = -9.407 dB error(+0.093 dB) 0x64, // [020] = -10.000 dB -> AKM(0x64) = -9.826 dB error(+0.174 dB) 0x62, // [021] = -10.500 dB -> AKM(0x62) = -10.730 dB error(-0.230 dB) 0x61, // [022] = -11.000 dB -> AKM(0x61) = -11.219 dB error(-0.219 dB) 0x60, // [023] = -11.500 dB -> AKM(0x60) = -11.738 dB error(-0.238 dB) 0x5f, // [024] = -12.000 dB -> AKM(0x5f) = -12.149 dB error(-0.149 dB) 0x5e, // [025] = -12.500 dB -> AKM(0x5e) = -12.434 dB error(+0.066 dB) 0x5c, // [026] = -13.000 dB -> AKM(0x5c) = -13.033 dB error(-0.033 dB) 0x5b, // [027] = -13.500 dB -> AKM(0x5b) = -13.350 dB error(+0.150 dB) 0x59, // [028] = -14.000 dB -> AKM(0x59) = -14.018 dB error(-0.018 dB) 0x58, // [029] = -14.500 dB -> AKM(0x58) = -14.373 dB error(+0.127 dB) 0x56, // [030] = -15.000 dB -> AKM(0x56) = -15.130 dB error(-0.130 dB) 0x55, // [031] = -15.500 dB -> AKM(0x55) = -15.534 dB error(-0.034 dB) 0x54, // [032] = -16.000 dB -> AKM(0x54) = -15.958 dB error(+0.042 dB) 0x53, // [033] = -16.500 dB -> AKM(0x53) = -16.404 dB error(+0.096 dB) 0x52, // [034] = -17.000 dB -> AKM(0x52) = -16.874 dB error(+0.126 dB) 0x51, // [035] = -17.500 dB -> AKM(0x51) = -17.371 dB error(+0.129 dB) 0x50, // [036] = -18.000 dB -> AKM(0x50) = -17.898 dB error(+0.102 dB) 0x4e, // [037] = -18.500 dB -> AKM(0x4e) = -18.605 dB error(-0.105 dB) 0x4d, // [038] = -19.000 dB -> AKM(0x4d) = -18.905 dB error(+0.095 dB) 0x4b, // [039] = -19.500 dB -> AKM(0x4b) = -19.538 dB error(-0.038 dB) 0x4a, // [040] = -20.000 dB -> AKM(0x4a) = -19.872 dB error(+0.128 dB) 0x48, // [041] = -20.500 dB -> AKM(0x48) = -20.583 dB error(-0.083 dB) 0x47, // [042] = -21.000 dB -> AKM(0x47) = -20.961 dB error(+0.039 dB) 0x46, // [043] = -21.500 dB -> AKM(0x46) = -21.356 dB error(+0.144 dB) 0x44, // [044] = -22.000 dB -> AKM(0x44) = -22.206 dB error(-0.206 dB) 0x43, // [045] = -22.500 dB -> AKM(0x43) = -22.664 dB error(-0.164 dB) 0x42, // [046] = -23.000 dB -> AKM(0x42) = -23.147 dB error(-0.147 dB) 0x41, // [047] = -23.500 dB -> AKM(0x41) = -23.659 dB error(-0.159 dB) 0x40, // [048] = -24.000 dB -> AKM(0x40) = -24.203 dB error(-0.203 dB) 0x3f, // [049] = -24.500 dB -> AKM(0x3f) = -24.635 dB error(-0.135 dB) 0x3e, // [050] = -25.000 dB -> AKM(0x3e) = -24.935 dB error(+0.065 dB) 0x3c, // [051] = -25.500 dB -> AKM(0x3c) = -25.569 dB error(-0.069 dB) 0x3b, // [052] = -26.000 dB -> AKM(0x3b) = -25.904 dB error(+0.096 dB) 0x39, // [053] = -26.500 dB -> AKM(0x39) = -26.615 dB error(-0.115 dB) 0x38, // [054] = -27.000 dB -> AKM(0x38) = -26.994 dB error(+0.006 dB) 0x37, // [055] = -27.500 dB -> AKM(0x37) = -27.390 dB error(+0.110 dB) 0x36, // [056] = -28.000 dB -> AKM(0x36) = -27.804 dB error(+0.196 dB) 0x34, // [057] = -28.500 dB -> AKM(0x34) = -28.699 dB error(-0.199 dB) 0x33, // [058] = -29.000 dB -> AKM(0x33) = -29.183 dB error(-0.183 dB) 0x32, // [059] = -29.500 dB -> AKM(0x32) = -29.696 dB error(-0.196 dB) 0x31, // [060] = -30.000 dB -> AKM(0x31) = -30.241 dB error(-0.241 dB) 0x31, // [061] = -30.500 dB -> AKM(0x31) = -30.241 dB error(+0.259 dB) 0x30, // [062] = -31.000 dB -> AKM(0x30) = -30.823 