Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Simran Rai | 2737 | 96.20% | 1 | 11.11% |
Kuninori Morimoto | 89 | 3.13% | 5 | 55.56% |
Lars-Peter Clausen | 16 | 0.56% | 1 | 11.11% |
Thomas Gleixner | 2 | 0.07% | 1 | 11.11% |
Hariprasad Kelam | 1 | 0.04% | 1 | 11.11% |
Total | 2845 | 9 |
// SPDX-License-Identifier: GPL-2.0-only // Copyright (C) 2014-2015 Broadcom Corporation #include <linux/debugfs.h> #include <linux/dma-mapping.h> #include <linux/init.h> #include <linux/io.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/timer.h> #include <sound/core.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/soc.h> #include <sound/soc-dai.h> #include "cygnus-ssp.h" /* Register offset needed for ASoC PCM module */ #define INTH_R5F_STATUS_OFFSET 0x040 #define INTH_R5F_CLEAR_OFFSET 0x048 #define INTH_R5F_MASK_SET_OFFSET 0x050 #define INTH_R5F_MASK_CLEAR_OFFSET 0x054 #define BF_REARM_FREE_MARK_OFFSET 0x344 #define BF_REARM_FULL_MARK_OFFSET 0x348 /* Ring Buffer Ctrl Regs --- Start */ /* AUD_FMM_BF_CTRL_SOURCECH_RINGBUF_X_RDADDR_REG_BASE */ #define SRC_RBUF_0_RDADDR_OFFSET 0x500 #define SRC_RBUF_1_RDADDR_OFFSET 0x518 #define SRC_RBUF_2_RDADDR_OFFSET 0x530 #define SRC_RBUF_3_RDADDR_OFFSET 0x548 #define SRC_RBUF_4_RDADDR_OFFSET 0x560 #define SRC_RBUF_5_RDADDR_OFFSET 0x578 #define SRC_RBUF_6_RDADDR_OFFSET 0x590 /* AUD_FMM_BF_CTRL_SOURCECH_RINGBUF_X_WRADDR_REG_BASE */ #define SRC_RBUF_0_WRADDR_OFFSET 0x504 #define SRC_RBUF_1_WRADDR_OFFSET 0x51c #define SRC_RBUF_2_WRADDR_OFFSET 0x534 #define SRC_RBUF_3_WRADDR_OFFSET 0x54c #define SRC_RBUF_4_WRADDR_OFFSET 0x564 #define SRC_RBUF_5_WRADDR_OFFSET 0x57c #define SRC_RBUF_6_WRADDR_OFFSET 0x594 /* AUD_FMM_BF_CTRL_SOURCECH_RINGBUF_X_BASEADDR_REG_BASE */ #define SRC_RBUF_0_BASEADDR_OFFSET 0x508 #define SRC_RBUF_1_BASEADDR_OFFSET 0x520 #define SRC_RBUF_2_BASEADDR_OFFSET 0x538 #define SRC_RBUF_3_BASEADDR_OFFSET 0x550 #define SRC_RBUF_4_BASEADDR_OFFSET 0x568 #define SRC_RBUF_5_BASEADDR_OFFSET 0x580 #define SRC_RBUF_6_BASEADDR_OFFSET 0x598 /* AUD_FMM_BF_CTRL_SOURCECH_RINGBUF_X_ENDADDR_REG_BASE */ #define SRC_RBUF_0_ENDADDR_OFFSET 0x50c #define SRC_RBUF_1_ENDADDR_OFFSET 0x524 #define SRC_RBUF_2_ENDADDR_OFFSET 0x53c #define SRC_RBUF_3_ENDADDR_OFFSET 0x554 #define SRC_RBUF_4_ENDADDR_OFFSET 0x56c #define SRC_RBUF_5_ENDADDR_OFFSET 0x584 #define SRC_RBUF_6_ENDADDR_OFFSET 0x59c /* AUD_FMM_BF_CTRL_SOURCECH_RINGBUF_X_FREE_MARK_REG_BASE */ #define SRC_RBUF_0_FREE_MARK_OFFSET 0x510 #define SRC_RBUF_1_FREE_MARK_OFFSET 0x528 #define SRC_RBUF_2_FREE_MARK_OFFSET 0x540 #define SRC_RBUF_3_FREE_MARK_OFFSET 0x558 #define SRC_RBUF_4_FREE_MARK_OFFSET 0x570 #define SRC_RBUF_5_FREE_MARK_OFFSET 0x588 #define SRC_RBUF_6_FREE_MARK_OFFSET 0x5a0 /* AUD_FMM_BF_CTRL_DESTCH_RINGBUF_X_RDADDR_REG_BASE */ #define DST_RBUF_0_RDADDR_OFFSET 0x5c0 #define DST_RBUF_1_RDADDR_OFFSET 0x5d8 #define DST_RBUF_2_RDADDR_OFFSET 0x5f0 #define DST_RBUF_3_RDADDR_OFFSET 0x608 #define DST_RBUF_4_RDADDR_OFFSET 0x620 #define DST_RBUF_5_RDADDR_OFFSET 0x638 /* AUD_FMM_BF_CTRL_DESTCH_RINGBUF_X_WRADDR_REG_BASE */ #define