Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Martin Povišer | 5287 | 99.62% | 8 | 72.73% |
Kuninori Morimoto | 13 | 0.24% | 1 | 9.09% |
Kees Cook | 5 | 0.09% | 1 | 9.09% |
Uwe Kleine-König | 2 | 0.04% | 1 | 9.09% |
Total | 5307 | 11 |
// SPDX-License-Identifier: GPL-2.0-only // // Apple SoCs MCA driver // // Copyright (C) The Asahi Linux Contributors // // The MCA peripheral is made up of a number of identical units called clusters. // Each cluster has its separate clock parent, SYNC signal generator, carries // four SERDES units and has a dedicated I2S port on the SoC's periphery. // // The clusters can operate independently, or can be combined together in a // configurable manner. We mostly treat them as self-contained independent // units and don't configure any cross-cluster connections except for the I2S // ports. The I2S ports can be routed to any of the clusters (irrespective // of their native cluster). We map this onto ASoC's (DPCM) notion of backend // and frontend DAIs. The 'cluster guts' are frontends which are dynamically // routed to backend I2S ports. // // DAI references in devicetree are resolved to backends. The routing between // frontends and backends is determined by the machine driver in the DAPM paths // it supplies. #include <linux/bitfield.h> #include <linux/clk.h> #include <linux/dma-mapping.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_clk.h> #include <linux/of_dma.h> #include <linux/platform_device.h> #include <linux/pm_domain.h> #include <linux/regmap.h> #include <linux/reset.h> #include <linux/slab.h> #include <sound/core.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/soc.h> #include <sound/dmaengine_pcm.h> #define USE_RXB_FOR_CAPTURE /* Relative to cluster base */ #define REG_STATUS 0x0 #define STATUS_MCLK_EN BIT(0) #define REG_MCLK_CONF 0x4 #define MCLK_CONF_DIV GENMASK(11, 8) #define REG_SYNCGEN_STATUS 0x100 #define SYNCGEN_STATUS_EN BIT(0) #define REG_SYNCGEN_MCLK_SEL 0x104 #define SYNCGEN_MCLK_SEL GENMASK(3, 0) #define REG_SYNCGEN_HI_PERIOD 0x108 #define REG_SYNCGEN_LO_PERIOD 0x10c #define REG_PORT_ENABLES 0x600 #define PORT_ENABLES_CLOCKS GENMASK(2, 1) #define PORT_ENABLES_TX_DATA BIT(3) #define REG_PORT_CLOCK_SEL 0x604 #define PORT_CLOCK_SEL GENMASK(11, 8) #define REG_PORT_DATA_SEL 0x608 #define PORT_DATA_SEL_TXA(cl) (1 << ((cl)*2)) #define PORT_DATA_SEL_TXB(cl) (2 << ((cl)*2)) #define REG_INTSTATE 0x700 #define REG_INTMASK 0x704 /* Bases of serdes units (relative to cluster) */ #define CLUSTER_RXA_OFF 0x200 #define CLUSTER_TXA_OFF 0x300 #define CLUSTER_RXB_OFF 0x400 #define CLUSTER_TXB_OFF 0x500 #define CLUSTER_TX_OFF CLUSTER_TXA_OFF #ifndef USE_RXB_FOR_CAPTURE #define CLUSTER_RX_OFF CLUSTER_RXA_OFF #else #define CLUSTER_RX_OFF CLUSTER_RXB_OFF #endif /* Relative to serdes unit base */ #define REG_SERDES_STATUS 0x00 #define SERDES_STATUS_EN BIT(0) #define SERDES_STATUS_RST BIT(1) #define REG_TX_SERDES_CONF 0x04 #define REG_RX_SERDES_CONF 0x08 #define SERDES_CONF_NCHANS GENMASK(3, 0) #define SERDES_CONF_WIDTH_MASK GENMASK(8, 4) #define SERDES_CONF_WIDTH_16BIT 0x40 #define SERDES_CONF_WIDTH_20BIT 0x80 #define SERDES_CONF_WIDTH_24BIT 0xc0 #define SERDES_CONF_WIDTH_32BIT 0x100 #define SERDES_CONF_BCLK_POL 0x400 #define SERDES_CONF_LSB_FIRST 0x800 #define SERDES_CONF_UNK1 BIT(12) #define SERDES_CONF_UNK2 BIT(13) #define SERDES_CONF_UNK3 BIT(14) #define SERDES_CONF_NO_DATA_FEEDBACK BIT(15) #define SERDES_CONF_SYNC_SEL GENMASK(18, 16) #define REG_TX_SERDES_BITSTART 0x08 #define REG_RX_SERDES_BITSTART 0x0c #define REG_TX_SERDES_SLOTMASK 0x0c #define REG_RX_SERDES_SLOTMASK 0x10 #define REG_RX_SERDES_PORT 0x04 /* Relative to switch base */ #define REG_DMA_ADAPTER_A(cl) (0x8000 * (cl)) #define REG_DMA_ADAPTER_B(cl) (0x8000 * (cl) + 0x4000) #define DMA_ADAPTER_TX_LSB_PAD GENMASK(4, 0) #define DMA_ADAPTER_TX_NCHANS GENMASK(6, 5) #define DMA_ADAPTER_RX_MSB_PAD GENMASK(12, 8) #define DMA_ADAPTER_RX_NCHANS GENMASK(14, 13) #define DMA_ADAPTER_NCHANS GENMASK(22, 20) #define SWITCH_STRIDE 0x8000 #define CLUSTER_STRIDE 0x4000 #define MAX_NCLUSTERS 6 #define APPLE_MCA_FMTBITS (SNDRV_PCM_FMTBIT_S16_LE | \ SNDRV_PCM_FMTBIT_S24_LE | \ SNDRV_PCM_FMTBIT_S32_LE) struct mca_cluster { int no; __iomem void *base; struct mca_data *host; struct device *pd_dev; struct clk *clk_parent; struct dma_chan *dma_chans[SNDRV_PCM_STREAM_LAST + 1]; bool port_started[SNDRV_PCM_STREAM_LAST + 1]; int port_driver; /* The cluster driving this cluster's port */ bool clocks_in_use[SNDRV_PCM_STREAM_LAST + 1]; struct device_link *pd_link; unsigned int bclk_ratio; /* Masks etc. picked up via the set_tdm_slot method */ int tdm_slots; int tdm_slot_width; unsigned int tdm_tx_mask; unsigned int tdm_rx_mask; }; struct mca_data { struct device *dev; __iomem void *switch_base; struct device *pd_dev; struct reset_control *rstc; struct device_link *pd_link; /* Mutex for accessing port_driver of foreign clusters */ struct mutex port_mutex; int nclusters; struct mca_cluster clusters[] __counted_by(nclusters); }; static void mca_modify(struct mca_cluster *cl, int regoffset, u32 mask, u32 val) { __iomem void *ptr = cl->base + regoffset; u32 newval; newval = (val & mask) | (readl_relaxed(ptr) & ~mask); writel_relaxed(newval, ptr); } /* * Get the cluster of FE or BE DAI */ static struct mca_cluster *mca_dai_to_cluster(struct snd_soc_dai *dai) { struct mca_data *mca = snd_soc_dai_get_drvdata(dai); /* * FE DAIs are 0 ... nclusters - 1 * BE DAIs are nclusters ... 2*nclusters - 1 */ int cluster_no = dai->id % mca->nclusters; return &mca->clusters[cluster_no]; } /* called before PCM trigger */ static void mca_fe_early_trigger(struct snd_pcm_substream *substream, int cmd, struct snd_soc_dai *dai) { struct mca_cluster *cl = mca_dai_to_cluster(dai); bool is_tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK; int serdes_unit = is_tx ? CLUSTER_TX_OFF : CLUSTER_RX_OFF; int serdes_conf = serdes_unit + (is_tx ? REG_TX_SERDES_CONF : REG_RX_SERDES_CONF); switch (cmd) { case SNDRV_PCM_TRIGGER_START: case SNDRV_PCM_TRIGGER_RESUME: case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: mca_modify(cl, serdes_conf, SERDES_CONF_SYNC_SEL, FIELD_PREP(SERDES_CONF_SYNC_SEL, 0)); mca_modify(cl, serdes_conf, SERDES_CONF_SYNC_SEL, FIELD_PREP(SERDES_CONF_SYNC_SEL, 7)); mca_modify(cl, serdes_unit + REG_SERDES_STATUS, SERDES_STATUS_EN | SERDES_STATUS_RST, SERDES_STATUS_RST); /* * Experiments suggest that it takes at most ~1 us * for the bit to clear, so wait 2 us for good measure. */ udelay(2); WARN_ON(readl_relaxed(cl->base + serdes_unit + REG_SERDES_STATUS) & SERDES_STATUS_RST); mca_modify(cl, serdes_conf, SERDES_CONF_SYNC_SEL, FIELD_PREP(SERDES_CONF_SYNC_SEL, 0)); mca_modify(cl, serdes_conf, SERDES_CONF_SYNC_SEL, FIELD_PREP(SERDES_CONF_SYNC_SEL, cl->no + 1)); break; default: break; } } static int mca_fe_trigger(struct snd_pcm_substream *substream, int cmd, struct snd_soc_dai *dai) { struct mca_cluster *cl = mca_dai_to_cluster(dai); bool is_tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK; int serdes_unit = is_tx ? CLUSTER_TX_OFF : CLUSTER_RX_OFF; switch (cmd) { case SNDRV_PCM_TRIGGER_START: case SNDRV_PCM_TRIGGER_RESUME: case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: mca_modify(cl, serdes_unit + REG_SERDES_STATUS, SERDES_STATUS_EN | SERDES_STATUS_RST, SERDES_STATUS_EN); break; case SNDRV_PCM_TRIGGER_STOP: case SNDRV_PCM_TRIGGER_SUSPEND: case SNDRV_PCM_TRIGGER_PAUSE_PUSH: mca_modify(cl, serdes_unit + REG_SERDES_STATUS, SERDES_STATUS_EN, 0); break; default: return -EINVAL; } return 0; } static int mca_fe_enable_clocks(struct mca_cluster *cl) { struct mca_data *mca = cl->host; int ret; ret = clk_prepare_enable(cl->clk_parent); if (ret) { dev_err(mca->dev, "cluster %d: unable to enable clock parent: %d\n", cl->no, ret); return ret; } /* * We can't power up the device earlier than this because * the power state driver would error out on seeing the device * as clock-gated. */ cl->pd_link = device_link_add(mca->dev, cl->pd_dev, DL_FLAG_STATELESS | DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE); if (!cl->pd_link) { dev_err(mca->dev, "cluster %d: unable to prop-up power domain\n", cl->no); clk_disable_unprepare(cl->clk_parent); return -EINVAL; } writel_relaxed(cl->no + 1, cl->base + REG_SYNCGEN_MCLK_SEL); mca_modify(cl, REG_SYNCGEN_STATUS, SYNCGEN_STATUS_EN, SYNCGEN_STATUS_EN); mca_modify(cl, REG_STATUS, STATUS_MCLK_EN, STATUS_MCLK_EN); return 0; } static void mca_fe_disable_clocks(struct mca_cluster *cl) { mca_modify(cl, REG_SYNCGEN_STATUS, SYNCGEN_STATUS_EN, 0); mca_modify(cl, REG_STATUS, STATUS_MCLK_EN, 0); device_link_del(cl->pd_link); clk_disable_unprepare(cl->clk_parent); } static bool mca_fe_clocks_in_use(struct mca_cluster *cl) { struct mca_data *mca = cl->host; struct mca_cluster *be_cl; int stream, i; mutex_lock(&mca->port_mutex); for (i = 0; i < mca->nclusters; i++) { be_cl = &mca->clusters[i]; if (be_cl->port_driver != cl->no) continue; for_each_pcm_streams(stream) { if (be_cl->clocks_in_use[stream]) { mutex_unlock(&mca->port_mutex); return true; } } } mutex_unlock(&mca->port_mutex); return false; } static int mca_be_prepare(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct mca_cluster *cl = mca_dai_to_cluster(dai); struct mca_data *mca = cl->host; struct mca_cluster *fe_cl; int ret; if (cl->port_driver < 0) return -EINVAL; fe_cl = &mca->clusters[cl->port_driver]; /* * Typically the CODECs we are paired with will require clocks * to be present at time of unmute with the 'mute_stream' op * or at time of DAPM widget power-up. We need to enable clocks * here at the latest (frontend prepare would be too late). */ if (!mca_fe_clocks_in_use(fe_cl)) { ret = mca_fe_enable_clocks(fe_cl); if (ret < 0) return ret; } cl->clocks_in_use[substream->stream] = true; return 0; } static int mca_be_hw_free(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct mca_cluster *cl = mca_dai_to_cluster(dai); struct mca_data *mca = cl->host; struct mca_cluster *fe_cl; if (cl->port_driver < 0) return -EINVAL; /* * We are operating on a foreign cluster here, but since we * belong to the same PCM, accesses should have been * synchronized at ASoC level. */ fe_cl = &mca->clusters[cl->port_driver]; if (!mca_fe_clocks_in_use(fe_cl)) return 0; /* Nothing to do */ cl->clocks_in_use[substream->stream] = false; if (!mca_fe_clocks_in_use(fe_cl)) mca_fe_disable_clocks(fe_cl); return 0; } static unsigned int mca_crop_mask(unsigned int mask, int nchans) { while (hweight32(mask) > nchans) mask &= ~(1 << __fls(mask)); return mask; } static int mca_configure_serdes(struct mca_cluster *cl, int serdes_unit, unsigned int mask, int slots, int nchans, int slot_width, bool is_tx, int port) { __iomem void *serdes_base = cl->base + serdes_unit; u32 serdes_conf, serdes_conf_mask; serdes_conf_mask = SERDES_CONF_WIDTH_MASK | SERDES_CONF_NCHANS; serdes_conf = FIELD_PREP(SERDES_CONF_NCHANS, max(slots, 1) - 1); switch (slot_width) { case 16: serdes_conf |= SERDES_CONF_WIDTH_16BIT; break; case 20: serdes_conf |= SERDES_CONF_WIDTH_20BIT; break; case 24: serdes_conf |= SERDES_CONF_WIDTH_24BIT; break; case 32: serdes_conf |= SERDES_CONF_WIDTH_32BIT; break; default: goto err; } serdes_conf_mask |= SERDES_CONF_SYNC_SEL; serdes_conf |= FIELD_PREP(SERDES_CONF_SYNC_SEL, cl->no + 1); if (is_tx) { serdes_conf_mask |= SERDES_CONF_UNK1 | SERDES_CONF_UNK2 | SERDES_CONF_UNK3; serdes_conf |= SERDES_CONF_UNK1 | SERDES_CONF_UNK2 | SERDES_CONF_UNK3; } else { serdes_conf_mask |= SERDES_CONF_UNK1 | SERDES_CONF_UNK2 | SERDES_CONF_UNK3 | SERDES_CONF_NO_DATA_FEEDBACK; serdes_conf |= SERDES_CONF_UNK1 | SERDES_CONF_UNK2 | SERDES_CONF_NO_DATA_FEEDBACK; } mca_modify(cl, serdes_unit + (is_tx ? REG_TX_SERDES_CONF : REG_RX_SERDES_CONF), serdes_conf_mask, serdes_conf); if (is_tx) { writel_relaxed(0xffffffff, serdes_base + REG_TX_SERDES_SLOTMASK); writel_relaxed(~((u32)mca_crop_mask(mask, nchans)), serdes_base + REG_TX_SERDES_SLOTMASK + 0x4); writel_relaxed(0xffffffff, serdes_base + REG_TX_SERDES_SLOTMASK + 0x8); writel_relaxed(~((u32)mask), serdes_base + REG_TX_SERDES_SLOTMASK + 0xc); } else { writel_relaxed(0xffffffff, serdes_base + REG_RX_SERDES_SLOTMASK); writel_relaxed(~((u32)mca_crop_mask(mask, nchans)), serdes_base + REG_RX_SERDES_SLOTMASK + 0x4); writel_relaxed(1 << port, serdes_base + REG_RX_SERDES_PORT); } return 0; err: dev_err(cl->host->dev, "unsupported SERDES configuration requested (mask=0x%x slots=%d slot_width=%d)\n", mask, slots, slot_width); return -EINVAL; } static int mca_fe_set_tdm_slot(struct snd_soc_dai *dai, unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width) { struct mca_cluster *cl = mca_dai_to_cluster(dai); cl->tdm_slots = slots; cl->tdm_slot_width = slot_width; cl->tdm_tx_mask = tx_mask; cl->tdm_rx_mask = rx_mask; return 0; } static int mca_fe_set_fmt(struct snd_soc_dai *dai, unsigned int fmt) { struct mca_cluster *cl = mca_dai_to_cluster(dai); struct mca_data *mca = cl->host; bool fpol_inv = false; u32 serdes_conf = 0; u32 bitstart; if ((fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) != SND_SOC_DAIFMT_BP_FP) goto err; switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { case SND_SOC_DAIFMT_I2S: fpol_inv = 0; bitstart = 1; break; case SND_SOC_DAIFMT_LEFT_J: fpol_inv = 1; bitstart = 0; break; default: goto err; } switch (fmt & SND_SOC_DAIFMT_INV_MASK) { case SND_SOC_DAIFMT_NB_IF: case SND_SOC_DAIFMT_IB_IF: fpol_inv ^= 1; break; } switch (fmt & SND_SOC_DAIFMT_INV_MASK) { case SND_SOC_DAIFMT_NB_NF: case SND_SOC_DAIFMT_NB_IF: serdes_conf |= SERDES_CONF_BCLK_POL; break; } if (!fpol_inv) goto err; mca_modify(cl, CLUSTER_TX_OFF + REG_TX_SERDES_CONF, SERDES_CONF_BCLK_POL, serdes_conf); mca_modify(cl, CLUSTER_RX_OFF + REG_RX_SERDES_CONF, SERDES_CONF_BCLK_POL, serdes_conf); writel_relaxed(bitstart, cl->base + CLUSTER_TX_OFF + REG_TX_SERDES_BITSTART); writel_relaxed(bitstart, cl->base + CLUSTER_RX_OFF + REG_RX_SERDES_BITSTART); return 0; err: dev_err(mca->dev, "unsupported DAI format (0x%x) requested\n", fmt); return -EINVAL; } static int mca_set_bclk_ratio(struct snd_soc_dai *dai, unsigned int ratio) { struct mca_cluster *cl = mca_dai_to_cluster(dai); cl->bclk_ratio = ratio; return 0; } static int mca_fe_get_port(struct snd_pcm_substream *substream) { struct snd_soc_pcm_runtime *fe = snd_soc_substream_to_rtd(substream); struct snd_soc_pcm_runtime *be; struct snd_soc_dpcm *dpcm; be = NULL; for_each_dpcm_be(fe, substream->stream, dpcm) { be = dpcm->be; break; } if (!be) return -EINVAL; return mca_dai_to_cluster(snd_soc_rtd_to_cpu(be, 0))->no; } static int mca_fe_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { struct mca_cluster *cl = mca_dai_to_cluster(dai); struct mca_data *mca = cl->host; struct device *dev = mca->dev; unsigned int samp_rate = params_rate(params); bool is_tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK; bool