Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Codrin Ciubotariu | 4867 | 90.16% | 3 | 20.00% |
Claudiu Beznea | 478 | 8.86% | 4 | 26.67% |
Kuninori Morimoto | 38 | 0.70% | 2 | 13.33% |
Charles Keepax | 7 | 0.13% | 2 | 13.33% |
Alviro Iskandar Setiawan | 3 | 0.06% | 1 | 6.67% |
Takashi Iwai | 2 | 0.04% | 1 | 6.67% |
Uwe Kleine-König | 2 | 0.04% | 1 | 6.67% |
Colin Ian King | 1 | 0.02% | 1 | 6.67% |
Total | 5398 | 15 |
// SPDX-License-Identifier: GPL-2.0 // // Driver for Microchip Pulse Density Microphone Controller (PDMC) interfaces // // Copyright (C) 2019-2022 Microchip Technology Inc. and its subsidiaries // // Author: Codrin Ciubotariu <codrin.ciubotariu@microchip.com> #include <dt-bindings/sound/microchip,pdmc.h> #include <linux/bitfield.h> #include <linux/clk.h> #include <linux/module.h> #include <linux/of.h> #include <linux/pm_runtime.h> #include <linux/regmap.h> #include <sound/core.h> #include <sound/dmaengine_pcm.h> #include <sound/pcm_params.h> #include <sound/tlv.h> /* * ---- PDMC Register map ---- */ #define MCHP_PDMC_CR 0x00 /* Control Register */ #define MCHP_PDMC_MR 0x04 /* Mode Register */ #define MCHP_PDMC_CFGR 0x08 /* Configuration Register */ #define MCHP_PDMC_RHR 0x0C /* Receive Holding Register */ #define MCHP_PDMC_IER 0x14 /* Interrupt Enable Register */ #define MCHP_PDMC_IDR 0x18 /* Interrupt Disable Register */ #define MCHP_PDMC_IMR 0x1C /* Interrupt Mask Register */ #define MCHP_PDMC_ISR 0x20 /* Interrupt Status Register */ #define MCHP_PDMC_VER 0x50 /* Version Register */ /* * ---- Control Register (Write-only) ---- */ #define MCHP_PDMC_CR_SWRST BIT(0) /* Software Reset */ /* * ---- Mode Register (Read/Write) ---- */ #define MCHP_PDMC_MR_PDMCEN_MASK GENMASK(3, 0) #define MCHP_PDMC_MR_PDMCEN(ch) (BIT(ch) & MCHP_PDMC_MR_PDMCEN_MASK) #define MCHP_PDMC_MR_OSR_MASK GENMASK(17, 16) #define MCHP_PDMC_MR_OSR64 (1 << 16) #define MCHP_PDMC_MR_OSR128 (2 << 16) #define MCHP_PDMC_MR_OSR256 (3 << 16) #define MCHP_PDMC_MR_SINCORDER_MASK GENMASK(23, 20) #define MCHP_PDMC_MR_SINC_OSR_MASK GENMASK(27, 24) #define MCHP_PDMC_MR_SINC_OSR_DIS (0 << 24) #define MCHP_PDMC_MR_SINC_OSR_8 (1 << 24) #define MCHP_PDMC_MR_SINC_OSR_16 (2 << 24) #define MCHP_PDMC_MR_SINC_OSR_32 (3 << 24) #define MCHP_PDMC_MR_SINC_OSR_64 (4 << 24) #define MCHP_PDMC_MR_SINC_OSR_128 (5 << 24) #define MCHP_PDMC_MR_SINC_OSR_256 (6 << 24) #define MCHP_PDMC_MR_CHUNK_MASK GENMASK(31, 28) /* * ---- Configuration Register (Read/Write) ---- */ #define MCHP_PDMC_CFGR_BSSEL_MASK (BIT(0) | BIT(2) | BIT(4) | BIT(6)) #define MCHP_PDMC_CFGR_BSSEL(ch) BIT((ch) * 2) #define MCHP_PDMC_CFGR_PDMSEL_MASK (BIT(16) | BIT(18) | BIT(20) | BIT(22)) #define MCHP_PDMC_CFGR_PDMSEL(ch) BIT((ch) * 2 + 16) /* * ---- Interrupt Enable/Disable/Mask/Status Registers ---- */ #define MCHP_PDMC_IR_RXRDY BIT(0) #define MCHP_PDMC_IR_RXEMPTY BIT(1) #define MCHP_PDMC_IR_RXFULL BIT(2) #define MCHP_PDMC_IR_RXCHUNK BIT(3) #define MCHP_PDMC_IR_RXUDR BIT(4) #define MCHP_PDMC_IR_RXOVR BIT(5) /* * ---- Version Register (Read-only) ---- */ #define MCHP_PDMC_VER_VERSION GENMASK(11, 0) #define MCHP_PDMC_MAX_CHANNELS 4 #define MCHP_PDMC_DS_NO 2 #define MCHP_PDMC_EDGE_NO 2 struct mic_map { int ds_pos; int clk_edge; }; struct mchp_pdmc_chmap { struct snd_pcm_chmap_elem *chmap; struct mchp_pdmc *dd; struct snd_pcm *pcm; struct snd_kcontrol *kctl; }; struct mchp_pdmc { struct mic_map channel_mic_map[MCHP_PDMC_MAX_CHANNELS]; struct device *dev; struct snd_dmaengine_dai_dma_data addr; struct regmap *regmap; struct clk *pclk; struct clk *gclk; u32 pdmcen; u32 suspend_irq; u32 startup_delay_us; int mic_no; int sinc_order; bool audio_filter_en; }; static