Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Vincent Knecht | 2878 | 99.90% | 2 | 40.00% |
Uwe Kleine-König | 2 | 0.07% | 2 | 40.00% |
Rob Herring | 1 | 0.03% | 1 | 20.00% |
Total | 2881 | 5 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Based on code by Hu Jin * Copyright (C) 2014 Asahi Kasei Microdevices Corporation */ #include <linux/delay.h> #include <linux/gpio/consumer.h> #include <linux/i2c.h> #include <linux/module.h> #include <linux/of.h> #include <linux/pm_runtime.h> #include <linux/regulator/consumer.h> #include <sound/soc.h> #include <sound/tlv.h> /* Registers and fields */ #define AK4375_00_POWER_MANAGEMENT1 0x00 #define PMPLL BIT(0) /* 0: PLL off, 1: PLL on */ #define AK4375_01_POWER_MANAGEMENT2 0x01 #define PMCP1 BIT(0) /* Charge Pump 1: LDO1 and DAC */ #define PMCP2 BIT(1) /* Charge Pump 2: Class-G HP Amp */ #define PMLDO1P BIT(4) #define PMLDO1N BIT(5) #define PMLDO (PMLDO1P | PMLDO1N) #define AK4375_02_POWER_MANAGEMENT3 0x02 #define AK4375_03_POWER_MANAGEMENT4 0x03 #define AK4375_04_OUTPUT_MODE_SETTING 0x04 #define AK4375_05_CLOCK_MODE_SELECT 0x05 #define FS_MASK GENMASK(4, 0) #define FS_8KHZ 0x00 #define FS_11_025KHZ 0x01 #define FS_16KHZ 0x04 #define FS_22_05KHZ 0x05 #define FS_32KHZ 0x08 #define FS_44_1KHZ 0x09 #define FS_48KHZ 0x0a #define FS_88_2KHZ 0x0d #define FS_96KHZ 0x0e #define FS_176_4KHZ 0x11 #define FS_192KHZ 0x12 #define CM_MASK GENMASK(6, 5) /* For SRC Bypass mode */ #define CM_0 (0x0 << 5) #define CM_1 (0x1 << 5) #define CM_2 (0x2 << 5) #define CM_3 (0x3 << 5) #define AK4375_06_DIGITAL_FILTER_SELECT 0x06 #define DADFSEL BIT(5) /* 0: in SRC Bypass mode, 1: in SRC mode */ #define DASL BIT(6) #define DASD BIT(7) #define AK4375_07_DAC_MONO_MIXING 0x07 #define DACMUTE_MASK (GENMASK(5, 4) | GENMASK(1, 0)) /* Clear to mute */ #define AK4375_08_JITTER_CLEANER_SETTING1 0x08 #define AK4375_09_JITTER_CLEANER_SETTING2 0x09 #define AK4375_0A_JITTER_CLEANER_SETTING3 0x0a #define SELDAIN BIT(1) /* 0: SRC Bypass mode, 1: SRC mode */ #define XCKSEL BIT(6) /* 0: PLL0, 1: MCKI */ #define XCKCPSEL BIT(7) /* Should be equal to SELDAIN and XCKSEL */ #define AK4375_0B_LCH_OUTPUT_VOLUME 0x0b #define AK4375_0C_RCH_OUTPUT_VOLUME 0x0c #define AK4375_0D_HP_VOLUME_CONTROL 0x0d #define AK4375_0E_PLL_CLK_SOURCE_SELECT 0x0e #define PLS BIT(0) /* 0: MCKI, 1: BCLK */ #define AK4375_0F_PLL_REF_CLK_DIVIDER1 0x0f /* Reference clock divider [15:8] bits */ #define AK4375_10_PLL_REF_CLK_DIVIDER2 0x10 /* Reference clock divider [7:0] bis */ #define AK4375_11_PLL_FB_CLK_DIVIDER1 0x11 /* Feedback clock divider [15:8] bits */ #define AK4375_12_PLL_FB_CLK_DIVIDER2 0x12 /* Feedback clock divider [7:0] bits */ #define AK4375_13_SRC_CLK_SOURCE 0x13 /* SRC Bypass: SRCCKS=XCKSEL=SELDAIN=0 */ #define SRCCKS BIT(0) /* SRC Clock source 0: MCKI, 1: PLL0 */ #define DIV BIT(4) #define AK4375_14_DAC_CLK_DIVIDER 0x14 #define AK4375_15_AUDIO_IF_FORMAT 0x15 #define DEVICEID_MASK GENMASK(7, 