DST_RBUF_0_WRADDR_OFFSET 0x5c4 #define DST_RBUF_1_WRADDR_OFFSET 0x5dc #define DST_RBUF_2_WRADDR_OFFSET 0x5f4 #define DST_RBUF_3_WRADDR_OFFSET 0x60c #define DST_RBUF_4_WRADDR_OFFSET 0x624 #define DST_RBUF_5_WRADDR_OFFSET 0x63c /* AUD_FMM_BF_CTRL_DESTCH_RINGBUF_X_BASEADDR_REG_BASE */ #define DST_RBUF_0_BASEADDR_OFFSET 0x5c8 #define DST_RBUF_1_BASEADDR_OFFSET 0x5e0 #define DST_RBUF_2_BASEADDR_OFFSET 0x5f8 #define DST_RBUF_3_BASEADDR_OFFSET 0x610 #define DST_RBUF_4_BASEADDR_OFFSET 0x628 #define DST_RBUF_5_BASEADDR_OFFSET 0x640 /* AUD_FMM_BF_CTRL_DESTCH_RINGBUF_X_ENDADDR_REG_BASE */ #define DST_RBUF_0_ENDADDR_OFFSET 0x5cc #define DST_RBUF_1_ENDADDR_OFFSET 0x5e4 #define DST_RBUF_2_ENDADDR_OFFSET 0x5fc #define DST_RBUF_3_ENDADDR_OFFSET 0x614 #define DST_RBUF_4_ENDADDR_OFFSET 0x62c #define DST_RBUF_5_ENDADDR_OFFSET 0x644 /* AUD_FMM_BF_CTRL_DESTCH_RINGBUF_X_FULL_MARK_REG_BASE */ #define DST_RBUF_0_FULL_MARK_OFFSET 0x5d0 #define DST_RBUF_1_FULL_MARK_OFFSET 0x5e8 #define DST_RBUF_2_FULL_MARK_OFFSET 0x600 #define DST_RBUF_3_FULL_MARK_OFFSET 0x618 #define DST_RBUF_4_FULL_MARK_OFFSET 0x630 #define DST_RBUF_5_FULL_MARK_OFFSET 0x648 /* Ring Buffer Ctrl Regs --- End */ /* Error Status Regs --- Start */ /* AUD_FMM_BF_ESR_ESRX_STATUS_REG_BASE */ #define ESR0_STATUS_OFFSET 0x900 #define ESR1_STATUS_OFFSET 0x918 #define ESR2_STATUS_OFFSET 0x930 #define ESR3_STATUS_OFFSET 0x948 #define ESR4_STATUS_OFFSET 0x960 /* AUD_FMM_BF_ESR_ESRX_STATUS_CLEAR_REG_BASE */ #define ESR0_STATUS_CLR_OFFSET 0x908 #define ESR1_STATUS_CLR_OFFSET 0x920 #define ESR2_STATUS_CLR_OFFSET 0x938 #define ESR3_STATUS_CLR_OFFSET 0x950 #define ESR4_STATUS_CLR_OFFSET 0x968 /* AUD_FMM_BF_ESR_ESRX_MASK_REG_BASE */ #define ESR0_MASK_STATUS_OFFSET 0x90c #define ESR1_MASK_STATUS_OFFSET 0x924 #define ESR2_MASK_STATUS_OFFSET 0x93c #define ESR3_MASK_STATUS_OFFSET 0x954 #define ESR4_MASK_STATUS_OFFSET 0x96c /* AUD_FMM_BF_ESR_ESRX_MASK_SET_REG_BASE */ #define ESR0_MASK_SET_OFFSET 0x910 #define ESR1_MASK_SET_OFFSET 0x928 #define ESR2_MASK_SET_OFFSET 0x940 #define ESR3_MASK_SET_OFFSET 0x958 #define ESR4_MASK_SET_OFFSET 0x970 /* AUD_FMM_BF_ESR_ESRX_MASK_CLEAR_REG_BASE */ #define ESR0_MASK_CLR_OFFSET 0x914 #define ESR1_MASK_CLR_OFFSET 0x92c #define ESR2_MASK_CLR_OFFSET 0x944 #define ESR3_MASK_CLR_OFFSET 0x95c #define ESR4_MASK_CLR_OFFSET 0x974 /* Error Status Regs --- End */ #define R5F_ESR0_SHIFT 0 /* esr0 = fifo underflow */ #define R5F_ESR1_SHIFT 1 /* esr1 = ringbuf underflow */ #define R5F_ESR2_SHIFT 2 /* esr2 = ringbuf overflow */ #define R5F_ESR3_SHIFT 3 /* esr3 = freemark */ #define R5F_ESR4_SHIFT 4 /* esr4 = fullmark */ /* Mask for R5F register. Set all relevant interrupt for playback handler */ #define ANY_PLAYBACK_IRQ (BIT(R5F_ESR0_SHIFT) | \ BIT(R5F_ESR1_SHIFT) | \ BIT(R5F_ESR3_SHIFT)) /* Mask for R5F register. Set all relevant interrupt for capture handler */ #define ANY_CAPTURE_IRQ (BIT(R5F_ESR2_SHIFT) | BIT(R5F_ESR4_SHIFT)) /* * PERIOD_BYTES_MIN is the number of bytes to at which the interrupt will tick. * This number should be a multiple of 256. Minimum value