dB error(+0.177 dB) 0x2e, // [063] = -31.500 dB -> AKM(0x2e) = -31.610 dB error(-0.110 dB) 0x2d, // [064] = -32.000 dB -> AKM(0x2d) = -31.945 dB error(+0.055 dB) 0x2b, // [065] = -32.500 dB -> AKM(0x2b) = -32.659 dB error(-0.159 dB) 0x2a, // [066] = -33.000 dB -> AKM(0x2a) = -33.038 dB error(-0.038 dB) 0x29, // [067] = -33.500 dB -> AKM(0x29) = -33.435 dB error(+0.065 dB) 0x28, // [068] = -34.000 dB -> AKM(0x28) = -33.852 dB error(+0.148 dB) 0x27, // [069] = -34.500 dB -> AKM(0x27) = -34.289 dB error(+0.211 dB) 0x25, // [070] = -35.000 dB -> AKM(0x25) = -35.235 dB error(-0.235 dB) 0x24, // [071] = -35.500 dB -> AKM(0x24) = -35.750 dB error(-0.250 dB) 0x24, // [072] = -36.000 dB -> AKM(0x24) = -35.750 dB error(+0.250 dB) 0x23, // [073] = -36.500 dB -> AKM(0x23) = -36.297 dB error(+0.203 dB) 0x22, // [074] = -37.000 dB -> AKM(0x22) = -36.881 dB error(+0.119 dB) 0x21, // [075] = -37.500 dB -> AKM(0x21) = -37.508 dB error(-0.008 dB) 0x20, // [076] = -38.000 dB -> AKM(0x20) = -38.183 dB error(-0.183 dB) 0x1f, // [077] = -38.500 dB -> AKM(0x1f) = -38.726 dB error(-0.226 dB) 0x1e, // [078] = -39.000 dB -> AKM(0x1e) = -39.108 dB error(-0.108 dB) 0x1d, // [079] = -39.500 dB -> AKM(0x1d) = -39.507 dB error(-0.007 dB) 0x1c, // [080] = -40.000 dB -> AKM(0x1c) = -39.926 dB error(+0.074 dB) 0x1b, // [081] = -40.500 dB -> AKM(0x1b) = -40.366 dB error(+0.134 dB) 0x1a, // [082] = -41.000 dB -> AKM(0x1a) = -40.829 dB error(+0.171 dB) 0x19, // [083] = -41.500 dB -> AKM(0x19) = -41.318 dB error(+0.182 dB) 0x18, // [084] = -42.000 dB -> AKM(0x18) = -41.837 dB error(+0.163 dB) 0x17, // [085] = -42.500 dB -> AKM(0x17) = -42.389 dB error(+0.111 dB) 0x16, // [086] = -43.000 dB -> AKM(0x16) = -42.978 dB error(+0.022 dB) 0x15, // [087] = -43.500 dB -> AKM(0x15) = -43.610 dB error(-0.110 dB) 0x14, // [088] = -44.000 dB -> AKM(0x14) = -44.291 dB error(-0.291 dB) 0x14, // [089] = -44.500 dB -> AKM(0x14) = -44.291 dB error(+0.209 dB) 0x13, // [090] = -45.000 dB -> AKM(0x13) = -45.031 dB error(-0.031 dB) 0x12, // [091] = -45.500 dB -> AKM(0x12) = -45.840 dB error(-0.340 dB) 0x12, // [092] = -46.000 dB -> AKM(0x12) = -45.840 dB error(+0.160 dB) 0x11, // [093] = -46.500 dB -> AKM(0x11) = -46.731 dB error(-0.231 dB) 0x11, // [094] = -47.000 dB -> AKM(0x11) = -46.731 dB error(+0.269 dB) 0x10, // [095] = -47.500 dB -> AKM(0x10) = -47.725 dB error(-0.225 dB) 0x10, // [096] = -48.000 dB -> AKM(0x10) = -47.725 dB error(+0.275 dB) 0x0f, // [097] = -48.500 dB -> AKM(0x0f) = -48.553 dB error(-0.053 dB) 0x0e, // [098] = -49.000 dB -> AKM(0x0e) = -49.152 dB error(-0.152 dB) 0x0d, // [099] = -49.500 dB -> AKM(0x0d) = -49.796 dB error(-0.296 dB) 0x0d, // [100] = -50.000 dB -> AKM(0x0d) = -49.796 dB error(+0.204 dB) 0x0c, // [101] = -50.500 dB -> AKM(0x0c) = -50.491 dB error(+0.009 dB) 0x0b, // [102] = -51.000 dB -> AKM(0x0b) = -51.247 dB error(-0.247 dB) 0x0b, // [103] = -51.500 dB -> AKM(0x0b) = -51.247 dB error(+0.253 dB) 0x0a, // [104] = -52.000 dB -> AKM(0x0a) = -52.075 dB error(-0.075 dB) 0x0a, // [105] = -52.500 dB -> AKM(0x0a) = -52.075 