Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Geoffrey Wossum | 2040 | 53.22% | 1 | 1.69% |
Peter Rosin | 647 | 16.88% | 4 | 6.78% |
Bo Shen | 418 | 10.91% | 13 | 22.03% |
Sedji Gaouaou | 239 | 6.24% | 1 | 1.69% |
Michał Mirosław | 191 | 4.98% | 2 | 3.39% |
Mark Brown | 97 | 2.53% | 7 | 11.86% |
Songjun Wu | 58 | 1.51% | 1 | 1.69% |
Kuninori Morimoto | 49 | 1.28% | 4 | 6.78% |
Charles Keepax | 15 | 0.39% | 3 | 5.08% |
Liam Girdwood | 12 | 0.31% | 3 | 5.08% |
Frank Mandarino | 12 | 0.31% | 3 | 5.08% |
Eric Miao | 12 | 0.31% | 1 | 1.69% |
Jiasheng Jiang | 9 | 0.23% | 1 | 1.69% |
Christoph Huber | 8 | 0.21% | 1 | 1.69% |
Claudiu Beznea | 6 | 0.16% | 1 | 1.69% |
Daniel Mack | 4 | 0.10% | 1 | 1.69% |
Thomas Gleixner | 2 | 0.05% | 1 | 1.69% |
Joachim Eastwood | 2 | 0.05% | 1 | 1.69% |
Wolfram Sang | 2 | 0.05% | 1 | 1.69% |
Zoltan Puskas | 2 | 0.05% | 1 | 1.69% |
Lucas De Marchi | 1 | 0.03% | 1 | 1.69% |
Peter Meerwald-Stadler | 1 | 0.03% | 1 | 1.69% |
Pierre-Louis Bossart | 1 | 0.03% | 1 | 1.69% |
Colin Ian King | 1 | 0.03% | 1 | 1.69% |
ye xingchen | 1 | 0.03% | 1 | 1.69% |
Lars-Peter Clausen | 1 | 0.03% | 1 | 1.69% |
Matthieu Crapet | 1 | 0.03% | 1 | 1.69% |
Joe Perches | 1 | 0.03% | 1 | 1.69% |
Total | 3833 | 59 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * atmel_ssc_dai.c -- ALSA SoC ATMEL SSC Audio Layer Platform driver * * Copyright (C) 2005 SAN People * Copyright (C) 2008 Atmel * * Author: Sedji Gaouaou <sedji.gaouaou@atmel.com> * ATMEL CORP. * * Based on at91-ssc.c by * Frank Mandarino <fmandarino@endrelia.com> * Based on pxa2xx Platform drivers by * Liam Girdwood <lrg@slimlogic.co.uk> */ #include <linux/init.h> #include <linux/module.h> #include <linux/interrupt.h> #include <linux/device.h> #include <linux/delay.h> #include <linux/clk.h> #include <linux/atmel_pdc.h> #include <linux/atmel-ssc.h> #include <sound/core.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/initval.h> #include <sound/soc.h> #include "atmel-pcm.h" #include "atmel_ssc_dai.h" #define NUM_SSC_DEVICES 3 /* * SSC PDC registers required by the PCM DMA engine. */ static struct atmel_pdc_regs pdc_tx_reg = { .xpr = ATMEL_PDC_TPR, .xcr = ATMEL_PDC_TCR, .xnpr = ATMEL_PDC_TNPR, .xncr = ATMEL_PDC_TNCR, }; static struct atmel_pdc_regs pdc_rx_reg = { .xpr = ATMEL_PDC_RPR, .xcr = ATMEL_PDC_RCR, .xnpr = ATMEL_PDC_RNPR, .xncr = ATMEL_PDC_RNCR, }; /* * SSC & PDC status bits for transmit and receive. */ static struct atmel_ssc_mask ssc_tx_mask = { .ssc_enable = SSC_BIT(CR_TXEN), .ssc_disable = SSC_BIT(CR_TXDIS), .ssc_endx = SSC_BIT(SR_ENDTX), .ssc_endbuf = SSC_BIT(SR_TXBUFE), .ssc_error = SSC_BIT(SR_OVRUN), .pdc_enable = ATMEL_PDC_TXTEN, .pdc_disable = ATMEL_PDC_TXTDIS, }; static struct atmel_ssc_mask ssc_rx_mask = { .ssc_enable = SSC_BIT(CR_RXEN), .ssc_disable = SSC_BIT(CR_RXDIS), .ssc_endx = SSC_BIT(SR_ENDRX), .ssc_endbuf = SSC_BIT(SR_RXBUFF), .ssc_error = SSC_BIT(SR_OVRUN), .pdc_enable = ATMEL_PDC_RXTEN, .pdc_disable = ATMEL_PDC_RXTDIS, }; /* * DMA parameters. */ static struct atmel_pcm_dma_params ssc_dma_params[NUM_SSC_DEVICES][2] = { {{ .name = "SSC0 PCM out", .pdc = &pdc_tx_reg, .mask = &ssc_tx_mask, }, { .name = "SSC0 PCM in", .pdc = &pdc_rx_reg, .mask = &ssc_rx_mask, } }, {{ .name = "SSC1 PCM out", .pdc = &pdc_tx_reg, .mask = &ssc_tx_mask, }, { .name = "SSC1 PCM in", .pdc = &pdc_rx_reg, .mask = &ssc_rx_mask, } }, {{ .name = "SSC2 PCM out", .pdc = &pdc_tx_reg, .mask = &ssc_tx_mask, }, { .name = "SSC2 PCM in", .pdc = &pdc_rx_reg, .mask = &ssc_rx_mask, } }, }; static struct atmel_ssc_info ssc_info[NUM_SSC_DEVICES] = { { .name = "ssc0", .dir_mask = SSC_DIR_MASK_UNUSED, .initialized = 0, }, { .name = "ssc1", .dir_mask = SSC_DIR_MASK_UNUSED, .initialized = 0, }, { .name = "ssc2", .dir_mask = SSC_DIR_MASK_UNUSED, .initialized = 0, }, }; /* * SSC interrupt handler. Passes PDC interrupts to the DMA * interrupt handler in the PCM driver. */ static irqreturn_t atmel_ssc_interrupt(int irq, void *dev_id) { struct atmel_ssc_info *ssc_p = dev_id; struct atmel_pcm_dma_params *dma_params; u32 ssc_sr; u32 ssc_substream_mask; int i; ssc_sr = (unsigned long)ssc_readl(ssc_p->ssc->regs, SR) & (unsigned long)ssc_readl(ssc_p->ssc->regs, IMR); /* * Loop through the substreams attached to this SSC. If * a DMA-related interrupt occurred on that substream, call * the DMA interrupt handler function, if one has been * registered in the dma_params structure by the PCM driver. */ for (i = 0; i < ARRAY_SIZE(ssc_p->dma_params); i++) { dma_params = ssc_p->dma_params[i]; if ((dma_params != NULL) && (dma_params->dma_intr_handler != NULL)) { ssc_substream_mask = (dma_params->mask->ssc_endx | dma_params->mask->ssc_endbuf); if (ssc_sr & ssc_substream_mask) { dma_params->dma_intr_handler(ssc_sr, dma_params-> substream); } } } return IRQ_HANDLED; } /* * When the bit clock is input, limit the maximum rate according to the * Serial Clock Ratio Considerations section from the SSC documentation: * * The Transmitter and the Receiver can be programmed to operate * with the clock signals provided on either the TK or RK pins. * This allows the SSC to support many slave-mode data transfers. * In this case, the maximum clock speed allowed on the RK pin is: * - Peripheral clock divided by 2 if Receiver Frame Synchro is input * - Peripheral clock divided by 3 if Receiver Frame Synchro is output * In addition, the maximum clock speed allowed on the TK pin is: * - Peripheral clock divided by 6 if Transmit Frame Synchro is input * - Peripheral clock divided by 2 if Transmit Frame Synchro is output * * When the bit clock is output, limit the rate according to the * SSC divider restrictions. */ static int atmel_ssc_hw_rule_rate(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule) { struct atmel_ssc_info *ssc_p = rule->private; struct ssc_device *ssc = ssc_p->ssc; struct snd_interval *i = hw_param_interval(params, rule->var); struct snd_interval t; struct snd_ratnum r = { .den_min = 1, .den_max = 4095, .den_step = 1, }; unsigned int num = 0, den = 0; int frame_size; int mck_div = 2; int ret; frame_size = snd_soc_params_to_frame_size(params); if (frame_size < 0) return frame_size; switch (ssc_p->daifmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) { case SND_SOC_DAIFMT_BC_FP: if ((ssc_p->dir_mask & SSC_DIR_MASK_CAPTURE) && ssc->clk_from_rk_pin) /* Receiver Frame Synchro (i.e. capture) * is output (format is _CFS) and the RK pin * is used for input (format is _CBM_). */ mck_div = 3; break; case SND_SOC_DAIFMT_BC_FC: if ((ssc_p->dir_mask & SSC_DIR_MASK_PLAYBACK) && !ssc->clk_from_rk_pin) /* Transmit Frame Synchro (i.e. playback) * is input (format is _CFM) and the TK pin * is used for input (format _CBM_ but not * using the RK pin). */ mck_div = 6; break; } switch (ssc_p->daifmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) { case SND_SOC_DAIFMT_BP_FP: r.num = ssc_p->mck_rate / mck_div / frame_size; ret = snd_interval_ratnum(i, 1, &r, &num, &den); if (ret >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) { params->rate_num = num; params->rate_den = den; } break; case SND_SOC_DAIFMT_BC_FP: case SND_SOC_DAIFMT_BC_FC: t.min = 8000; t.max = ssc_p->mck_rate / mck_div / frame_size; t.openmin = t.openmax = 0; t.integer = 0; ret = snd_interval_refine(i, &t); break; default: ret = -EINVAL; break; } return ret; } /*-------------------------------------------------------------------------*\ * DAI functions \*-------------------------------------------------------------------------*/ /* * Startup. Only that one substream allowed in each direction. */ static int atmel_ssc_startup(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct platform_device *pdev = to_platform_device(dai->dev); struct atmel_ssc_info *ssc_p = &ssc_info[pdev->id]; struct atmel_pcm_dma_params *dma_params; int dir, dir_mask; int ret; pr_debug("atmel_ssc_startup: SSC_SR=0x%x\n", ssc_readl(ssc_p->ssc->regs, SR)); /* Enable PMC peripheral clock for this SSC */ pr_debug("atmel_ssc_dai: Starting clock\n"); ret = clk_enable(ssc_p->ssc->clk); if (ret) return ret; ssc_p->mck_rate = clk_get_rate(ssc_p->ssc->clk); /* Reset the SSC unless initialized to keep it in a clean state */ if (!ssc_p->initialized) ssc_writel(ssc_p->ssc->regs, CR, SSC_BIT(CR_SWRST)); if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { dir = 0; dir_mask = SSC_DIR_MASK_PLAYBACK; } else { dir = 1; dir_mask = SSC_DIR_MASK_CAPTURE; } ret = snd_pcm_hw_rule_add(substream->runtime, 0, SNDRV_PCM_HW_PARAM_RATE, atmel_ssc_hw_rule_rate, ssc_p, SNDRV_PCM_HW_PARAM_FRAME_BITS, SNDRV_PCM_HW_PARAM_CHANNELS, -1); if (ret < 0) { dev_err(dai->dev, "Failed to specify rate rule: %d\n", ret); return ret; } dma_params = &ssc_dma_params[pdev->id][dir]; dma_params->ssc = ssc_p->ssc; dma_params->substream = substream; ssc_p->dma_params[dir] = dma_params; snd_soc_dai_set_dma_data(dai, substream, dma_params); if (ssc_p->dir_mask & dir_mask) return -EBUSY; ssc_p->dir_mask |= dir_mask; return 0; } /* * Shutdown. Clear DMA parameters and shutdown the SSC if there * are no other substreams open. */ static void atmel_ssc_shutdown(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct platform_device *pdev = to_platform_device(dai->dev); struct atmel_ssc_info *ssc_p = &ssc_info[pdev->id]; struct atmel_pcm_dma_params *dma_params; int dir, dir_mask; if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) dir = 0; else dir = 1; dma_params = ssc_p->dma_params[dir]; if (dma_params != NULL) { dma_params->ssc = NULL; dma_params->substream = NULL; ssc_p->dma_params[dir] = NULL; } dir_mask = 1 << dir; ssc_p->dir_mask &= ~dir_mask; if (!ssc_p->dir_mask) { if (ssc_p->initialized) { free_irq(ssc_p->ssc->irq, ssc_p); ssc_p->initialized = 0; } /* Reset the SSC */ ssc_writel(ssc_p->ssc->regs, CR, SSC_BIT(CR_SWRST)); /* Clear the SSC dividers */ ssc_p->cmr_div = ssc_p->tcmr_period = ssc_p->rcmr_period = 0; ssc_p->forced_divider = 0; } /* Shutdown the SSC clock. */ pr_debug("atmel_ssc_dai: Stopping clock\n"); clk_disable(ssc_p->ssc->clk); } /* * Record the DAI format for use in hw_params(). */ static int atmel_ssc_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt) { struct platform_device *pdev = to_platform_device(cpu_dai->dev); struct atmel_ssc_info *ssc_p = &ssc_info[pdev->id]; ssc_p->daifmt = fmt; return 0; } /* * Record SSC clock dividers for use in hw_params(). */ static int atmel_ssc_set_dai_clkdiv(struct snd_soc_dai *cpu_dai, int div_id, int div) { struct platform_device *pdev = to_platform_device(cpu_dai->dev); struct atmel_ssc_info *ssc_p = &ssc_info[pdev->id]; switch (div_id) { case ATMEL_SSC_CMR_DIV: /* * The same master clock divider is used for both * transmit and receive, so if a value has already * been set, it must match this value. */ if (ssc_p->dir_mask != (SSC_DIR_MASK_PLAYBACK | SSC_DIR_MASK_CAPTURE)) ssc_p->cmr_div = div; else if (ssc_p->cmr_div == 0) ssc_p->cmr_div = div; else if (div != ssc_p->cmr_div) return -EBUSY; ssc_p->forced_divider |= BIT(ATMEL_SSC_CMR_DIV); break; case ATMEL_SSC_TCMR_PERIOD: ssc_p->tcmr_period = div; ssc_p->forced_divider |= BIT(ATMEL_SSC_TCMR_PERIOD); break; case ATMEL_SSC_RCMR_PERIOD: ssc_p->rcmr_period = div; ssc_p->forced_divider |= BIT(ATMEL_SSC_RCMR_PERIOD); break; default: return -EINVAL; } return 0; } /* Is the cpu-dai master of the frame clock? */ static int atmel_ssc_cfs(struct atmel_ssc_info *ssc_p) { switch (ssc_p->daifmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) { case SND_SOC_DAIFMT_BC_FP: case SND_SOC_DAIFMT_BP_FP: return 1; } return 0; } /* Is the cpu-dai master of the bit clock? */ static int atmel_ssc_cbs(struct atmel_ssc_info *ssc_p) { switch (ssc_p->daifmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) { case