is 256 */ #define PERIOD_BYTES_MIN 0x100 static const struct snd_pcm_hardware cygnus_pcm_hw = { .info = SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_INTERLEAVED, .formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE, /* A period is basically an interrupt */ .period_bytes_min = PERIOD_BYTES_MIN, .period_bytes_max = 0x10000, /* period_min/max gives range of approx interrupts per buffer */ .periods_min = 2, .periods_max = 8, /* * maximum buffer size in bytes = period_bytes_max * periods_max * We allocate this amount of data for each enabled channel */ .buffer_bytes_max = 4 * 0x8000, }; static u64 cygnus_dma_dmamask = DMA_BIT_MASK(32); static struct cygnus_aio_port *cygnus_dai_get_dma_data( struct snd_pcm_substream *substream) { struct snd_soc_pcm_runtime *soc_runtime = snd_soc_substream_to_rtd(substream); return snd_soc_dai_get_dma_data(snd_soc_rtd_to_cpu(soc_runtime, 0), substream); } static void ringbuf_set_initial(void __iomem *audio_io, struct ringbuf_regs *p_rbuf, bool is_playback, u32 start, u32 periodsize, u32 bufsize) { u32 initial_rd; u32 initial_wr; u32 end; u32 fmark_val; /* free or full mark */ p_rbuf->period_bytes = periodsize; p_rbuf->buf_size = bufsize; if (is_playback) { /* Set the pointers to indicate full (flip uppermost bit) */ initial_rd = start; initial_wr = initial_rd ^ BIT(31); } else { /* Set the pointers to indicate empty */ initial_wr = start; initial_rd = initial_wr; } end = start + bufsize - 1; /* * The interrupt will fire when free/full mark is *exceeded* * The fmark value must be multiple of PERIOD_BYTES_MIN so set fmark * to be PERIOD_BYTES_MIN less than the period size. */ fmark_val = periodsize - PERIOD_BYTES_MIN; writel(start, audio_io + p_rbuf->baseaddr); writel(end, audio_io + p_rbuf->endaddr); writel(fmark_val, audio_io + p_rbuf->fmark); writel(initial_rd, audio_io + p_rbuf->rdaddr); writel(initial_wr, audio_io + p_rbuf->wraddr); } static int configure_ringbuf_regs(struct snd_pcm_substream *substream) { struct cygnus_aio_port *aio; struct ringbuf_regs *p_rbuf; int status = 0; aio = cygnus_dai_get_dma_data(substream); /* Map the ssp portnum to a set of ring buffers. */ if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { p_rbuf = &aio->play_rb_regs; switch (aio->portnum) { case 0: *p_rbuf = RINGBUF_REG_PLAYBACK(0); break; case 1: *p_rbuf = RINGBUF_REG_PLAYBACK(2); break; case 2: *p_rbuf = RINGBUF_REG_PLAYBACK(4); break; case 3: /* SPDIF */ *p_rbuf = RINGBUF_REG_PLAYBACK(6); break; default: status = -EINVAL; } } else { p_rbuf = &aio->capture_rb_regs; switch (aio->portnum) { case 0: *p_rbuf = RINGBUF_REG_CAPTURE(0); break; case 1: *p_rbuf = RINGBUF_REG_CAPTURE(2); break; case 2: *p_rbuf = RINGBUF_REG_CAPTURE(4); break; default: status = -EINVAL; } } return status; } static struct ringbuf_regs *get_ringbuf(struct snd_pcm_substream *substream) { struct cygnus_aio_port *aio; struct ringbuf_regs *p_rbuf = NULL; aio = cygnus_dai_get_dma_data(substream); if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) p_rbuf = &aio->play_rb_regs; else p_rbuf = &aio->capture_rb_regs; return p_rbuf; } static void enable_intr(struct snd_pcm_substream *substream) { struct cygnus_aio_port *aio; u32 clear_mask; aio = cygnus_dai_get_dma_data(substream); /* The port number maps to the bit position to be cleared */ clear_mask = BIT(aio->portnum); if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { /* Clear interrupt status before enabling them */ writel(clear_mask, aio->cygaud->audio + ESR0_STATUS_CLR_OFFSET); writel(clear_mask, aio->cygaud->audio + ESR1_STATUS_CLR_OFFSET); writel(clear_mask, aio->cygaud->audio + ESR3_STATUS_CLR_OFFSET); /* Unmask the interrupts of the given port*/ writel(clear_mask, aio->cygaud->audio + ESR0_MASK_CLR_OFFSET); writel(clear_mask, aio->cygaud->audio + ESR1_MASK_CLR_OFFSET); writel(clear_mask, aio->cygaud->audio + ESR3_MASK_CLR_OFFSET); writel(ANY_PLAYBACK_IRQ, aio->cygaud->audio + INTH_R5F_MASK_CLEAR_OFFSET); } else { writel(clear_mask, aio->cygaud->audio + ESR2_STATUS_CLR_OFFSET); writel(clear_mask, aio->cygaud->audio + ESR4_STATUS_CLR_OFFSET); writel(clear_mask, aio->cygaud->audio + ESR2_MASK_CLR_OFFSET); writel(clear_mask, aio->cygaud->audio + ESR4_MASK_CLR_OFFSET); writel(ANY_CAPTURE_IRQ, aio->cygaud->audio + INTH_R5F_MASK_CLEAR_OFFSET); } } static void disable_intr(struct snd_pcm_substream *substream) { struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream); struct cygnus_aio_port *aio; u32 set_mask; aio = cygnus_dai_get_dma_data(substream); dev_dbg(snd_soc_rtd_to_cpu(rtd, 0)->dev, "%s on port %d\n", __func__, aio->portnum); /* The port number maps to the bit position to be set */ set_mask = BIT(aio->portnum); if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { /* Mask the interrupts of the given port*/ writel(set_mask, aio->cygaud->audio + ESR0_MASK_SET_OFFSET); writel(set_mask, aio->cygaud->audio + ESR1_MASK_SET_OFFSET); writel(set_mask, aio->cygaud->audio + ESR3_MASK_SET_OFFSET); } else { writel(set_mask, aio->cygaud->audio + ESR2_MASK_SET_OFFSET); writel(set_mask, aio->cygaud->audio + ESR4_MASK_SET_OFFSET); } } static int cygnus_pcm_trigger(struct snd_soc_component *component, struct snd_pcm_substream *substream, int cmd) { int ret = 0; switch (cmd) { case SNDRV_PCM_TRIGGER_START: case SNDRV_PCM_TRIGGER_RESUME: enable_intr(substream); break; case SNDRV_PCM_TRIGGER_STOP: case SNDRV_PCM_TRIGGER_SUSPEND: disable_intr(substream); break; default: ret = -EINVAL; } return ret; } static void cygnus_pcm_period_elapsed(struct snd_pcm_substream *substream) { struct cygnus_aio_port *aio; struct ringbuf_regs *p_rbuf = NULL; u32 regval; aio = cygnus_dai_get_dma_data(substream); p_rbuf = get_ringbuf(substream); /* * If free/full mark interrupt occurs, provide timestamp * to ALSA and update appropriate idx by period_bytes */ snd_pcm_period_elapsed(substream); if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { /* Set the ring buffer to full */ regval = readl(aio->cygaud->audio + p_rbuf->rdaddr); regval = regval ^ BIT(31); writel(regval, aio->cygaud->audio + p_rbuf->wraddr); } else { /* Set the ring buffer to empty */ regval = readl(aio->cygaud->audio + p_rbuf->wraddr); writel(regval, aio->cygaud->audio + p_rbuf->rdaddr); } } /* * ESR0/1/3 status Description * 0x1 I2S0_out port caused interrupt * 0x2 I2S1_out port caused interrupt * 0x4 I2S2_out port caused interrupt * 0x8 SPDIF_out port caused interrupt */ static void handle_playback_irq(struct cygnus_audio *cygaud) { void __iomem *audio_io; u32 port; u32 esr_status0, esr_status1, esr_status3; audio_io = cygaud->audio; /* * ESR status gets updates with/without interrupts enabled. * So, check the ESR mask, which provides interrupt enable/ * disable status and use it to determine which ESR status * should be serviced. */ esr_status0 = readl(audio_io + ESR0_STATUS_OFFSET); esr_status0 &= ~readl(audio_io + ESR0_MASK_STATUS_OFFSET); esr_status1 = readl(audio_io + ESR1_STATUS_OFFSET); esr_status1 &= ~readl(audio_io + ESR1_MASK_STATUS_OFFSET); esr_status3 = readl(audio_io + ESR3_STATUS_OFFSET); esr_status3 &= ~readl(audio_io + ESR3_MASK_STATUS_OFFSET); for (port = 0; port < CYGNUS_MAX_PLAYBACK_PORTS; port++) { u32 esrmask = BIT(port); /* * Ringbuffer or FIFO underflow * If we get this interrupt then, it is also true that we have * not yet responded to the freemark interrupt. * Log a debug message. The freemark handler below will * handle getting everything going again. */ if ((esrmask & esr_status1) || (esrmask & esr_status0)) { dev_dbg(cygaud->dev, "Underrun: esr0=0x%x, esr1=0x%x esr3=0x%x\n", esr_status0, esr_status1, esr_status3); } /* * Freemark is hit. This is the normal interrupt. * In typical operation the read and write regs will be equal */ if (esrmask & esr_status3) { struct snd_pcm_substream *playstr; playstr = cygaud->portinfo[port].play_stream; cygnus_pcm_period_elapsed(playstr); } } /* Clear ESR interrupt */ writel(esr_status0, audio_io + ESR0_STATUS_CLR_OFFSET); writel(esr_status1, audio_io + ESR1_STATUS_CLR_OFFSET); writel(esr_status3, audio_io + ESR3_STATUS_CLR_OFFSET); /* Rearm freemark logic by writing 1 to the correct bit */ writel(esr_status3, audio_io + BF_REARM_FREE_MARK_OFFSET); } /* * ESR2/4 status Description * 0x1 I2S0_in port caused interrupt * 0x2 I2S1_in port caused interrupt * 0x4 I2S2_in port caused interrupt */ static void handle_capture_irq(struct cygnus_audio *cygaud) { void __iomem *audio_io; u32 port; u32 esr_status2, esr_status4; audio_io = cygaud->audio; /* * ESR status gets updates with/without interrupts enabled. * So, check the ESR mask, which provides interrupt enable/ * disable status and use it to determine which ESR status * should be serviced. */ esr_status2 = readl(audio_io + ESR2_STATUS_OFFSET); esr_status2 &= ~readl(audio_io + ESR2_MASK_STATUS_OFFSET); esr_status4 = readl(audio_io + ESR4_STATUS_OFFSET); esr_status4 &= ~readl(audio_io + ESR4_MASK_STATUS_OFFSET); for (port = 0; port < CYGNUS_MAX_CAPTURE_PORTS; port++) { u32 esrmask = BIT(port); /* * Ringbuffer or FIFO overflow * If we get this interrupt then, it is also true that we have * not yet responded to the fullmark interrupt. * Log a debug message. The fullmark