5) #define AK4375_24_MODE_CONTROL 0x24 #define AK4375_PLL_FREQ_OUT_112896000 112896000 /* 44.1 kHz base rate */ #define AK4375_PLL_FREQ_OUT_122880000 122880000 /* 32 and 48 kHz base rates */ #define DEVICEID_AK4375 0x00 #define DEVICEID_AK4375A 0x01 #define DEVICEID_AK4376A 0x02 #define DEVICEID_AK4377 0x03 #define DEVICEID_AK4331 0x07 static const char * const supply_names[] = { "avdd", "tvdd" }; struct ak4375_drvdata { struct snd_soc_dai_driver *dai_drv; const struct snd_soc_component_driver *comp_drv; }; struct ak4375_priv { struct device *dev; struct regmap *regmap; struct gpio_desc *pdn_gpiod; struct regulator_bulk_data supplies[ARRAY_SIZE(supply_names)]; unsigned int rate; unsigned int pld; u8 mute_save; }; static const struct reg_default ak4375_reg_defaults[] = { { 0x00, 0x00 }, { 0x01, 0x00 }, { 0x02, 0x00 }, { 0x03, 0x00 }, { 0x04, 0x00 }, { 0x05, 0x00 }, { 0x06, 0x00 }, { 0x07, 0x00 }, { 0x08, 0x00 }, { 0x09, 0x00 }, { 0x0a, 0x00 }, { 0x0b, 0x19 }, { 0x0c, 0x19 }, { 0x0d, 0x75 }, { 0x0e, 0x01 }, { 0x0f, 0x00 }, { 0x10, 0x00 }, { 0x11, 0x00 }, { 0x12, 0x00 }, { 0x13, 0x00 }, { 0x14, 0x00 }, { 0x15, 0x00 }, { 0x24, 0x00 }, }; /* * Output Digital volume control: * from -12.5 to 3 dB in 0.5 dB steps (mute instead of -12.5 dB) */ static DECLARE_TLV_DB_SCALE(dac_tlv, -1250, 50, 0); /* * HP-Amp Analog volume control: * from -4.2 to 6 dB in 2 dB steps (mute instead of -4.2 dB) */ static DECLARE_TLV_DB_SCALE(hpg_tlv, -4200, 20, 0); static const char * const ak4375_ovolcn_select_texts[] = { "Dependent", "Independent" }; static const char * const ak4375_mdac_select_texts[] = { "x1", "x1/2" }; static const char * const ak4375_cpmode_select_texts[] = { "Automatic Switching", "+-VDD Operation", "+-1/2VDD Operation" }; /* * DASD, DASL bits Digital Filter Setting * 0, 0 : Sharp Roll-Off Filter * 0, 1 : Slow Roll-Off Filter * 1, 0 : Short delay Sharp Roll-Off Filter * 1, 1 : Short delay Slow Roll-Off Filter */ static const char * const ak4375_digfil_select_texts[] = { "Sharp Roll-Off Filter", "Slow Roll-Off Filter", "Short delay Sharp Roll-Off Filter", "Short delay Slow Roll-Off Filter", }; static const struct soc_enum ak4375_ovolcn_enum = SOC_ENUM_SINGLE(AK4375_0B_LCH_OUTPUT_VOLUME, 7, ARRAY_SIZE(ak4375_ovolcn_select_texts), ak4375_ovolcn_select_texts); static const struct soc_enum ak4375_mdacl_enum = SOC_ENUM_SINGLE(AK4375_07_DAC_MONO_MIXING, 2, ARRAY_SIZE(ak4375_mdac_select_texts), ak4375_mdac_select_texts); static const struct soc_enum ak4375_mdacr_enum = SOC_ENUM_SINGLE(AK4375_07_DAC_MONO_MIXING, 6, ARRAY_SIZE(ak4375_mdac_select_texts), ak4375_mdac_select_texts); static const struct soc_enum ak4375_cpmode_enum = SOC_ENUM_SINGLE(AK4375_03_POWER_MANAGEMENT4, 2, ARRAY_SIZE(ak4375_cpmode_select_texts), ak4375_cpmode_select_texts); static const struct soc_enum ak4375_digfil_enum = SOC_ENUM_SINGLE(AK4375_06_DIGITAL_FILTER_SELECT, 6, ARRAY_SIZE(ak4375_digfil_select_texts), ak4375_digfil_select_texts); static