const char *const mchp_pdmc_sinc_filter_order_text[] = { "1", "2", "3", "4", "5" }; static const unsigned int mchp_pdmc_sinc_filter_order_values[] = { 1, 2, 3, 4, 5, }; static const struct soc_enum mchp_pdmc_sinc_filter_order_enum = { .items = ARRAY_SIZE(mchp_pdmc_sinc_filter_order_text), .texts = mchp_pdmc_sinc_filter_order_text, .values = mchp_pdmc_sinc_filter_order_values, }; static int mchp_pdmc_sinc_order_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *uvalue) { struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); struct mchp_pdmc *dd = snd_soc_component_get_drvdata(component); struct soc_enum *e = (struct soc_enum *)kcontrol->private_value; unsigned int item; item = snd_soc_enum_val_to_item(e, dd->sinc_order); uvalue->value.enumerated.item[0] = item; return 0; } static int mchp_pdmc_sinc_order_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *uvalue) { struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); struct mchp_pdmc *dd = snd_soc_component_get_drvdata(component); struct soc_enum *e = (struct soc_enum *)kcontrol->private_value; unsigned int *item = uvalue->value.enumerated.item; unsigned int val; if (item[0] >= e->items) return -EINVAL; val = snd_soc_enum_item_to_val(e, item[0]) << e->shift_l; if (val == dd->sinc_order) return 0; dd->sinc_order = val; return 1; } static int mchp_pdmc_af_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *uvalue) { struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); struct mchp_pdmc *dd = snd_soc_component_get_drvdata(component); uvalue->value.integer.value[0] = !!dd->audio_filter_en; return 0; } static int mchp_pdmc_af_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *uvalue) { struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); struct mchp_pdmc *dd = snd_soc_component_get_drvdata(component); bool af = uvalue->value.integer.value[0] ? true : false; if (dd->audio_filter_en == af) return 0; dd->audio_filter_en = af; return 1; } static int mchp_pdmc_chmap_ctl_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { struct mchp_pdmc_chmap *info = snd_kcontrol_chip(kcontrol); uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = info->dd->mic_no; uinfo->value.integer.min = 0; uinfo->value.integer.max = SNDRV_CHMAP_RR; /* maxmimum 4 channels */ return 0; } static inline struct snd_pcm_substream * mchp_pdmc_chmap_substream(struct mchp_pdmc_chmap *info, unsigned int idx) { struct snd_pcm_substream *s; for (s = info->pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream; s; s = s->next) if (s->number == idx) return s; return NULL; } static struct snd_pcm_chmap_elem *mchp_pdmc_chmap_get(struct snd_pcm_substream *substream, struct mchp_pdmc_chmap *ch_info) { struct snd_pcm_chmap_elem *map; for (map = ch_info->chmap; map->channels; map++) { if (map->channels == substream->runtime->channels) return map; } return NULL; } static int mchp_pdmc_chmap_ctl_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct mchp_pdmc_chmap *info = snd_kcontrol_chip(kcontrol); struct mchp_pdmc *dd = info->dd; unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id); struct snd_pcm_substream *substream; const struct snd_pcm_chmap_elem *map; int i; u32 cfgr_val = 0; if (!info->chmap) return -EINVAL; substream = mchp_pdmc_chmap_substream(info, idx); if (!substream) return -ENODEV; memset(ucontrol->value.integer.value, 0, sizeof(long) * info->dd->mic_no); if (!substream->runtime) return 0; /* no channels set */ map = mchp_pdmc_chmap_get(substream, info); if (!map) return -EINVAL; for (i = 0; i < map->channels; i++) { int map_idx = map->channels == 1 ? map->map[i] - SNDRV_CHMAP_MONO : map->map[i] - SNDRV_CHMAP_FL; /* make