SND_SOC_DAIFMT_BP_FC: case SND_SOC_DAIFMT_BP_FP: return 1; } return 0; } /* * Configure the SSC. */ static int atmel_ssc_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { struct platform_device *pdev = to_platform_device(dai->dev); int id = pdev->id; struct atmel_ssc_info *ssc_p = &ssc_info[id]; struct ssc_device *ssc = ssc_p->ssc; struct atmel_pcm_dma_params *dma_params; int dir, channels, bits; u32 tfmr, rfmr, tcmr, rcmr; int ret; int fslen, fslen_ext, fs_osync, fs_edge; u32 cmr_div; u32 tcmr_period; u32 rcmr_period; /* * Currently, there is only one set of dma params for * each direction. If more are added, this code will * have to be changed to select the proper set. */ if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) dir = 0; else dir = 1; /* * If the cpu dai should provide BCLK, but noone has provided the * divider needed for that to work, fall back to something sensible. */ cmr_div = ssc_p->cmr_div; if (!(ssc_p->forced_divider & BIT(ATMEL_SSC_CMR_DIV)) && atmel_ssc_cbs(ssc_p)) { int bclk_rate = snd_soc_params_to_bclk(params); if (bclk_rate < 0) { dev_err(dai->dev, "unable to calculate cmr_div: %d\n", bclk_rate); return bclk_rate; } cmr_div = DIV_ROUND_CLOSEST(ssc_p->mck_rate, 2 * bclk_rate); } /* * If the cpu dai should provide LRCLK, but noone has provided the * dividers needed for that to work, fall back to something sensible. */ tcmr_period = ssc_p->tcmr_period; rcmr_period = ssc_p->rcmr_period; if (atmel_ssc_cfs(ssc_p)) { int frame_size = snd_soc_params_to_frame_size(params); if (frame_size < 0) { dev_err(dai->dev, "unable to calculate tx/rx cmr_period: %d\n", frame_size); return frame_size; } if (!(ssc_p->forced_divider & BIT(ATMEL_SSC_TCMR_PERIOD))) tcmr_period = frame_size / 2 - 1; if (!(ssc_p->forced_divider & BIT(ATMEL_SSC_RCMR_PERIOD))) rcmr_period = frame_size / 2 - 1; } dma_params = ssc_p->dma_params[dir]; channels = params_channels(params); /* * Determine sample size in bits and the PDC increment. */ switch (params_format(params)) { case SNDRV_PCM_FORMAT_S8: bits = 8; dma_params->pdc_xfer_size = 1; break; case SNDRV_PCM_FORMAT_S16_LE: bits = 16; dma_params->pdc_xfer_size = 2; break; case SNDRV_PCM_FORMAT_S24_LE: bits = 24; dma_params->pdc_xfer_size = 4; break; case SNDRV_PCM_FORMAT_S32_LE: bits = 32; dma_params->pdc_xfer_size = 4; break; default: printk(KERN_WARNING "atmel_ssc_dai: unsupported PCM format"); return -EINVAL; } /* * Compute SSC register settings. */ fslen_ext = (bits - 1) / 16; fslen = (bits - 1) % 16; switch (ssc_p->daifmt & SND_SOC_DAIFMT_FORMAT_MASK) { case SND_SOC_DAIFMT_LEFT_J: fs_osync = SSC_FSOS_POSITIVE; fs_edge = SSC_START_RISING_RF; rcmr = SSC_BF(RCMR_STTDLY, 0); tcmr = SSC_BF(TCMR_STTDLY, 0); break; case SND_SOC_DAIFMT_I2S: fs_osync = SSC_FSOS_NEGATIVE; fs_edge = SSC_START_FALLING_RF; rcmr = SSC_BF(RCMR_STTDLY, 1); tcmr = SSC_BF(TCMR_STTDLY, 1); break; case SND_SOC_DAIFMT_DSP_A: /* * DSP/PCM Mode A