const struct snd_kcontrol_new ak4375_snd_controls[] = { SOC_DOUBLE_R_TLV("Digital Output Volume", AK4375_0B_LCH_OUTPUT_VOLUME, AK4375_0C_RCH_OUTPUT_VOLUME, 0, 0x1f, 0, dac_tlv), SOC_SINGLE_TLV("HP-Amp Analog Volume", AK4375_0D_HP_VOLUME_CONTROL, 0, 0x1f, 0, hpg_tlv), SOC_DOUBLE("DAC Signal Invert Switch", AK4375_07_DAC_MONO_MIXING, 3, 7, 1, 0), SOC_ENUM("Digital Volume Control", ak4375_ovolcn_enum), SOC_ENUM("DACL Signal Level", ak4375_mdacl_enum), SOC_ENUM("DACR Signal Level", ak4375_mdacr_enum), SOC_ENUM("Charge Pump Mode", ak4375_cpmode_enum), SOC_ENUM("DAC Digital Filter Mode", ak4375_digfil_enum), }; static const struct snd_kcontrol_new ak4375_hpl_mixer_controls[] = { SOC_DAPM_SINGLE("LDACL Switch", AK4375_07_DAC_MONO_MIXING, 0, 1, 0), SOC_DAPM_SINGLE("RDACL Switch", AK4375_07_DAC_MONO_MIXING, 1, 1, 0), }; static const struct snd_kcontrol_new ak4375_hpr_mixer_controls[] = { SOC_DAPM_SINGLE("LDACR Switch", AK4375_07_DAC_MONO_MIXING, 4, 1, 0), SOC_DAPM_SINGLE("RDACR Switch", AK4375_07_DAC_MONO_MIXING, 5, 1, 0), }; static int ak4375_dac_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); switch (event) { case SND_SOC_DAPM_PRE_PMU: snd_soc_component_update_bits(component, AK4375_00_POWER_MANAGEMENT1, PMPLL, PMPLL); snd_soc_component_update_bits(component, AK4375_01_POWER_MANAGEMENT2, PMCP1, PMCP1); usleep_range(6500, 7000); snd_soc_component_update_bits(component, AK4375_01_POWER_MANAGEMENT2, PMLDO, PMLDO); usleep_range(1000, 2000); break; case SND_SOC_DAPM_POST_PMU: snd_soc_component_update_bits(component, AK4375_01_POWER_MANAGEMENT2, PMCP2, PMCP2); usleep_range(4500, 5000); break; case SND_SOC_DAPM_PRE_PMD: snd_soc_component_update_bits(component, AK4375_01_POWER_MANAGEMENT2, PMCP2, 0x0); break; case SND_SOC_DAPM_POST_PMD: snd_soc_component_update_bits(component, AK4375_01_POWER_MANAGEMENT2, PMLDO, 0x0); snd_soc_component_update_bits(component, AK4375_01_POWER_MANAGEMENT2, PMCP1, 0x0); snd_soc_component_update_bits(component, AK4375_00_POWER_MANAGEMENT1, PMPLL, 0x0); break; } return 0; } static const struct snd_soc_dapm_widget ak4375_dapm_widgets[] = { SND_SOC_DAPM_DAC_E("DAC", NULL, AK4375_02_POWER_MANAGEMENT3, 0, 0, ak4375_dac_event, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_AIF_IN("SDTI", "HiFi Playback", 0, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_OUTPUT("HPL"), SND_SOC_DAPM_OUTPUT("HPR"), SND_SOC_DAPM_MIXER("HPR Mixer", AK4375_03_POWER_MANAGEMENT4, 1, 0, &ak4375_hpr_mixer_controls[0], ARRAY_SIZE(ak4375_hpr_mixer_controls)), SND_SOC_DAPM_MIXER("HPL Mixer", AK4375_03_POWER_MANAGEMENT4, 0, 0, &ak4375_hpl_mixer_controls[0], ARRAY_SIZE(ak4375_hpl_mixer_controls)), }; static const struct snd_soc_dapm_route ak4375_intercon[] = { { "DAC", NULL, "SDTI" }, { "HPL Mixer", "LDACL Switch", "DAC" }, { "HPL Mixer", "RDACL Switch", "DAC" }, { "HPR Mixer", "LDACR Switch", "DAC" }, { "HPR Mixer", "RDACR Switch", "DAC" }, { "HPL", NULL, "HPL