sure the reported channel map is the real one, so write the map */ if (dd->channel_mic_map[map_idx].ds_pos) cfgr_val |= MCHP_PDMC_CFGR_PDMSEL(i); if (dd->channel_mic_map[map_idx].clk_edge) cfgr_val |= MCHP_PDMC_CFGR_BSSEL(i); ucontrol->value.integer.value[i] = map->map[i]; } regmap_write(dd->regmap, MCHP_PDMC_CFGR, cfgr_val); return 0; } static int mchp_pdmc_chmap_ctl_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct mchp_pdmc_chmap *info = snd_kcontrol_chip(kcontrol); struct mchp_pdmc *dd = info->dd; unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id); struct snd_pcm_substream *substream; struct snd_pcm_chmap_elem *map; u32 cfgr_val = 0; int i; if (!info->chmap) return -EINVAL; substream = mchp_pdmc_chmap_substream(info, idx); if (!substream) return -ENODEV; map = mchp_pdmc_chmap_get(substream, info); if (!map) return -EINVAL; for (i = 0; i < map->channels; i++) { int map_idx; map->map[i] = ucontrol->value.integer.value[i]; map_idx = map->channels == 1 ? map->map[i] - SNDRV_CHMAP_MONO : map->map[i] - SNDRV_CHMAP_FL; /* configure IP for the desired channel map */ if (dd->channel_mic_map[map_idx].ds_pos) cfgr_val |= MCHP_PDMC_CFGR_PDMSEL(i); if (dd->channel_mic_map[map_idx].clk_edge) cfgr_val |= MCHP_PDMC_CFGR_BSSEL(i); } regmap_write(dd->regmap, MCHP_PDMC_CFGR, cfgr_val); return 0; } static void mchp_pdmc_chmap_ctl_private_free(struct snd_kcontrol *kcontrol) { struct mchp_pdmc_chmap *info = snd_kcontrol_chip(kcontrol); info->pcm->streams[SNDRV_PCM_STREAM_CAPTURE].chmap_kctl = NULL; kfree(info); } static int mchp_pdmc_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag, unsigned int size, unsigned int __user *tlv) { struct mchp_pdmc_chmap *info = snd_kcontrol_chip(kcontrol); const struct snd_pcm_chmap_elem *map; unsigned int __user *dst; int c, count = 0; if (!info->chmap) return -EINVAL; if (size < 8) return -ENOMEM; if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv)) return -EFAULT; size -= 8; dst = tlv + 2; for (map = info->chmap; map->channels; map++) { int chs_bytes = map->channels * 4; if (size < 8) return -ENOMEM; if (put_user(SNDRV_CTL_TLVT_CHMAP_VAR, dst) || put_user(chs_bytes, dst + 1)) return -EFAULT; dst += 2; size -= 8; count += 8; if (size < chs_bytes) return -ENOMEM; size -= chs_bytes; count += chs_bytes; for (c = 0; c < map->channels; c++) { if (put_user(map->map[c], dst)) return -EFAULT; dst++; } } if (put_user(count, tlv + 1)) return -EFAULT; return 0; } static const struct snd_kcontrol_new mchp_pdmc_snd_controls[] = { SOC_SINGLE_BOOL_EXT("Audio Filter", 0, &mchp_pdmc_af_get, &mchp_pdmc_af_put), { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "SINC Filter Order", .info = snd_soc_info_enum_double, .get = mchp_pdmc_sinc_order_get, .put = mchp_pdmc_sinc_order_put, .private_value = (unsigned long)&mchp_pdmc_sinc_filter_order_enum, }, }; static int mchp_pdmc_close(struct snd_soc_component *component, struct snd_pcm_substream *substream) { return snd_soc_add_component_controls(component, mchp_pdmc_snd_controls, ARRAY_SIZE(mchp_pdmc_snd_controls)); } static int mchp_pdmc_open(struct snd_soc_component *component, struct snd_pcm_substream *substream) { int i; /* remove controls that can't be changed at runtime */ for (i = 0; i < ARRAY_SIZE(mchp_pdmc_snd_controls); i++) { const struct snd_kcontrol_new *control = &mchp_pdmc_snd_controls[i]; struct snd_ctl_elem_id id; int err; if (component->name_prefix) snprintf(id.name, sizeof(id.name), "%s %s", component->name_prefix, control->name); else strscpy(id.name, control->name, sizeof(id.name)); id.numid = 0; id.iface = control->iface; id.device = control->device; id.subdevice = control->subdevice; id.index = control->index; err = snd_ctl_remove_id(component->card->snd_card, &id); if (err < 0) dev_err(component->dev, "%d: Failed to remove %s\n", err, control->name); } return 0; } static const struct snd_soc_component_driver mchp_pdmc_dai_component = { .name = "mchp-pdmc", .controls = mchp_pdmc_snd_controls, .num_controls = ARRAY_SIZE(mchp_pdmc_snd_controls), .open = &mchp_pdmc_open, .close = &mchp_pdmc_close, .legacy_dai_naming = 1, .trigger_start = SND_SOC_TRIGGER_ORDER_LDC, }; static const unsigned int mchp_pdmc_1mic[] = {1}; static const unsigned int mchp_pdmc_2mic[] = {1, 2}; static const unsigned int mchp_pdmc_3mic[] = {1, 2, 3}; static const unsigned int mchp_pdmc_4mic[] = {1, 2, 3, 4}; static const struct snd_pcm_hw_constraint_list mchp_pdmc_chan_constr[] = { { .list = mchp_pdmc_1mic, .count = ARRAY_SIZE(mchp_pdmc_1mic), }, { .list = mchp_pdmc_2mic, .count = ARRAY_SIZE(mchp_pdmc_2mic), }, { .list = mchp_pdmc_3mic, .count = ARRAY_SIZE(mchp_pdmc_3mic), }, { .list = mchp_pdmc_4mic, .count = ARRAY_SIZE(mchp_pdmc_4mic), }, }; static int mchp_pdmc_startup(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct mchp_pdmc *dd = snd_soc_dai_get_drvdata(dai); regmap_write(dd->regmap, MCHP_PDMC_CR, MCHP_PDMC_CR_SWRST); snd_pcm_hw_constraint_list(substream->runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &mchp_pdmc_chan_constr[dd->mic_no - 1]); return 0; } static int mchp_pdmc_dai_probe(struct snd_soc_dai *dai) { struct mchp_pdmc *dd = snd_soc_dai_get_drvdata(dai); snd_soc_dai_init_dma_data(dai, NULL, &dd->addr); return 0; } static int mchp_pdmc_set_fmt(struct snd_soc_dai *dai, unsigned int fmt) { unsigned int fmt_master = fmt & SND_SOC_DAIFMT_MASTER_MASK; unsigned int fmt_format = fmt & SND_SOC_DAIFMT_FORMAT_MASK; /* IP needs to be bitclock master */ if (fmt_master != SND_SOC_DAIFMT_BP_FP && fmt_master != SND_SOC_DAIFMT_BP_FC) return -EINVAL; /* IP supports only PDM interface */ if (fmt_format != SND_SOC_DAIFMT_PDM) return -EINVAL; return 0; } static u32 mchp_pdmc_mr_set_osr(int audio_filter_en, unsigned int osr) { if (audio_filter_en) { switch (osr) { case 64: return MCHP_PDMC_MR_OSR64; case 128: return MCHP_PDMC_MR_OSR128; case 256: return MCHP_PDMC_MR_OSR256; } } else { switch (osr) { case 8: return MCHP_PDMC_MR_SINC_OSR_8; case 16: return MCHP_PDMC_MR_SINC_OSR_16; case 32: return MCHP_PDMC_MR_SINC_OSR_32; case 64: return MCHP_PDMC_MR_SINC_OSR_64; case 128: return MCHP_PDMC_MR_SINC_OSR_128; case 256: return MCHP_PDMC_MR_SINC_OSR_256; } } return 0; } static inline int mchp_pdmc_period_to_maxburst(int period_size) { if (!(period_size % 8)) return 8; if (!(period_size % 4)) return 4; if (!(period_size % 2)) return 2; return 1; } static struct snd_pcm_chmap_elem mchp_pdmc_std_chmaps[] = { { .channels = 1, .map = { SNDRV_CHMAP_MONO } }, { .channels = 2, .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } }, { .channels = 3, .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, SNDRV_CHMAP_RL } }, { .channels = 4, .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } }, { } }; static int mchp_pdmc_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { struct mchp_pdmc *dd = snd_soc_dai_get_drvdata(dai); struct snd_soc_component *comp = dai->component; unsigned long gclk_rate = 0; unsigned long best_diff_rate = ~0UL; unsigned int channels = params_channels(params); unsigned int osr = 0, osr_start; unsigned int fs = params_rate(params); u32 mr_val = 0; u32 cfgr_val = 0; int i; int ret; dev_dbg(comp->dev, "%s() rate=%u format=%#x width=%u channels=%u\n", __func__, params_rate(params), params_format(params), params_width(params), params_channels(params)); if (channels > dd->mic_no) { dev_err(comp->dev, "more channels %u than microphones %d\n", channels, dd->mic_no); return -EINVAL; } dd->pdmcen = 0; for (i = 0; i < channels; i++) { dd->pdmcen |= MCHP_PDMC_MR_PDMCEN(i); if (dd->channel_mic_map[i].ds_pos) cfgr_val |= MCHP_PDMC_CFGR_PDMSEL(i); if (dd->channel_mic_map[i].clk_edge) cfgr_val |= MCHP_PDMC_CFGR_BSSEL(i); } for (osr_start = dd->audio_filter_en ? 