format * * Data is transferred on first BCLK after LRC pulse rising * edge.If stereo, the right channel data is contiguous with * the left channel data. */ fs_osync = SSC_FSOS_POSITIVE; fs_edge = SSC_START_RISING_RF; fslen = fslen_ext = 0; rcmr = SSC_BF(RCMR_STTDLY, 1); tcmr = SSC_BF(TCMR_STTDLY, 1); break; default: printk(KERN_WARNING "atmel_ssc_dai: unsupported DAI format 0x%x\n", ssc_p->daifmt); return -EINVAL; } if (!atmel_ssc_cfs(ssc_p)) { fslen = fslen_ext = 0; rcmr_period = tcmr_period = 0; fs_osync = SSC_FSOS_NONE; } rcmr |= SSC_BF(RCMR_START, fs_edge); tcmr |= SSC_BF(TCMR_START, fs_edge); if (atmel_ssc_cbs(ssc_p)) { /* * SSC provides BCLK * * The SSC transmit and receive clocks are generated from the * MCK divider, and the BCLK signal is output * on the SSC TK line. */ rcmr |= SSC_BF(RCMR_CKS, SSC_CKS_DIV) | SSC_BF(RCMR_CKO, SSC_CKO_NONE); tcmr |= SSC_BF(TCMR_CKS, SSC_CKS_DIV) | SSC_BF(TCMR_CKO, SSC_CKO_CONTINUOUS); } else { rcmr |= SSC_BF(RCMR_CKS, ssc->clk_from_rk_pin ? SSC_CKS_PIN : SSC_CKS_CLOCK) | SSC_BF(RCMR_CKO, SSC_CKO_NONE); tcmr |= SSC_BF(TCMR_CKS, ssc->clk_from_rk_pin ? SSC_CKS_CLOCK : SSC_CKS_PIN) | SSC_BF(TCMR_CKO, SSC_CKO_NONE); } rcmr |= SSC_BF(RCMR_PERIOD, rcmr_period) | SSC_BF(RCMR_CKI, SSC_CKI_RISING); tcmr |= SSC_BF(TCMR_PERIOD, tcmr_period) | SSC_BF(TCMR_CKI, SSC_CKI_FALLING); rfmr = SSC_BF(RFMR_FSLEN_EXT, fslen_ext) | SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE) | SSC_BF(RFMR_FSOS, fs_osync) | SSC_BF(RFMR_FSLEN, fslen) | SSC_BF(RFMR_DATNB, (channels - 1)) | SSC_BIT(RFMR_MSBF) | SSC_BF(RFMR_LOOP, 0) | SSC_BF(RFMR_DATLEN, (bits - 1)); tfmr = SSC_BF(TFMR_FSLEN_EXT, fslen_ext) | SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE) | SSC_BF(TFMR_FSDEN, 0) | SSC_BF(TFMR_FSOS, fs_osync) | SSC_BF(TFMR_FSLEN, fslen) | SSC_BF(TFMR_DATNB, (channels - 1)) | SSC_BIT(TFMR_MSBF) | SSC_BF(TFMR_DATDEF, 0) | SSC_BF(TFMR_DATLEN, (bits - 1)); if (fslen_ext && !ssc->pdata->has_fslen_ext) { dev_err(dai->dev, "sample size %d is too large for SSC device\n", bits); return -EINVAL; } pr_debug("atmel_ssc_hw_params: " "RCMR=%08x RFMR=%08x TCMR=%08x TFMR=%08x\n", rcmr, rfmr, tcmr, tfmr); if (!ssc_p->initialized) { if (!ssc_p->ssc->pdata->use_dma) { ssc_writel(ssc_p->ssc->regs, PDC_RPR, 0); ssc_writel(ssc_p->ssc->regs, PDC_RCR, 0); ssc_writel(ssc_p->ssc->regs, PDC_RNPR, 0); ssc_writel(ssc_p->ssc->regs, PDC_RNCR, 0); ssc_writel(ssc_p->ssc->regs, PDC_TPR, 0); ssc_writel(ssc_p->ssc->regs, PDC_TCR, 0); ssc_writel(ssc_p->ssc->regs, PDC_TNPR, 0); ssc_writel(ssc_p->ssc->regs, PDC_TNCR, 0); } ret = request_irq(ssc_p->ssc->irq, atmel_ssc_interrupt, 0, ssc_p->name, ssc_p); if (ret < 0) { printk(KERN_WARNING "atmel_ssc_dai: request_irq failure\n"); pr_debug("Atmel_ssc_dai: Stopping clock\n"); clk_disable(ssc_p->ssc->clk); return ret; } ssc_p->initialized = 1; } /* set SSC clock mode register */ ssc_writel(ssc_p->ssc->regs, CMR, cmr_div); /* set receive