Mixer" }, { "HPR", NULL, "HPR Mixer" }, }; static int ak4375_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { struct snd_soc_component *component = dai->component; struct ak4375_priv *ak4375 = snd_soc_component_get_drvdata(component); unsigned int freq_in, freq_out; ak4375->rate = params_rate(params); if (ak4375->rate <= 96000) ak4375->pld = 0; else ak4375->pld = 1; freq_in = 32 * ak4375->rate / (ak4375->pld + 1); if ((ak4375->rate % 8000) == 0) freq_out = AK4375_PLL_FREQ_OUT_122880000; else freq_out = AK4375_PLL_FREQ_OUT_112896000; return snd_soc_dai_set_pll(dai, 0, 0, freq_in, freq_out); } static int ak4375_dai_set_pll(struct snd_soc_dai *dai, int pll_id, int source, unsigned int freq_in, unsigned int freq_out) { struct snd_soc_component *component = dai->component; struct ak4375_priv *ak4375 = snd_soc_component_get_drvdata(component); unsigned int mclk, plm, mdiv, div; u8 cms, fs, cm; cms = snd_soc_component_read(component, AK4375_05_CLOCK_MODE_SELECT); fs = cms & ~FS_MASK; cm = cms & ~CM_MASK; switch (ak4375->rate) { case 8000: fs |= FS_8KHZ; break; case 11025: fs |= FS_11_025KHZ; break; case 16000: fs |= FS_16KHZ; break; case 22050: fs |= FS_22_05KHZ; break; case 32000: fs |= FS_32KHZ; break; case 44100: fs |= FS_44_1KHZ; break; case 48000: fs |= FS_48KHZ; break; case 88200: fs |= FS_88_2KHZ; break; case 96000: fs |= FS_96KHZ; break; case 176400: fs |= FS_176_4KHZ; break; case 192000: fs |= FS_192KHZ; break; default: return -EINVAL; } if (ak4375->rate <= 24000) { cm |= CM_1; mclk = 512 * ak4375->rate; mdiv = freq_out / mclk - 1; div = 0; } else if (ak4375->rate <= 96000) { cm |= CM_0; mclk = 256 * ak4375->rate; mdiv = freq_out / mclk - 1; div = 0; } else { cm |= CM_3; mclk = 128 * ak4375->rate; mdiv = 4; div = 1; } /* Writing both fields in one go seems to make playback choppy on start */ snd_soc_component_update_bits(component, AK4375_05_CLOCK_MODE_SELECT, FS_MASK, fs); snd_soc_component_update_bits(component, AK4375_05_CLOCK_MODE_SELECT, CM_MASK, cm); snd_soc_component_write(component, AK4375_0F_PLL_REF_CLK_DIVIDER1, (ak4375->pld & 0xff00) >> 8); snd_soc_component_write(component, AK4375_10_PLL_REF_CLK_DIVIDER2, ak4375->pld & 0x00ff); plm = freq_out / freq_in - 1; snd_soc_component_write(component, AK4375_11_PLL_FB_CLK_DIVIDER1, (plm & 0xff00) >> 8); snd_soc_component_write(component, AK4375_12_PLL_FB_CLK_DIVIDER2, plm & 0x00ff); snd_soc_component_update_bits(component, AK4375_13_SRC_CLK_SOURCE, DIV, div); /* SRCCKS bit: force to 1 for SRC PLL source clock */ snd_soc_component_update_bits(component, AK4375_13_SRC_CLK_SOURCE, SRCCKS, SRCCKS); snd_soc_component_write(component, AK4375_14_DAC_CLK_DIVIDER, mdiv); dev_dbg(ak4375->dev, "rate=%d mclk=%d f_in=%d f_out=%d PLD=%d PLM=%d MDIV=%d DIV=%d\n", ak4375->rate, mclk, freq_in, freq_out, ak4375->pld, plm, mdiv, div); return 0; } static int ak4375_mute(struct snd_soc_dai *dai, int mute, int direction) { struct