handler below will * handle getting everything going again. */ if (esrmask & esr_status2) dev_dbg(cygaud->dev, "Overflow: esr2=0x%x\n", esr_status2); if (esrmask & esr_status4) { struct snd_pcm_substream *capstr; capstr = cygaud->portinfo[port].capture_stream; cygnus_pcm_period_elapsed(capstr); } } writel(esr_status2, audio_io + ESR2_STATUS_CLR_OFFSET); writel(esr_status4, audio_io + ESR4_STATUS_CLR_OFFSET); /* Rearm fullmark logic by writing 1 to the correct bit */ writel(esr_status4, audio_io + BF_REARM_FULL_MARK_OFFSET); } static irqreturn_t cygnus_dma_irq(int irq, void *data) { u32 r5_status; struct cygnus_audio *cygaud = data; /* * R5 status bits Description * 0 ESR0 (playback FIFO interrupt) * 1 ESR1 (playback rbuf interrupt) * 2 ESR2 (capture rbuf interrupt) * 3 ESR3 (Freemark play. interrupt) * 4 ESR4 (Fullmark capt. interrupt) */ r5_status = readl(cygaud->audio + INTH_R5F_STATUS_OFFSET); if (!(r5_status & (ANY_PLAYBACK_IRQ | ANY_CAPTURE_IRQ))) return IRQ_NONE; /* If playback interrupt happened */ if (ANY_PLAYBACK_IRQ & r5_status) { handle_playback_irq(cygaud); writel(ANY_PLAYBACK_IRQ & r5_status, cygaud->audio + INTH_R5F_CLEAR_OFFSET); } /* If capture interrupt happened */ if (ANY_CAPTURE_IRQ & r5_status) { handle_capture_irq(cygaud); writel(ANY_CAPTURE_IRQ & r5_status, cygaud->audio + INTH_R5F_CLEAR_OFFSET); } return IRQ_HANDLED; } static int cygnus_pcm_open(struct snd_soc_component *component, struct snd_pcm_substream *substream) { struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream); struct snd_pcm_runtime *runtime = substream->runtime; struct cygnus_aio_port *aio; int ret; aio = cygnus_dai_get_dma_data(substream); if (!aio) return -ENODEV; dev_dbg(snd_soc_rtd_to_cpu(rtd, 0)->dev, "%s port %d\n", __func__, aio->portnum); snd_soc_set_runtime_hwparams(substream, &cygnus_pcm_hw); ret = snd_pcm_hw_constraint_step(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_BYTES, PERIOD_BYTES_MIN); if (ret < 0) return ret; ret = snd_pcm_hw_constraint_step(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_BYTES, PERIOD_BYTES_MIN); if (ret < 0) return ret; /* * Keep track of which substream belongs to which port. * This info is needed by snd_pcm_period_elapsed() in irq_handler */ if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) aio->play_stream = substream; else aio->capture_stream = substream; return 0; } static int cygnus_pcm_close(struct snd_soc_component *component, struct snd_pcm_substream *substream) { struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream); struct cygnus_aio_port *aio; aio = cygnus_dai_get_dma_data(substream); dev_dbg(snd_soc_rtd_to_cpu(rtd, 0)->dev, "%s port %d\n", __func__, aio->portnum); if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) aio->play_stream = NULL; else aio->capture_stream = NULL; if (!aio->play_stream && !aio->capture_stream) dev_dbg(snd_soc_rtd_to_cpu(rtd, 0)->dev, "freed port %d\n", aio->portnum); return 0; } static int cygnus_pcm_prepare(struct snd_soc_component *component, struct snd_pcm_substream *substream) { struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream); struct snd_pcm_runtime *runtime = substream->runtime; struct cygnus_aio_port *aio; unsigned long bufsize, periodsize; bool is_play; u32 start; struct ringbuf_regs *p_rbuf = NULL; aio = cygnus_dai_get_dma_data(substream); dev_dbg(snd_soc_rtd_to_cpu(rtd, 0)->dev, "%s port %d\n", __func__, aio->portnum); bufsize = snd_pcm_lib_buffer_bytes(substream); periodsize = snd_pcm_lib_period_bytes(substream); dev_dbg(snd_soc_rtd_to_cpu(rtd, 0)->dev, "%s (buf_size %lu) (period_size %lu)\n", __func__, bufsize, periodsize); configure_ringbuf_regs(substream); p_rbuf = get_ringbuf(substream); start = runtime->dma_addr; is_play = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ? 1 : 0; ringbuf_set_initial(aio->cygaud->audio, p_rbuf, is_play, start, periodsize, bufsize); return 0; } static snd_pcm_uframes_t cygnus_pcm_pointer(struct snd_soc_component *component, struct snd_pcm_substream *substream) { struct cygnus_aio_port *aio; unsigned int res = 0, cur = 0, base = 0; struct ringbuf_regs *p_rbuf = NULL; aio = cygnus_dai_get_dma_data(substream); /* * Get the offset of the current read (for playack) or write * index (for capture). Report this value back to the asoc framework. */ p_rbuf = get_ringbuf(substream); if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) cur = readl(aio->cygaud->audio + p_rbuf->rdaddr); else cur = readl(aio->cygaud->audio + p_rbuf->wraddr); base = readl(aio->cygaud->audio + p_rbuf->baseaddr); /* * Mask off the MSB of the rdaddr,wraddr and baseaddr * since MSB is not part of the address */ res = (cur & 0x7fffffff) - (base & 0x7fffffff); return bytes_to_frames(substream->runtime, res); } static int cygnus_dma_new(struct snd_soc_component *component, struct snd_soc_pcm_runtime *rtd) { size_t size = cygnus_pcm_hw.buffer_bytes_max; struct snd_card *card = rtd->card->snd_card; if (!card->dev->dma_mask) card->dev->dma_mask = &cygnus_dma_dmamask; if (!card->dev->coherent_dma_mask) card->dev->coherent_dma_mask = DMA_BIT_MASK(32); snd_pcm_set_managed_buffer_all(rtd->pcm, SNDRV_DMA_TYPE_DEV, card->dev, size, size); return 0; } static struct snd_soc_component_driver cygnus_soc_platform = { .open = cygnus_pcm_open, .close = cygnus_pcm_close, .prepare = cygnus_pcm_prepare, .trigger = cygnus_pcm_trigger, .pointer = cygnus_pcm_pointer, .pcm_construct = cygnus_dma_new, }; int cygnus_soc_platform_register(struct device *dev, struct cygnus_audio *cygaud) { int rc; dev_dbg(dev, "%s Enter\n", __func__); rc = devm_request_irq(dev, cygaud->irq_num, cygnus_dma_irq, IRQF_SHARED, "cygnus-audio", cygaud); if (rc) { dev_err(dev, "%s request_irq error %d\n", __func__, rc); return rc; } rc = devm_snd_soc_register_component(dev, &cygnus_soc_platform, NULL, 0); if (rc) { dev_err(dev, "%s failed\n", __func__); return rc; } return 0; } int cygnus_soc_platform_unregister(struct device *dev) { return 0; } MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Broadcom"); MODULE_DESCRIPTION("Cygnus ASoC PCM module");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1