dB error(+0.425 dB) 0x09, // [106] = -53.000 dB -> AKM(0x09) = -52.990 dB error(+0.010 dB) 0x09, // [107] = -53.500 dB -> AKM(0x09) = -52.990 dB error(+0.510 dB) 0x08, // [108] = -54.000 dB -> AKM(0x08) = -54.013 dB error(-0.013 dB) 0x08, // [109] = -54.500 dB -> AKM(0x08) = -54.013 dB error(+0.487 dB) 0x07, // [110] = -55.000 dB -> AKM(0x07) = -55.173 dB error(-0.173 dB) 0x07, // [111] = -55.500 dB -> AKM(0x07) = -55.173 dB error(+0.327 dB) 0x06, // [112] = -56.000 dB -> AKM(0x06) = -56.512 dB error(-0.512 dB) 0x06, // [113] = -56.500 dB -> AKM(0x06) = -56.512 dB error(-0.012 dB) 0x06, // [114] = -57.000 dB -> AKM(0x06) = -56.512 dB error(+0.488 dB) 0x05, // [115] = -57.500 dB -> AKM(0x05) = -58.095 dB error(-0.595 dB) 0x05, // [116] = -58.000 dB -> AKM(0x05) = -58.095 dB error(-0.095 dB) 0x05, // [117] = -58.500 dB -> AKM(0x05) = -58.095 dB error(+0.405 dB) 0x05, // [118] = -59.000 dB -> AKM(0x05) = -58.095 dB error(+0.905 dB) 0x04, // [119] = -59.500 dB -> AKM(0x04) = -60.034 dB error(-0.534 dB) 0x04, // [120] = -60.000 dB -> AKM(0x04) = -60.034 dB error(-0.034 dB) 0x04, // [121] = -60.500 dB -> AKM(0x04) = -60.034 dB error(+0.466 dB) 0x04, // [122] = -61.000 dB -> AKM(0x04) = -60.034 dB error(+0.966 dB) 0x03, // [123] = -61.500 dB -> AKM(0x03) = -62.532 dB error(-1.032 dB) 0x03, // [124] = -62.000 dB -> AKM(0x03) = -62.532 dB error(-0.532 dB) 0x03, // [125] = -62.500 dB -> AKM(0x03) = -62.532 dB error(-0.032 dB) 0x03, // [126] = -63.000 dB -> AKM(0x03) = -62.532 dB error(+0.468 dB) 0x03, // [127] = -63.500 dB -> AKM(0x03) = -62.532 dB error(+0.968 dB) 0x03, // [128] = -64.000 dB -> AKM(0x03) = -62.532 dB error(+1.468 dB) 0x02, // [129] = -64.500 dB -> AKM(0x02) = -66.054 dB error(-1.554 dB) 0x02, // [130] = -65.000 dB -> AKM(0x02) = -66.054 dB error(-1.054 dB) 0x02, // [131] = -65.500 dB -> AKM(0x02) = -66.054 dB error(-0.554 dB) 0x02, // [132] = -66.000 dB -> AKM(0x02) = -66.054 dB error(-0.054 dB) 0x02, // [133] = -66.500 dB -> AKM(0x02) = -66.054 dB error(+0.446 dB) 0x02, // [134] = -67.000 dB -> AKM(0x02) = -66.054 dB error(+0.946 dB) 0x02, // [135] = -67.500 dB -> AKM(0x02) = -66.054 dB error(+1.446 dB) 0x02, // [136] = -68.000 dB -> AKM(0x02) = -66.054 dB error(+1.946 dB) 0x02, // [137] = -68.500 dB -> AKM(0x02) = -66.054 dB error(+2.446 dB) 0x02, // [138] = -69.000 dB -> AKM(0x02) = -66.054 dB error(+2.946 dB) 0x01, // [139] = -69.500 dB -> AKM(0x01) = -72.075 dB error(-2.575 dB) 0x01, // [140] = -70.000 dB -> AKM(0x01) = -72.075 dB error(-2.075 dB) 0x01, // [141] = -70.500 dB -> AKM(0x01) = -72.075 dB error(-1.575 dB) 0x01, // [142] = -71.000 dB -> AKM(0x01) = -72.075 dB error(-1.075 dB) 0x01, // [143] = -71.500 dB -> AKM(0x01) = -72.075 dB error(-0.575 dB) 0x01, // [144] = -72.000 dB -> AKM(0x01) = -72.075 dB error(-0.075 dB) 0x01, // [145] = -72.500 dB -> AKM(0x01) = -72.075 dB error(+0.425 dB) 0x01, // [146] = -73.000 dB -> AKM(0x01) = -72.075 dB error(+0.925 dB) 0x00}; // [147] = -73.500 dB -> AKM(0x00) = mute error(+infini) /* * pseudo-codec write entry */ static void