snd_soc_component *component = dai->component; struct ak4375_priv *ak4375 = snd_soc_component_get_drvdata(component); u8 val = snd_soc_component_read(component, AK4375_07_DAC_MONO_MIXING); dev_dbg(ak4375->dev, "mute=%d val=%d\n", mute, val); if (mute) { ak4375->mute_save = val & DACMUTE_MASK; val &= ~DACMUTE_MASK; } else { val |= ak4375->mute_save; } snd_soc_component_write(component, AK4375_07_DAC_MONO_MIXING, val); return 0; } #define AK4375_RATES (SNDRV_PCM_RATE_8000_48000 |\ SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000 |\ SNDRV_PCM_RATE_176400 | SNDRV_PCM_RATE_192000) #define AK4375_FORMATS (SNDRV_PCM_FMTBIT_S16_LE |\ SNDRV_PCM_FMTBIT_S24_LE |\ SNDRV_PCM_FMTBIT_S32_LE) static const struct snd_soc_dai_ops ak4375_dai_ops = { .hw_params = ak4375_hw_params, .mute_stream = ak4375_mute, .set_pll = ak4375_dai_set_pll, }; static struct snd_soc_dai_driver ak4375_dai = { .name = "ak4375-hifi", .playback = { .stream_name = "HiFi Playback", .channels_min = 1, .channels_max = 2, .rates = AK4375_RATES, .rate_min = 8000, .rate_max = 192000, .formats = AK4375_FORMATS, }, .ops = &ak4375_dai_ops, }; static void ak4375_power_off(struct ak4375_priv *ak4375) { gpiod_set_value_cansleep(ak4375->pdn_gpiod, 0); usleep_range(1000, 2000); regulator_bulk_disable(ARRAY_SIZE(ak4375->supplies), ak4375->supplies); } static int ak4375_power_on(struct ak4375_priv *ak4375) { int ret; ret = regulator_bulk_enable(ARRAY_SIZE(ak4375->supplies), ak4375->supplies); if (ret < 0) { dev_err(ak4375->dev, "Failed to enable regulators: %d\n", ret); return ret; } usleep_range(3000, 4000); gpiod_set_value_cansleep(ak4375->pdn_gpiod, 1); usleep_range(1000, 2000); return 0; } static int __maybe_unused ak4375_runtime_suspend(struct device *dev) { struct ak4375_priv *ak4375 = dev_get_drvdata(dev); regcache_cache_only(ak4375->regmap, true); ak4375_power_off(ak4375); return 0; } static int __maybe_unused ak4375_runtime_resume(struct device *dev) { struct ak4375_priv *ak4375 = dev_get_drvdata(dev); int ret; ret = ak4375_power_on(ak4375); if (ret < 0) return ret; regcache_cache_only(ak4375->regmap, false); regcache_mark_dirty(ak4375->regmap); return regcache_sync(ak4375->regmap); } static const struct snd_soc_component_driver soc_codec_dev_ak4375 = { .controls = ak4375_snd_controls, .num_controls = ARRAY_SIZE(ak4375_snd_controls), .dapm_widgets = ak4375_dapm_widgets, .num_dapm_widgets = ARRAY_SIZE(ak4375_dapm_widgets), .dapm_routes = ak4375_intercon, .num_dapm_routes = ARRAY_SIZE(ak4375_intercon), .idle_bias_on = 1, .use_pmdown_time = 1, .endianness = 1, }; static const struct regmap_config ak4375_regmap = { .reg_bits = 8, .val_bits = 8, .max_register = AK4375_24_MODE_CONTROL, .reg_defaults = ak4375_reg_defaults, .num_reg_defaults = ARRAY_SIZE(ak4375_reg_defaults), .cache_type = REGCACHE_RBTREE, }; static const struct ak4375_drvdata ak4375_drvdata = { .dai_drv = &ak4375_dai, .comp_drv = &soc_codec_dev_ak4375, }; static const