refine_tdm = false; unsigned long bclk_ratio; unsigned int tdm_slots, tdm_slot_width, tdm_mask; u32 regval, pad; int ret, port, nchans_ceiled; if (!cl->tdm_slot_width) { /* * We were not given TDM settings from above, set initial * guesses which will later be refined. */ tdm_slot_width = params_width(params); tdm_slots = params_channels(params); refine_tdm = true; } else { tdm_slot_width = cl->tdm_slot_width; tdm_slots = cl->tdm_slots; tdm_mask = is_tx ? cl->tdm_tx_mask : cl->tdm_rx_mask; } if (cl->bclk_ratio) bclk_ratio = cl->bclk_ratio; else bclk_ratio = tdm_slot_width * tdm_slots; if (refine_tdm) { int nchannels = params_channels(params); if (nchannels > 2) { dev_err(dev, "missing TDM for stream with two or more channels\n"); return -EINVAL; } if ((bclk_ratio % nchannels) != 0) { dev_err(dev, "BCLK ratio (%ld) not divisible by no. of channels (%d)\n", bclk_ratio, nchannels); return -EINVAL; } tdm_slot_width = bclk_ratio / nchannels; if (tdm_slot_width > 32 && nchannels == 1) tdm_slot_width = 32; if (tdm_slot_width < params_width(params)) { dev_err(dev, "TDM slots too narrow (tdm=%d params=%d)\n", tdm_slot_width, params_width(params)); return -EINVAL; } tdm_mask = (1 << tdm_slots) - 1; } port = mca_fe_get_port(substream); if (port < 0) return port; ret = mca_configure_serdes(cl, is_tx ? CLUSTER_TX_OFF : CLUSTER_RX_OFF, tdm_mask, tdm_slots, params_channels(params), tdm_slot_width, is_tx, port); if (ret) return ret; pad = 32 - params_width(params); /* * TODO: Here the register semantics aren't clear. */ nchans_ceiled = min_t(int, params_channels(params), 4); regval = FIELD_PREP(DMA_ADAPTER_NCHANS, nchans_ceiled) | FIELD_PREP(DMA_ADAPTER_TX_NCHANS, 0x2) | FIELD_PREP(DMA_ADAPTER_RX_NCHANS, 0x2) | FIELD_PREP(DMA_ADAPTER_TX_LSB_PAD, pad) | FIELD_PREP(DMA_ADAPTER_RX_MSB_PAD, pad); #ifndef USE_RXB_FOR_CAPTURE writel_relaxed(regval, mca->switch_base + REG_DMA_ADAPTER_A(cl->no)); #else if (is_tx) writel_relaxed(regval, mca->switch_base + REG_DMA_ADAPTER_A(cl->no)); else writel_relaxed(regval, mca->switch_base + REG_DMA_ADAPTER_B(cl->no)); #endif if (!mca_fe_clocks_in_use(cl)) { /* * Set up FSYNC duty cycle as even as possible. */ writel_relaxed((bclk_ratio / 2) - 1, cl->base + REG_SYNCGEN_HI_PERIOD); writel_relaxed(((bclk_ratio + 1) / 2) - 1, cl->base + REG_SYNCGEN_LO_PERIOD); writel_relaxed(FIELD_PREP(MCLK_CONF_DIV, 0x1), cl->base + REG_MCLK_CONF); ret = clk_set_rate(cl->clk_parent, bclk_ratio * samp_rate); if (ret) { dev_err(mca->dev, "cluster %d: unable to set clock parent: %d\n", cl->no, ret); return ret; } } return 0; } static const struct snd_soc_dai_ops mca_fe_ops = { .set_fmt = mca_fe_set_fmt, .set_bclk_ratio = mca_set_bclk_ratio, .set_tdm_slot = mca_fe_set_tdm_slot, .hw_params = mca_fe_hw_params, .trigger = mca_fe_trigger, }; static bool mca_be_started(struct mca_cluster *cl) { int stream; for_each_pcm_streams(stream) if (cl->port_started[stream]) return true; return false; } static int mca_be_startup(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct snd_soc_pcm_runtime *be = snd_soc_substream_to_rtd(substream); struct snd_soc_pcm_runtime *fe; struct mca_cluster *cl = mca_dai_to_cluster(dai); struct mca_cluster *fe_cl; struct mca_data *mca = cl->host; struct snd_soc_dpcm *dpcm; fe = NULL; for_each_dpcm_fe(be, substream->stream, dpcm) { if (fe && dpcm->fe != fe) { dev_err(mca->dev, "many FE per one BE unsupported\n"); return -EINVAL; } fe = dpcm->fe; } if (!fe) return -EINVAL; fe_cl = mca_dai_to_cluster(snd_soc_rtd_to_cpu(fe, 0)); if (mca_be_started(cl)) { /* * Port is already started in the other direction. * Make sure there isn't a conflict with another cluster * driving the port. */ if (cl->port_driver != fe_cl->no) return -EINVAL; cl->port_started[substream->stream] = true; return 0; } writel_relaxed(PORT_ENABLES_CLOCKS | PORT_ENABLES_TX_DATA, cl->base + REG_PORT_ENABLES); writel_relaxed(FIELD_PREP(PORT_CLOCK_SEL, fe_cl->no + 1), cl->base + REG_PORT_CLOCK_SEL); writel_relaxed(PORT_DATA_SEL_TXA(fe_cl->no), cl->base + REG_PORT_DATA_SEL); mutex_lock(&mca->port_mutex); cl->port_driver = fe_cl->no; mutex_unlock(&mca->port_mutex); cl->port_started[substream->stream] = true; return 0; } static void mca_be_shutdown(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct mca_cluster *cl = mca_dai_to_cluster(dai); struct mca_data *mca = cl->host; cl->port_started[substream->stream] = false; if (!mca_be_started(cl)) { /* * Were we the last direction to shutdown? * Turn off the lights. */ writel_relaxed(0, cl->base + REG_PORT_ENABLES); writel_relaxed(0, cl->base + REG_PORT_DATA_SEL); mutex_lock(&mca->port_mutex); cl->port_driver = -1; mutex_unlock(&mca->port_mutex); } } static const struct snd_soc_dai_ops mca_be_ops = { .prepare = mca_be_prepare, .hw_free = mca_be_hw_free, .startup = mca_be_startup, .shutdown = mca_be_shutdown, }; static int mca_set_runtime_hwparams(struct snd_soc_component *component, struct snd_pcm_substream *substream, struct dma_chan *chan) { struct device *dma_dev = chan->device->dev; struct snd_dmaengine_dai_dma_data dma_data = {}; int ret; struct snd_pcm_hardware hw; memset(&hw, 0, sizeof(hw)); hw.info = SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_INTERLEAVED; hw.periods_min = 2; hw.periods_max = UINT_MAX; hw.period_bytes_min = 256; hw.period_bytes_max = dma_get_max_seg_size(dma_dev); hw.buffer_bytes_max = SIZE_MAX; hw.fifo_size = 16; ret = snd_dmaengine_pcm_refine_runtime_hwparams(substream, &dma_data, &hw, chan); if (ret) return ret; return snd_soc_set_runtime_hwparams(substream, &hw); } static int mca_pcm_open(struct snd_soc_component *component, struct snd_pcm_substream *substream) { struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream); struct mca_cluster *cl = mca_dai_to_cluster(snd_soc_rtd_to_cpu(rtd, 0)); struct dma_chan *chan = cl->dma_chans[substream->stream]; int ret; if (rtd->dai_link->no_pcm) return 0; ret = mca_set_runtime_hwparams(component, substream, chan); if (ret) return ret; return snd_dmaengine_pcm_open(substream, chan); } static int mca_hw_params(struct snd_soc_component *component, struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params) { struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream); struct dma_chan *chan = snd_dmaengine_pcm_get_chan(substream); struct dma_slave_config slave_config; int ret; if (rtd->dai_link->no_pcm) return 0; memset(&slave_config, 0, sizeof(slave_config)); ret = snd_hwparams_to_dma_slave_config(substream, params, &slave_config); if (ret < 0) return ret; if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) slave_config.dst_port_window_size = min_t(u32, params_channels(params), 4); else slave_config.src_port_window_size = min_t(u32, params_channels(params), 4); return dmaengine_slave_config(chan, &slave_config); } static int mca_close(struct snd_soc_component *component, struct snd_pcm_substream *substream) { struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream); if (rtd->dai_link->no_pcm) return 0; return snd_dmaengine_pcm_close(substream); } static int mca_trigger(struct snd_soc_component *component, struct snd_pcm_substream *substream, int cmd) { struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream); if (rtd->dai_link->no_pcm) return 0; /* * Before we do the PCM trigger proper, insert an opportunity * to reset the frontend's SERDES. */ mca_fe_early_trigger(substream, cmd, snd_soc_rtd_to_cpu(rtd, 0)); return