64 : 8; osr_start <= 256 && best_diff_rate; osr_start *= 2) { long round_rate; unsigned long diff_rate; round_rate = clk_round_rate(dd->gclk, (unsigned long)fs * 16 * osr_start); if (round_rate < 0) continue; diff_rate = abs((fs * 16 * osr_start) - round_rate); if (diff_rate < best_diff_rate) { best_diff_rate = diff_rate; osr = osr_start; gclk_rate = fs * 16 * osr; } } if (!gclk_rate) { dev_err(comp->dev, "invalid sampling rate: %u\n", fs); return -EINVAL; } /* CLK is enabled by runtime PM. */ clk_disable_unprepare(dd->gclk); /* set the rate */ ret = clk_set_rate(dd->gclk, gclk_rate); clk_prepare_enable(dd->gclk); if (ret) { dev_err(comp->dev, "unable to set rate %lu to GCLK: %d\n", gclk_rate, ret); return ret; } mr_val |= mchp_pdmc_mr_set_osr(dd->audio_filter_en, osr); mr_val |= FIELD_PREP(MCHP_PDMC_MR_SINCORDER_MASK, dd->sinc_order); dd->addr.maxburst = mchp_pdmc_period_to_maxburst(snd_pcm_lib_period_bytes(substream)); mr_val |= FIELD_PREP(MCHP_PDMC_MR_CHUNK_MASK, dd->addr.maxburst); dev_dbg(comp->dev, "maxburst set to %d\n", dd->addr.maxburst); snd_soc_component_update_bits(comp, MCHP_PDMC_MR, MCHP_PDMC_MR_OSR_MASK | MCHP_PDMC_MR_SINCORDER_MASK | MCHP_PDMC_MR_SINC_OSR_MASK | MCHP_PDMC_MR_CHUNK_MASK, mr_val); snd_soc_component_write(comp, MCHP_PDMC_CFGR, cfgr_val); return 0; } static void mchp_pdmc_noise_filter_workaround(struct mchp_pdmc *dd) { u32 tmp, steps = 16; /* * PDMC doesn't wait for microphones' startup time thus the acquisition * may start before the microphones are ready leading to poc noises at * the beginning of capture. To avoid this, we need to wait 50ms (in * normal startup procedure) or 150 ms (worst case after resume from sleep * states) after microphones are enabled and then clear the FIFOs (by * reading the RHR 16 times) and possible interrupts before continuing. * Also, for this to work the DMA needs to be started after interrupts * are enabled. */ usleep_range(dd->startup_delay_us, dd->startup_delay_us + 5); while (steps--) regmap_read(dd->regmap, MCHP_PDMC_RHR, &tmp); /* Clear interrupts. */ regmap_read(dd->regmap, MCHP_PDMC_ISR, &tmp); } static int mchp_pdmc_trigger(struct snd_pcm_substream *substream, int cmd, struct snd_soc_dai *dai) { struct mchp_pdmc *dd = snd_soc_dai_get_drvdata(dai); struct snd_soc_component *cpu = dai->component; #ifdef DEBUG u32 val; #endif switch (cmd) { case SNDRV_PCM_TRIGGER_RESUME: case SNDRV_PCM_TRIGGER_START: case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: snd_soc_component_update_bits(cpu, MCHP_PDMC_MR, MCHP_PDMC_MR_PDMCEN_MASK, dd->pdmcen); mchp_pdmc_noise_filter_workaround(dd); /* Enable interrupts. */ regmap_write(dd->regmap, MCHP_PDMC_IER, dd->suspend_irq | MCHP_PDMC_IR_RXOVR | MCHP_PDMC_IR_RXUDR); dd->suspend_irq = 0; break; case SNDRV_PCM_TRIGGER_SUSPEND: regmap_read(dd->regmap, MCHP_PDMC_IMR, &dd->suspend_irq); fallthrough; case SNDRV_PCM_TRIGGER_STOP: /* Disable overrun and underrun error interrupts */ regmap_write(dd->regmap, MCHP_PDMC_IDR, dd->suspend_irq | MCHP_PDMC_IR_RXOVR | MCHP_PDMC_IR_RXUDR); fallthrough; case SNDRV_PCM_TRIGGER_PAUSE_PUSH: snd_soc_component_update_bits(cpu, MCHP_PDMC_MR, MCHP_PDMC_MR_PDMCEN_MASK, 0); break; default: return -EINVAL; } #ifdef DEBUG regmap_read(dd->regmap, MCHP_PDMC_MR, &val); dev_dbg(dd->dev, "MR (0x%02x): 0x%08x\n", MCHP_PDMC_MR, val); regmap_read(dd->regmap, MCHP_PDMC_CFGR, &val); dev_dbg(dd->dev, "CFGR (0x%02x): 0x%08x\n", MCHP_PDMC_CFGR, val); regmap_read(dd->regmap, MCHP_PDMC_IMR, &val); dev_dbg(dd->dev, "IMR (0x%02x): 0x%08x\n", MCHP_PDMC_IMR, val); #endif return 0; } static int mchp_pdmc_add_chmap_ctls(struct snd_pcm *pcm, struct mchp_pdmc *dd) { struct mchp_pdmc_chmap *info; struct snd_kcontrol_new knew = { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ | SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK, .info = mchp_pdmc_chmap_ctl_info, .get = mchp_pdmc_chmap_ctl_get, .put = mchp_pdmc_chmap_ctl_put, .tlv.c = mchp_pdmc_chmap_ctl_tlv, }; int err; if (WARN_ON(pcm->streams[SNDRV_PCM_STREAM_CAPTURE].chmap_kctl)) return -EBUSY; info = kzalloc(sizeof(*info), GFP_KERNEL); if (!info) return -ENOMEM; info->pcm = pcm; info->dd = dd; info->chmap = mchp_pdmc_std_chmaps; knew.name = "Capture Channel Map"; knew.device = pcm->device; knew.count = pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream_count; info->kctl = snd_ctl_new1(&knew, info); if (!info->kctl) { kfree(info); return -ENOMEM; } info->kctl->private_free = mchp_pdmc_chmap_ctl_private_free; err = snd_ctl_add(pcm->card, info->kctl); if (err < 0) return err; pcm->streams[SNDRV_PCM_STREAM_CAPTURE].chmap_kctl = info->kctl; return 0; } static int mchp_pdmc_pcm_new(struct snd_soc_pcm_runtime *rtd, struct snd_soc_dai *dai) { struct mchp_pdmc *dd = snd_soc_dai_get_drvdata(dai); int ret; ret = mchp_pdmc_add_chmap_ctls(rtd->pcm, dd); if (ret < 0) dev_err(dd->dev, "failed to add channel map controls: %d\n", ret); return ret; } static const struct snd_soc_dai_ops mchp_pdmc_dai_ops = { .probe = mchp_pdmc_dai_probe, .set_fmt = mchp_pdmc_set_fmt, .startup = mchp_pdmc_startup, .hw_params = mchp_pdmc_hw_params, .trigger = mchp_pdmc_trigger, .pcm_new = &mchp_pdmc_pcm_new, }; static struct snd_soc_dai_driver mchp_pdmc_dai = { .capture = { .stream_name = "Capture", .channels_min = 1, .channels_max = 4, .rate_min = 8000, .rate_max = 192000, .rates = SNDRV_PCM_RATE_KNOT, .formats = SNDRV_PCM_FMTBIT_S24_LE, }, .ops = &mchp_pdmc_dai_ops, }; /* PDMC interrupt handler */ static irqreturn_t mchp_pdmc_interrupt(int irq, void *dev_id) { struct mchp_pdmc *dd = dev_id; u32 isr, msr, pending; irqreturn_t ret = IRQ_NONE; regmap_read(dd->regmap, MCHP_PDMC_ISR, &isr); regmap_read(dd->regmap, MCHP_PDMC_IMR, &msr); pending = isr & msr; dev_dbg(dd->dev, "ISR (0x%02x): 0x%08x, IMR (0x%02x): 0x%08x, pending: 0x%08x\n", MCHP_PDMC_ISR, isr, MCHP_PDMC_IMR, msr, pending); if (!pending) return IRQ_NONE; if (pending & MCHP_PDMC_IR_RXUDR) { dev_warn(dd->dev, "underrun detected\n"); regmap_write(dd->regmap, MCHP_PDMC_IDR, MCHP_PDMC_IR_RXUDR); ret = IRQ_HANDLED; } if (pending & MCHP_PDMC_IR_RXOVR) { dev_warn(dd->dev, "overrun detected\n"); regmap_write(dd->regmap, MCHP_PDMC_IDR, MCHP_PDMC_IR_RXOVR); ret = IRQ_HANDLED; } return ret; } /* regmap configuration */ static bool mchp_pdmc_readable_reg(struct device *dev, unsigned int reg) { switch (reg) { case MCHP_PDMC_MR: case MCHP_PDMC_CFGR: case MCHP_PDMC_IMR: case MCHP_PDMC_ISR: case MCHP_PDMC_RHR: case MCHP_PDMC_VER: return true; default: return false; } } static bool mchp_pdmc_writeable_reg(struct device *dev, unsigned int reg) { switch (reg) { case MCHP_PDMC_CR: case MCHP_PDMC_MR: case MCHP_PDMC_CFGR: case MCHP_PDMC_IER: case MCHP_PDMC_IDR: return true; default: return false; } } static bool mchp_pdmc_volatile_reg(struct device *dev, unsigned int reg) { switch (reg) { case MCHP_PDMC_ISR: case MCHP_PDMC_RHR: return true; default: return false; } } static bool