struct dev_pm_ops ak4375_pm = { SET_RUNTIME_PM_OPS(ak4375_runtime_suspend, ak4375_runtime_resume, NULL) SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, pm_runtime_force_resume) }; static int ak4375_i2c_probe(struct i2c_client *i2c) { struct ak4375_priv *ak4375; const struct ak4375_drvdata *drvdata; unsigned int deviceid; int ret, i; ak4375 = devm_kzalloc(&i2c->dev, sizeof(*ak4375), GFP_KERNEL); if (!ak4375) return -ENOMEM; ak4375->regmap = devm_regmap_init_i2c(i2c, &ak4375_regmap); if (IS_ERR(ak4375->regmap)) return PTR_ERR(ak4375->regmap); i2c_set_clientdata(i2c, ak4375); ak4375->dev = &i2c->dev; drvdata = of_device_get_match_data(&i2c->dev); for (i = 0; i < ARRAY_SIZE(supply_names); i++) ak4375->supplies[i].supply = supply_names[i]; ret = devm_regulator_bulk_get(ak4375->dev, ARRAY_SIZE(ak4375->supplies), ak4375->supplies); if (ret < 0) { dev_err(ak4375->dev, "Failed to get regulators: %d\n", ret); return ret; } ak4375->pdn_gpiod = devm_gpiod_get_optional(ak4375->dev, "pdn", GPIOD_OUT_LOW); if (IS_ERR(ak4375->pdn_gpiod)) return dev_err_probe(ak4375->dev, PTR_ERR(ak4375->pdn_gpiod), "failed to get pdn\n"); ret = ak4375_power_on(ak4375); if (ret < 0) return ret; /* Don't read deviceid from cache */ regcache_cache_bypass(ak4375->regmap, true); ret = regmap_read(ak4375->regmap, AK4375_15_AUDIO_IF_FORMAT, &deviceid); if (ret < 0) { dev_err(ak4375->dev, "unable to read DEVICEID!\n"); return ret; } regcache_cache_bypass(ak4375->regmap, false); deviceid = (deviceid & DEVICEID_MASK) >> 5; switch (deviceid) { case DEVICEID_AK4331: dev_err(ak4375->dev, "found untested AK4331\n"); return -EINVAL; case DEVICEID_AK4375: dev_dbg(ak4375->dev, "found AK4375\n"); break; case DEVICEID_AK4375A: dev_dbg(ak4375->dev, "found AK4375A\n"); break; case DEVICEID_AK4376A: dev_err(ak4375->dev, "found unsupported AK4376/A!\n"); return -EINVAL; case DEVICEID_AK4377: dev_err(ak4375->dev, "found unsupported AK4377!\n"); return -EINVAL; default: dev_err(ak4375->dev, "unrecognized DEVICEID!\n"); return -EINVAL; } pm_runtime_set_active(ak4375->dev); pm_runtime_enable(ak4375->dev); ret = devm_snd_soc_register_component(ak4375->dev, drvdata->comp_drv, drvdata->dai_drv, 1); if (ret < 0) { dev_err(ak4375->dev, "Failed to register CODEC: %d\n", ret); return ret; } return 0; } static void ak4375_i2c_remove(struct i2c_client *i2c) { pm_runtime_disable(&i2c->dev); } static const struct of_device_id ak4375_of_match[] = { { .compatible = "asahi-kasei,ak4375", .data = &ak4375_drvdata }, { }, }; MODULE_DEVICE_TABLE(of, ak4375_of_match); static struct i2c_driver ak4375_i2c_driver = { .driver = { .name = "ak4375", .pm = &ak4375_pm, .of_match_table = ak4375_of_match, }, .probe = ak4375_i2c_probe, .remove = ak4375_i2c_remove, }; module_i2c_driver(ak4375_i2c_driver); MODULE_AUTHOR("Vincent Knecht <vincent.knecht@mailoo.org>"); MODULE_DESCRIPTION("ASoC AK4375 DAC driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1