vx2_write_akm(struct vx_core *chip, int reg, unsigned int data) { unsigned int val; if (reg == XX_CODEC_DAC_CONTROL_REGISTER) { vx2_write_codec_reg(chip, data ? AKM_CODEC_MUTE_CMD : AKM_CODEC_UNMUTE_CMD); return; } /* `data' is a value between 0x0 and VX2_AKM_LEVEL_MAX = 0x093, in the case of the AKM codecs, we need a look up table, as there is no linear matching between the driver codec values and the real dBu value */ if (snd_BUG_ON(data >= sizeof(vx2_akm_gains_lut))) return; switch (reg) { case XX_CODEC_LEVEL_LEFT_REGISTER: val = AKM_CODEC_LEFT_LEVEL_CMD; break; case XX_CODEC_LEVEL_RIGHT_REGISTER: val = AKM_CODEC_RIGHT_LEVEL_CMD; break; default: snd_BUG(); return; } val |= vx2_akm_gains_lut[data]; vx2_write_codec_reg(chip, val); } /* * write codec bit for old VX222 board */ static void vx2_old_write_codec_bit(struct vx_core *chip, int codec, unsigned int data) { int i; /* activate access to codec registers */ vx_inl(chip, HIFREQ); for (i = 0; i < 24; i++, data <<= 1) vx_outl(chip, DATA, ((data & 0x800000) ? VX_DATA_CODEC_MASK : 0)); /* Terminate access to codec registers */ vx_inl(chip, RUER); } /* * reset codec bit */ static void vx2_reset_codec(struct vx_core *_chip) { struct snd_vx222 *chip = to_vx222(_chip); /* Set the reset CODEC bit to 0. */ vx_outl(chip, CDSP, chip->regCDSP &~ VX_CDSP_CODEC_RESET_MASK); vx_inl(chip, CDSP); msleep(10); /* Set the reset CODEC bit to 1. */ chip->regCDSP |= VX_CDSP_CODEC_RESET_MASK; vx_outl(chip, CDSP, chip->regCDSP); vx_inl(chip, CDSP); if (_chip->type == VX_TYPE_BOARD) { msleep(1); return; } msleep(5); /* additionnel wait time for AKM's */ vx2_write_codec_reg(_chip, AKM_CODEC_POWER_CONTROL_CMD); /* DAC power up, ADC power up, Vref power down */ vx2_write_codec_reg(_chip, AKM_CODEC_CLOCK_FORMAT_CMD); /* default */ vx2_write_codec_reg(_chip, AKM_CODEC_MUTE_CMD); /* Mute = ON ,Deemphasis = OFF */ vx2_write_codec_reg(_chip, AKM_CODEC_RESET_OFF_CMD); /* DAC and ADC normal operation */ if (_chip->type == VX_TYPE_MIC) { /* set up the micro input selector */ chip->regSELMIC = MICRO_SELECT_INPUT_NORM | MICRO_SELECT_PREAMPLI_G_0 | MICRO_SELECT_NOISE_T_52DB; /* reset phantom power supply */ chip->regSELMIC &= ~MICRO_SELECT_PHANTOM_ALIM; vx_outl(_chip, SELMIC, chip->regSELMIC); } } /* * change the audio source */ static void vx2_change_audio_source(struct vx_core *_chip, int src) { struct snd_vx222 *chip = to_vx222(_chip); switch (src) { case VX_AUDIO_SRC_DIGITAL: chip->regCFG |= VX_CFG_DATAIN_SEL_MASK; break; default: chip->regCFG &= ~VX_CFG_DATAIN_SEL_MASK; break; } vx_outl(chip, CFG, chip->regCFG); } /* * set the clock source */ static void vx2_set_clock_source(struct vx_core *_chip, int source) { struct snd_vx222 *chip = to_vx222(_chip); if (source == INTERNAL_QUARTZ) chip->regCFG &= ~VX_CFG_CLOCKIN_SEL_MASK; else chip->regCFG |= VX_CFG_CLOCKIN_SEL_MASK; vx_outl(chip, CFG, chip->regCFG); } /* * reset the board */ static void vx2_reset_board(struct vx_core *_chip, int cold_reset) { struct snd_vx222 *chip = to_vx222(_chip); /* initialize the register values */ chip->regCDSP = VX_CDSP_CODEC_RESET_MASK | VX_CDSP_DSP_RESET_MASK ; chip->regCFG = 0; } /* * input level controls for VX222 Mic */ /* Micro level is specified to be adjustable from -96dB to 63 dB (board coded 0x00 ... 