snd_dmaengine_pcm_trigger(substream, cmd); } static snd_pcm_uframes_t mca_pointer(struct snd_soc_component *component, struct snd_pcm_substream *substream) { struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream); if (rtd->dai_link->no_pcm) return -ENOTSUPP; return snd_dmaengine_pcm_pointer(substream); } static struct dma_chan *mca_request_dma_channel(struct mca_cluster *cl, unsigned int stream) { bool is_tx = (stream == SNDRV_PCM_STREAM_PLAYBACK); #ifndef USE_RXB_FOR_CAPTURE char *name = devm_kasprintf(cl->host->dev, GFP_KERNEL, is_tx ? "tx%da" : "rx%da", cl->no); #else char *name = devm_kasprintf(cl->host->dev, GFP_KERNEL, is_tx ? "tx%da" : "rx%db", cl->no); #endif return of_dma_request_slave_channel(cl->host->dev->of_node, name); } static void mca_pcm_free(struct snd_soc_component *component, struct snd_pcm *pcm) { struct snd_soc_pcm_runtime *rtd = snd_pcm_chip(pcm); struct mca_cluster *cl = mca_dai_to_cluster(snd_soc_rtd_to_cpu(rtd, 0)); unsigned int i; if (rtd->dai_link->no_pcm) return; for_each_pcm_streams(i) { struct snd_pcm_substream *substream = rtd->pcm->streams[i].substream; if (!substream || !cl->dma_chans[i]) continue; dma_release_channel(cl->dma_chans[i]); cl->dma_chans[i] = NULL; } } static int mca_pcm_new(struct snd_soc_component *component, struct snd_soc_pcm_runtime *rtd) { struct mca_cluster *cl = mca_dai_to_cluster(snd_soc_rtd_to_cpu(rtd, 0)); unsigned int i; if (rtd->dai_link->no_pcm) return 0; for_each_pcm_streams(i) { struct snd_pcm_substream *substream = rtd->pcm->streams[i].substream; struct dma_chan *chan; if (!substream) continue; chan = mca_request_dma_channel(cl, i); if (IS_ERR_OR_NULL(chan)) { mca_pcm_free(component, rtd->pcm); if (chan && PTR_ERR(chan) == -EPROBE_DEFER) return PTR_ERR(chan); dev_err(component->dev, "unable to obtain DMA channel (stream %d cluster %d): %pe\n", i, cl->no, chan); if (!chan) return -EINVAL; return PTR_ERR(chan); } cl->dma_chans[i] = chan; snd_pcm_set_managed_buffer(substream, SNDRV_DMA_TYPE_DEV_IRAM, chan->device->dev, 512 * 1024 * 6, SIZE_MAX); } return 0; } static const struct snd_soc_component_driver mca_component = { .name = "apple-mca", .open = mca_pcm_open, .close = mca_close, .hw_params = mca_hw_params, .trigger = mca_trigger, .pointer = mca_pointer, .pcm_construct = mca_pcm_new, .pcm_destruct = mca_pcm_free, }; static void apple_mca_release(struct mca_data *mca) { int i; for (i = 0; i < mca->nclusters; i++) { struct mca_cluster *cl = &mca->clusters[i]; if (!IS_ERR_OR_NULL(cl->clk_parent)) clk_put(cl->clk_parent); if (!IS_ERR_OR_NULL(cl->pd_dev)) dev_pm_domain_detach(cl->pd_dev, true); } if (mca->pd_link) device_link_del(mca->pd_link); if (!IS_ERR_OR_NULL(mca->pd_dev)) dev_pm_domain_detach(mca->pd_dev, true); reset_control_rearm(mca->rstc); } static int apple_mca_probe(struct platform_device *pdev) { struct mca_data *mca; struct mca_cluster *clusters; struct snd_soc_dai_driver *dai_drivers; struct resource *res; void __iomem *base; int nclusters; int ret, i; base = devm_platform_get_and_ioremap_resource(pdev, 0, &res); if (IS_ERR(base)) return PTR_ERR(base); if (resource_size(res) < CLUSTER_STRIDE) return -EINVAL; nclusters = (resource_size(res) - CLUSTER_STRIDE) / CLUSTER_STRIDE + 1; mca = devm_kzalloc(&pdev->dev, struct_size(mca, clusters, nclusters), GFP_KERNEL); if (!mca) return -ENOMEM; mca->dev = &pdev->dev; mca->nclusters = nclusters; mutex_init(&mca->port_mutex); platform_set_drvdata(pdev, mca); clusters = mca->clusters; mca->switch_base = devm_platform_ioremap_resource(pdev, 1); if (IS_ERR(mca->switch_base)) return PTR_ERR(mca->switch_base); mca->rstc = devm_reset_control_get_optional_shared(&pdev->dev, NULL); if (IS_ERR(mca->rstc)) return PTR_ERR(mca->rstc); dai_drivers = devm_kzalloc( &pdev->dev, sizeof(*dai_drivers) * 2 * nclusters, GFP_KERNEL); if (!dai_drivers) return -ENOMEM; mca->pd_dev = dev_pm_domain_attach_by_id(&pdev->dev, 0); if (IS_ERR(mca->pd_dev)) return -EINVAL; mca->pd_link = device_link_add(&pdev->dev, mca->pd_dev, DL_FLAG_STATELESS | DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE); if (!mca->pd_link) { ret = -EINVAL; /* Prevent an unbalanced reset rearm */ mca->rstc = NULL; goto err_release; } reset_control_reset(mca->rstc); for (i = 0; i < nclusters; i++) { struct mca_cluster *cl = &clusters[i]; struct snd_soc_dai_driver *fe = &dai_drivers[mca->nclusters + i]; struct snd_soc_dai_driver *be = &dai_drivers[i]; cl->host = mca; cl->no = i; cl->base = base + CLUSTER_STRIDE * i; cl->port_driver = -1; cl->clk_parent = of_clk_get(pdev->dev.of_node, i); if (IS_ERR(cl->clk_parent)) { dev_err(&pdev->dev, "unable to obtain clock %d: %ld\n", i, PTR_ERR(cl->clk_parent)); ret = PTR_ERR(cl->clk_parent); goto err_release; } cl->pd_dev = dev_pm_domain_attach_by_id(&pdev->dev, i + 1); if (IS_ERR(cl->pd_dev)) { dev_err(&pdev->dev, "unable to obtain cluster %d PD: %ld\n", i, PTR_ERR(cl->pd_dev)); ret = PTR_ERR(cl->pd_dev); goto err_release; } fe->id = i; fe->name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "mca-pcm-%d", i); if (!fe->name) { ret = -ENOMEM; goto err_release; } fe->ops = &mca_fe_ops; fe->playback.channels_min = 1; fe->playback.channels_max = 32; fe->playback.rates = SNDRV_PCM_RATE_8000_192000; fe->playback.formats = APPLE_MCA_FMTBITS; fe->capture.channels_min = 1; fe->capture.channels_max = 32; fe->capture.rates = SNDRV_PCM_RATE_8000_192000; fe->capture.formats = APPLE_MCA_FMTBITS; fe->symmetric_rate = 1; fe->playback.stream_name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "PCM%d TX", i); fe->capture.stream_name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "PCM%d RX", i); if (!fe->playback.stream_name || !fe->capture.stream_name) { ret = -ENOMEM; goto err_release; } be->id = i + nclusters; be->name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "mca-i2s-%d", i); if (!be->name) { ret = -ENOMEM; goto err_release; } be->ops = &mca_be_ops; be->playback.channels_min = 1; be->playback.channels_max = 32; be->playback.rates = SNDRV_PCM_RATE_8000_192000; be->playback.formats = APPLE_MCA_FMTBITS; be->capture.channels_min = 1; be->capture.channels_max = 32; be->capture.rates = SNDRV_PCM_RATE_8000_192000; be->capture.formats = APPLE_MCA_FMTBITS; be->playback.stream_name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "I2S%d TX", i); be->capture.stream_name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "I2S%d RX", i); if (!be->playback.stream_name || !be->capture.stream_name) { ret = -ENOMEM; goto err_release; } } ret = snd_soc_register_component(&pdev->dev, &mca_component, dai_drivers, nclusters * 2); if (ret) { dev_err(&pdev->dev, "unable to register ASoC component: %d\n", ret); goto err_release; } return 0; err_release: apple_mca_release(mca); return ret; } static void apple_mca_remove(struct platform_device *pdev) { struct mca_data *mca = platform_get_drvdata(pdev); snd_soc_unregister_component(&pdev->dev); apple_mca_release(mca); } static const struct of_device_id apple_mca_of_match[] = { { .compatible = "apple,mca", }, {} }; MODULE_DEVICE_TABLE(of, apple_mca_of_match); static struct platform_driver apple_mca_driver = { .driver = { .name = "apple-mca", .of_match_table = apple_mca_of_match, }, .probe = apple_mca_probe, .remove_new = apple_mca_remove, }; module_platform_driver(apple_mca_driver); MODULE_AUTHOR("Martin Povišer <povik+lin@cutebit.org>"); MODULE_DESCRIPTION("ASoC Apple MCA driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1