clock mode and format */ ssc_writel(ssc_p->ssc->regs, RCMR, rcmr); ssc_writel(ssc_p->ssc->regs, RFMR, rfmr); /* set transmit clock mode and format */ ssc_writel(ssc_p->ssc->regs, TCMR, tcmr); ssc_writel(ssc_p->ssc->regs, TFMR, tfmr); pr_debug("atmel_ssc_dai,hw_params: SSC initialized\n"); return 0; } static int atmel_ssc_prepare(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct platform_device *pdev = to_platform_device(dai->dev); struct atmel_ssc_info *ssc_p = &ssc_info[pdev->id]; struct atmel_pcm_dma_params *dma_params; int dir; if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) dir = 0; else dir = 1; dma_params = ssc_p->dma_params[dir]; ssc_writel(ssc_p->ssc->regs, CR, dma_params->mask->ssc_disable); ssc_writel(ssc_p->ssc->regs, IDR, dma_params->mask->ssc_error); pr_debug("%s enabled SSC_SR=0x%08x\n", dir ? "receive" : "transmit", ssc_readl(ssc_p->ssc->regs, SR)); return 0; } static int atmel_ssc_trigger(struct snd_pcm_substream *substream, int cmd, struct snd_soc_dai *dai) { struct platform_device *pdev = to_platform_device(dai->dev); struct atmel_ssc_info *ssc_p = &ssc_info[pdev->id]; struct atmel_pcm_dma_params *dma_params; int dir; if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) dir = 0; else dir = 1; dma_params = ssc_p->dma_params[dir]; switch (cmd) { case SNDRV_PCM_TRIGGER_START: case SNDRV_PCM_TRIGGER_RESUME: case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: ssc_writel(ssc_p->ssc->regs, CR, dma_params->mask->ssc_enable); break; default: ssc_writel(ssc_p->ssc->regs, CR, dma_params->mask->ssc_disable); break; } return 0; } static int atmel_ssc_suspend(struct snd_soc_component *component) { struct atmel_ssc_info *ssc_p; struct platform_device *pdev = to_platform_device(component->dev); if (!snd_soc_component_active(component)) return 0; ssc_p = &ssc_info[pdev->id]; /* Save the status register before disabling transmit and receive */ ssc_p->ssc_state.ssc_sr = ssc_readl(ssc_p->ssc->regs, SR); ssc_writel(ssc_p->ssc->regs, CR, SSC_BIT(CR_TXDIS) | SSC_BIT(CR_RXDIS)); /* Save the current interrupt mask, then disable unmasked interrupts */ ssc_p->ssc_state.ssc_imr = ssc_readl(ssc_p->ssc->regs, IMR); ssc_writel(ssc_p->ssc->regs, IDR, ssc_p->ssc_state.ssc_imr); ssc_p->ssc_state.ssc_cmr = ssc_readl(ssc_p->ssc->regs, CMR); ssc_p->ssc_state.ssc_rcmr = ssc_readl(ssc_p->ssc->regs, RCMR); ssc_p->ssc_state.ssc_rfmr = ssc_readl(ssc_p->ssc->regs, RFMR); ssc_p->ssc_state.ssc_tcmr = ssc_readl(ssc_p->ssc->regs, TCMR); ssc_p->ssc_state.ssc_tfmr = ssc_readl(ssc_p->ssc->regs, TFMR); return 0; } static int atmel_ssc_resume(struct snd_soc_component *component) { struct atmel_ssc_info *ssc_p; struct platform_device *pdev = to_platform_device(component->dev); u32 cr; if (!snd_soc_component_active(component)) return 0; ssc_p = &ssc_info[pdev->id]; /* restore SSC register settings */ ssc_writel(ssc_p->ssc->regs, TFMR, ssc_p->ssc_state.ssc_tfmr); ssc_writel(ssc_p->ssc->regs, TCMR, ssc_p->ssc_state.ssc_tcmr); ssc_writel(ssc_p->ssc->regs, RFMR, ssc_p->ssc_state.ssc_rfmr); ssc_writel(ssc_p->ssc->regs, RCMR, ssc_p->ssc_state.ssc_rcmr); ssc_writel(ssc_p->ssc->regs, CMR, ssc_p->ssc_state.ssc_cmr); /* re-enable interrupts */ ssc_writel(ssc_p->ssc->regs, IER, ssc_p->ssc_state.ssc_imr); /* Re-enable receive and transmit as appropriate */ cr = 0; cr |= (ssc_p->ssc_state.ssc_sr & SSC_BIT(SR_RXEN)) ? SSC_BIT(CR_RXEN) : 0; cr |= (ssc_p->ssc_state.ssc_sr & SSC_BIT(SR_TXEN)) ? SSC_BIT(CR_TXEN) : 0; ssc_writel(ssc_p->ssc->regs, CR, cr); return 0; } #define ATMEL_SSC_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE |\ SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE) static const struct snd_soc_dai_ops atmel_ssc_dai_ops = { .startup = atmel_ssc_startup, .shutdown = atmel_ssc_shutdown, .prepare = atmel_ssc_prepare, .trigger = atmel_ssc_trigger, .hw_params = atmel_ssc_hw_params, .set_fmt = atmel_ssc_set_dai_fmt, .set_clkdiv = atmel_ssc_set_dai_clkdiv, }; static struct snd_soc_dai_driver atmel_ssc_dai = { .playback = { .channels_min = 1, .channels_max = 2, .rates = SNDRV_PCM_RATE_CONTINUOUS, .rate_min = 8000, .rate_max = 384000, .formats = ATMEL_SSC_FORMATS,}, .capture = { .channels_min = 1, .channels_max = 2, .rates = SNDRV_PCM_RATE_CONTINUOUS, .rate_min = 8000, .rate_max = 384000, .formats = ATMEL_SSC_FORMATS,}, .ops = &atmel_ssc_dai_ops, }; static const struct snd_soc_component_driver atmel_ssc_component = { .name = "atmel-ssc", .suspend = pm_ptr(atmel_ssc_suspend), .resume = pm_ptr(atmel_ssc_resume), .legacy_dai_naming = 1, }; static int asoc_ssc_init(struct device *dev) { struct ssc_device *ssc = dev_get_drvdata(dev); int ret; ret = devm_snd_soc_register_component(dev, &atmel_ssc_component, &atmel_ssc_dai, 1); if (ret) { dev_err(dev, "Could not register DAI: %d\n", ret); return ret; } if (ssc->pdata->use_dma) ret = atmel_pcm_dma_platform_register(dev); else ret = atmel_pcm_pdc_platform_register(dev); if (ret) { dev_err(dev, "Could not register PCM: %d\n", ret); return ret; } return 0; } /** * atmel_ssc_set_audio - Allocate the specified SSC for audio use. * @ssc_id: SSD ID in [0, NUM_SSC_DEVICES[ */ int atmel_ssc_set_audio(int ssc_id) { struct ssc_device *ssc; /* If we can grab the SSC briefly to parent the DAI device off it */ ssc = ssc_request(ssc_id); if (IS_ERR(ssc)) { pr_err("Unable to parent ASoC SSC DAI on SSC: %ld\n", PTR_ERR(ssc)); return PTR_ERR(ssc); } else { ssc_info[ssc_id].ssc = ssc; } return asoc_ssc_init(&ssc->pdev->dev); } EXPORT_SYMBOL_GPL(atmel_ssc_set_audio); void atmel_ssc_put_audio(int ssc_id) { struct ssc_device *ssc = ssc_info[ssc_id].ssc; ssc_free(ssc); } EXPORT_SYMBOL_GPL(atmel_ssc_put_audio); /* Module information */ MODULE_AUTHOR("Sedji Gaouaou, sedji.gaouaou@atmel.com, www.atmel.com"); MODULE_DESCRIPTION("ATMEL SSC ASoC Interface"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1