318), * 318 = 210 + 36 + 36 + 36 (210 = +9dB variable) (3 * 36 = 3 steps of 18dB pre ampli) * as we will mute if less than -110dB, so let's simply use line input coded levels and add constant offset ! */ #define V2_MICRO_LEVEL_RANGE (318 - 255) static void vx2_set_input_level(struct snd_vx222 *chip) { int i, miclevel, preamp; unsigned int data; miclevel = chip->mic_level; miclevel += V2_MICRO_LEVEL_RANGE; /* add 318 - 0xff */ preamp = 0; while (miclevel > 210) { /* limitation to +9dB of 3310 real gain */ preamp++; /* raise pre ampli + 18dB */ miclevel -= (18 * 2); /* lower level 18 dB (*2 because of 0.5 dB steps !) */ } if (snd_BUG_ON(preamp >= 4)) return; /* set pre-amp level */ chip->regSELMIC &= ~MICRO_SELECT_PREAMPLI_MASK; chip->regSELMIC |= (preamp << MICRO_SELECT_PREAMPLI_OFFSET) & MICRO_SELECT_PREAMPLI_MASK; vx_outl(chip, SELMIC, chip->regSELMIC); data = (unsigned int)miclevel << 16 | (unsigned int)chip->input_level[1] << 8 | (unsigned int)chip->input_level[0]; vx_inl(chip, DATA); /* Activate input level programming */ /* We have to send 32 bits (4 x 8 bits) */ for (i = 0; i < 32; i++, data <<= 1) vx_outl(chip, DATA, ((data & 0x80000000) ? VX_DATA_CODEC_MASK : 0)); vx_inl(chip, RUER); /* Terminate input level programming */ } #define MIC_LEVEL_MAX 0xff static const DECLARE_TLV_DB_SCALE(db_scale_mic, -6450, 50, 0); /* * controls API for input levels */ /* input levels */ static int vx_input_level_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 2; uinfo->value.integer.min = 0; uinfo->value.integer.max = MIC_LEVEL_MAX; return 0; } static int vx_input_level_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct vx_core *_chip = snd_kcontrol_chip(kcontrol); struct snd_vx222 *chip = to_vx222(_chip); mutex_lock(&_chip->mixer_mutex); ucontrol->value.integer.value[0] = chip->input_level[0]; ucontrol->value.integer.value[1] = chip->input_level[1]; mutex_unlock(&_chip->mixer_mutex); return 0; } static int vx_input_level_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct vx_core *_chip = snd_kcontrol_chip(kcontrol); struct snd_vx222 *chip = to_vx222(_chip); if (ucontrol->value.integer.value[0] < 0 || ucontrol->value.integer.value[0] > MIC_LEVEL_MAX) return -EINVAL; if (ucontrol->value.integer.value[1] < 0 || ucontrol->value.integer.value[1] > MIC_LEVEL_MAX) return -EINVAL; mutex_lock(&_chip->mixer_mutex); if (chip->input_level[0] != ucontrol->value.integer.value[0] || chip->input_level[1] != ucontrol->value.integer.value[1]) { chip->input_level[0] = ucontrol->value.integer.value[0]; chip->input_level[1] = ucontrol->value.integer.value[1]; vx2_set_input_level(chip); mutex_unlock(&_chip->mixer_mutex); return 1; } mutex_unlock(&_chip->mixer_mutex); return 0; } /* mic level */ static int vx_mic_level_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = MIC_LEVEL_MAX; return 0; } static int