mchp_pdmc_precious_reg(struct device *dev, unsigned int reg) { switch (reg) { case MCHP_PDMC_RHR: case MCHP_PDMC_ISR: return true; default: return false; } } static const struct regmap_config mchp_pdmc_regmap_config = { .reg_bits = 32, .reg_stride = 4, .val_bits = 32, .max_register = MCHP_PDMC_VER, .readable_reg = mchp_pdmc_readable_reg, .writeable_reg = mchp_pdmc_writeable_reg, .precious_reg = mchp_pdmc_precious_reg, .volatile_reg = mchp_pdmc_volatile_reg, .cache_type = REGCACHE_FLAT, }; static int mchp_pdmc_dt_init(struct mchp_pdmc *dd) { struct device_node *np = dd->dev->of_node; bool mic_ch[MCHP_PDMC_DS_NO][MCHP_PDMC_EDGE_NO] = {0}; int i; int ret; if (!np) { dev_err(dd->dev, "device node not found\n"); return -EINVAL; } dd->mic_no = of_property_count_u32_elems(np, "microchip,mic-pos"); if (dd->mic_no < 0) { dev_err(dd->dev, "failed to get microchip,mic-pos: %d", dd->mic_no); return dd->mic_no; } if (!dd->mic_no || dd->mic_no % 2 || dd->mic_no / 2 > MCHP_PDMC_MAX_CHANNELS) { dev_err(dd->dev, "invalid array length for microchip,mic-pos: %d", dd->mic_no); return -EINVAL; } dd->mic_no /= 2; dev_info(dd->dev, "%d PDM microphones declared\n", dd->mic_no); /* * by default, we consider the order of microphones in * microchip,mic-pos to be the same with the channel mapping; * 1st microphone channel 0, 2nd microphone channel 1, etc. */ for (i = 0; i < dd->mic_no; i++) { int ds; int edge; ret = of_property_read_u32_index(np, "microchip,mic-pos", i * 2, &ds); if (ret) { dev_err(dd->dev, "failed to get value no %d value from microchip,mic-pos: %d", i * 2, ret); return ret; } if (ds >= MCHP_PDMC_DS_NO) { dev_err(dd->dev, "invalid DS index in microchip,mic-pos array: %d", ds); return -EINVAL; } ret = of_property_read_u32_index(np, "microchip,mic-pos", i * 2 + 1, &edge); if (ret) { dev_err(dd->dev, "failed to get value no %d value from microchip,mic-pos: %d", i * 2 + 1, ret); return ret; } if (edge != MCHP_PDMC_CLK_POSITIVE && edge != MCHP_PDMC_CLK_NEGATIVE) { dev_err(dd->dev, "invalid edge in microchip,mic-pos array: %d", edge); return -EINVAL; } if (mic_ch[ds][edge]) { dev_err(dd->dev, "duplicated mic (DS %d, edge %d) in microchip,mic-pos array", ds, edge); return -EINVAL; } mic_ch[ds][edge] = true; dd->channel_mic_map[i].ds_pos = ds; dd->channel_mic_map[i].clk_edge = edge; } dd->startup_delay_us = 150000; of_property_read_u32(np, "microchip,startup-delay-us", &dd->startup_delay_us); return 0; } /* used to clean the channel index found on RHR's MSB */ static int mchp_pdmc_process(struct snd_pcm_substream *substream, int channel, unsigned long hwoff, unsigned long bytes) { struct snd_pcm_runtime *runtime = substream->runtime; u8 *dma_ptr = runtime->dma_area + hwoff + channel * (runtime->dma_bytes / runtime->channels); u8 *dma_ptr_end = dma_ptr + bytes; unsigned int sample_size = samples_to_bytes(runtime, 1); for (; dma_ptr < dma_ptr_end; dma_ptr += sample_size) *dma_ptr = 0; return 0; } static struct snd_dmaengine_pcm_config mchp_pdmc_config = { .process = mchp_pdmc_process, .prepare_slave_config = snd_dmaengine_pcm_prepare_slave_config, }; static int mchp_pdmc_runtime_suspend(struct device *dev) { struct mchp_pdmc *dd = dev_get_drvdata(dev); regcache_cache_only(dd->regmap, true); clk_disable_unprepare(dd->gclk); clk_disable_unprepare(dd->pclk); return 0; } static int mchp_pdmc_runtime_resume(struct device *dev) { struct mchp_pdmc *dd = dev_get_drvdata(dev); int ret; ret = clk_prepare_enable(dd->pclk); if (ret) { dev_err(dd->dev, "failed to enable the peripheral clock: %d\n", ret); return ret; } ret = clk_prepare_enable(dd->gclk); if (ret) { dev_err(dd->dev, "failed to enable generic clock: %d\n", ret); goto disable_pclk; } regcache_cache_only(dd->regmap, false); regcache_mark_dirty(dd->regmap); ret = regcache_sync(dd->regmap); if (ret) { regcache_cache_only(dd->regmap, true); clk_disable_unprepare(dd->gclk); disable_pclk: clk_disable_unprepare(dd->pclk); } return ret; } static int mchp_pdmc_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct mchp_pdmc *dd; struct resource *res; void __iomem *io_base; u32 version; int irq; int ret; dd = devm_kzalloc(dev, sizeof(*dd), GFP_KERNEL); if (!dd) return -ENOMEM; dd->dev = &pdev->dev; ret = mchp_pdmc_dt_init(dd); if (ret < 0) return ret; irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; dd->pclk = devm_clk_get(dev, "pclk"); if (IS_ERR(dd->pclk)) { ret = PTR_ERR(dd->pclk); dev_err(dev, "failed to get peripheral clock: %d\n", ret); return ret; } dd->gclk = devm_clk_get(dev, "gclk"); if (IS_ERR(dd->gclk)) { ret = PTR_ERR(dd->gclk); dev_err(dev, "failed to get GCK: %d\n", ret); return ret; } io_base = devm_platform_get_and_ioremap_resource(pdev, 0, &res); if (IS_ERR(io_base)) { ret = PTR_ERR(io_base); dev_err(dev, "failed to remap register memory: %d\n", ret); return ret; } dd->regmap = devm_regmap_init_mmio(dev, io_base, &mchp_pdmc_regmap_config); if (IS_ERR(dd->regmap)) { ret = PTR_ERR(dd->regmap); dev_err(dev, "failed to init register map: %d\n", ret); return ret; } ret = devm_request_irq(dev, irq, mchp_pdmc_interrupt, 0, dev_name(&pdev->dev), dd); if (ret < 0) { dev_err(dev, "can't register ISR for IRQ %u (ret=%i)\n", irq, ret); return ret; } /* by default audio filter is enabled and the SINC Filter order * will be set to the recommended value, 3 */ dd->audio_filter_en = true; dd->sinc_order = 3; dd->addr.addr = (dma_addr_t)res->start + MCHP_PDMC_RHR; platform_set_drvdata(pdev, dd); pm_runtime_enable(dd->dev); if (!pm_runtime_enabled(dd->dev)) { ret = mchp_pdmc_runtime_resume(dd->dev); if (ret) return ret; } /* register platform */ ret = devm_snd_dmaengine_pcm_register(dev, &mchp_pdmc_config, 0); if (ret) { dev_err(dev, "could not register platform: %d\n", ret); goto pm_runtime_suspend; } ret = devm_snd_soc_register_component(dev, &mchp_pdmc_dai_component, &mchp_pdmc_dai, 1); if (ret) { dev_err(dev, "could not register CPU DAI: %d\n", ret); goto pm_runtime_suspend; } /* print IP version */ regmap_read(dd->regmap, MCHP_PDMC_VER, &version); dev_info(dd->dev, "hw version: %#lx\n", version & MCHP_PDMC_VER_VERSION); return 0; pm_runtime_suspend: if (!pm_runtime_status_suspended(dd->dev)) mchp_pdmc_runtime_suspend(dd->dev); pm_runtime_disable(dd->dev); return ret; } static void mchp_pdmc_remove(struct platform_device *pdev) { struct mchp_pdmc *dd = platform_get_drvdata(pdev); if (!pm_runtime_status_suspended(dd->dev)) mchp_pdmc_runtime_suspend(dd->dev); pm_runtime_disable(dd->dev); } static const struct of_device_id mchp_pdmc_of_match[] = { { .compatible = "microchip,sama7g5-pdmc", }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, mchp_pdmc_of_match); static const struct dev_pm_ops mchp_pdmc_pm_ops = { SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, pm_runtime_force_resume) RUNTIME_PM_OPS(mchp_pdmc_runtime_suspend, mchp_pdmc_runtime_resume, NULL) }; static struct platform_driver mchp_pdmc_driver = { .driver = { .name = "mchp-pdmc", .of_match_table = of_match_ptr(mchp_pdmc_of_match), .pm = pm_ptr(&mchp_pdmc_pm_ops), }, .probe = mchp_pdmc_probe, .remove_new = mchp_pdmc_remove, }; module_platform_driver(mchp_pdmc_driver); MODULE_DESCRIPTION("Microchip PDMC driver under ALSA SoC architecture"); MODULE_AUTHOR("Codrin Ciubotariu <codrin.ciubotariu@microchip.com>"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1