vx_mic_level_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct vx_core *_chip = snd_kcontrol_chip(kcontrol); struct snd_vx222 *chip = to_vx222(_chip); ucontrol->value.integer.value[0] = chip->mic_level; return 0; } static int vx_mic_level_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct vx_core *_chip = snd_kcontrol_chip(kcontrol); struct snd_vx222 *chip = to_vx222(_chip); if (ucontrol->value.integer.value[0] < 0 || ucontrol->value.integer.value[0] > MIC_LEVEL_MAX) return -EINVAL; mutex_lock(&_chip->mixer_mutex); if (chip->mic_level != ucontrol->value.integer.value[0]) { chip->mic_level = ucontrol->value.integer.value[0]; vx2_set_input_level(chip); mutex_unlock(&_chip->mixer_mutex); return 1; } mutex_unlock(&_chip->mixer_mutex); return 0; } static const struct snd_kcontrol_new vx_control_input_level = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .access = (SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ), .name = "Capture Volume", .info = vx_input_level_info, .get = vx_input_level_get, .put = vx_input_level_put, .tlv = { .p = db_scale_mic }, }; static const struct snd_kcontrol_new vx_control_mic_level = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .access = (SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ), .name = "Mic Capture Volume", .info = vx_mic_level_info, .get = vx_mic_level_get, .put = vx_mic_level_put, .tlv = { .p = db_scale_mic }, }; /* * FIXME: compressor/limiter implementation is missing yet... */ static int vx2_add_mic_controls(struct vx_core *_chip) { struct snd_vx222 *chip = to_vx222(_chip); int err; if (_chip->type != VX_TYPE_MIC) return 0; /* mute input levels */ chip->input_level[0] = chip->input_level[1] = 0; chip->mic_level = 0; vx2_set_input_level(chip); /* controls */ err = snd_ctl_add(_chip->card, snd_ctl_new1(&vx_control_input_level, chip)); if (err < 0) return err; err = snd_ctl_add(_chip->card, snd_ctl_new1(&vx_control_mic_level, chip)); if (err < 0) return err; return 0; } /* * callbacks */ const struct snd_vx_ops vx222_ops = { .in8 = vx2_inb, .in32 = vx2_inl, .out8 = vx2_outb, .out32 = vx2_outl, .test_and_ack = vx2_test_and_ack, .validate_irq = vx2_validate_irq, .akm_write = vx2_write_akm, .reset_codec = vx2_reset_codec, .change_audio_source = vx2_change_audio_source, .set_clock_source = vx2_set_clock_source, .load_dsp = vx2_load_dsp, .reset_dsp = vx2_reset_dsp, .reset_board = vx2_reset_board, .dma_write = vx2_dma_write, .dma_read = vx2_dma_read, .add_controls = vx2_add_mic_controls, }; /* for old VX222 board */ const struct snd_vx_ops vx222_old_ops = { .in8 = vx2_inb, .in32 = vx2_inl, .out8 = vx2_outb, .out32 = vx2_outl, .test_and_ack = vx2_test_and_ack, .validate_irq = vx2_validate_irq, .write_codec = vx2_old_write_codec_bit, .reset_codec = vx2_reset_codec, .change_audio_source = vx2_change_audio_source, .set_clock_source = vx2_set_clock_source, .load_dsp = vx2_load_dsp, .reset_dsp = vx2_reset_dsp, .reset_board = vx2_reset_board, .dma_write = vx2_dma_write, .dma_read = vx2_dma_read, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1