Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Srinivas Kandagatla | 6016 | 96.97% | 8 | 42.11% |
Kuninori Morimoto | 116 | 1.87% | 2 | 10.53% |
Stephan Gerhold | 38 | 0.61% | 1 | 5.26% |
Miaoqian Lin | 24 | 0.39% | 2 | 10.53% |
Jean-François Têtu | 2 | 0.03% | 1 | 5.26% |
Uwe Kleine-König | 2 | 0.03% | 1 | 5.26% |
Yue haibing | 2 | 0.03% | 1 | 5.26% |
Johan Hovold | 2 | 0.03% | 1 | 5.26% |
Bhumika Goyal | 1 | 0.02% | 1 | 5.26% |
Gustavo A. R. Silva | 1 | 0.02% | 1 | 5.26% |
Total | 6204 | 19 |
// SPDX-License-Identifier: GPL-2.0 // Copyright (c) 2016, The Linux Foundation. All rights reserved. #include <linux/module.h> #include <linux/err.h> #include <linux/kernel.h> #include <linux/delay.h> #include <linux/types.h> #include <linux/clk.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/regmap.h> #include <linux/mfd/syscon.h> #include <sound/soc.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/tlv.h> #define LPASS_CDC_CLK_RX_RESET_CTL (0x000) #define LPASS_CDC_CLK_TX_RESET_B1_CTL (0x004) #define CLK_RX_RESET_B1_CTL_TX1_RESET_MASK BIT(0) #define CLK_RX_RESET_B1_CTL_TX2_RESET_MASK BIT(1) #define LPASS_CDC_CLK_DMIC_B1_CTL (0x008) #define DMIC_B1_CTL_DMIC0_CLK_SEL_MASK GENMASK(3, 1) #define DMIC_B1_CTL_DMIC0_CLK_SEL_DIV2 (0x0 << 1) #define DMIC_B1_CTL_DMIC0_CLK_SEL_DIV3 (0x1 << 1) #define DMIC_B1_CTL_DMIC0_CLK_SEL_DIV4 (0x2 << 1) #define DMIC_B1_CTL_DMIC0_CLK_SEL_DIV6 (0x3 << 1) #define DMIC_B1_CTL_DMIC0_CLK_SEL_DIV16 (0x4 << 1) #define DMIC_B1_CTL_DMIC0_CLK_EN_MASK BIT(0) #define DMIC_B1_CTL_DMIC0_CLK_EN_ENABLE BIT(0) #define LPASS_CDC_CLK_RX_I2S_CTL (0x00C) #define RX_I2S_CTL_RX_I2S_MODE_MASK BIT(5) #define RX_I2S_CTL_RX_I2S_MODE_16 BIT(5) #define RX_I2S_CTL_RX_I2S_MODE_32 0 #define RX_I2S_CTL_RX_I2S_FS_RATE_MASK GENMASK(2, 0) #define RX_I2S_CTL_RX_I2S_FS_RATE_F_8_KHZ 0x0 #define RX_I2S_CTL_RX_I2S_FS_RATE_F_16_KHZ 0x1 #define RX_I2S_CTL_RX_I2S_FS_RATE_F_32_KHZ 0x2 #define RX_I2S_CTL_RX_I2S_FS_RATE_F_48_KHZ 0x3 #define RX_I2S_CTL_RX_I2S_FS_RATE_F_96_KHZ 0x4 #define RX_I2S_CTL_RX_I2S_FS_RATE_F_192_KHZ 0x5 #define LPASS_CDC_CLK_TX_I2S_CTL (0x010) #define TX_I2S_CTL_TX_I2S_MODE_MASK BIT(5) #define TX_I2S_CTL_TX_I2S_MODE_16 BIT(5) #define TX_I2S_CTL_TX_I2S_MODE_32 0 #define TX_I2S_CTL_TX_I2S_FS_RATE_MASK GENMASK(2, 0) #define TX_I2S_CTL_TX_I2S_FS_RATE_F_8_KHZ 0x0 #define TX_I2S_CTL_TX_I2S_FS_RATE_F_16_KHZ 0x1 #define TX_I2S_CTL_TX_I2S_FS_RATE_F_32_KHZ 0x2 #define TX_I2S_CTL_TX_I2S_FS_RATE_F_48_KHZ 0x3 #define TX_I2S_CTL_TX_I2S_FS_RATE_F_96_KHZ 0x4 #define TX_I2S_CTL_TX_I2S_FS_RATE_F_192_KHZ 0x5 #define LPASS_CDC_CLK_OTHR_RESET_B1_CTL (0x014) #define LPASS_CDC_CLK_TX_CLK_EN_B1_CTL (0x018) #define LPASS_CDC_CLK_OTHR_CTL (0x01C) #define LPASS_CDC_CLK_RX_B1_CTL (0x020) #define LPASS_CDC_CLK_MCLK_CTL (0x024) #define MCLK_CTL_MCLK_EN_MASK BIT(0) #define MCLK_CTL_MCLK_EN_ENABLE BIT(0) #define MCLK_CTL_MCLK_EN_DISABLE 0 #define LPASS_CDC_CLK_PDM_CTL (0x028) #define LPASS_CDC_CLK_PDM_CTL_PDM_EN_MASK BIT(0) #define LPASS_CDC_CLK_PDM_CTL_PDM_EN BIT(0) #define LPASS_CDC_CLK_PDM_CTL_PDM_CLK_SEL_MASK BIT(1) #define LPASS_CDC_CLK_PDM_CTL_PDM_CLK_SEL_FB BIT(1) #define LPASS_CDC_CLK_PDM_CTL_PDM_CLK_PDM_CLK 0 #define LPASS_CDC_CLK_SD_CTL (0x02C) #define LPASS_CDC_RX1_B1_CTL (0x040) #define LPASS_CDC_RX2_B1_CTL (0x060) #define LPASS_CDC_RX3_B1_CTL (0x080) #define LPASS_CDC_RX1_B2_CTL (0x044) #define LPASS_CDC_RX2_B2_CTL (0x064) #define LPASS_CDC_RX3_B2_CTL (0x084) #define LPASS_CDC_RX1_B3_CTL (0x048) #define LPASS_CDC_RX2_B3_CTL (0x068) #define LPASS_CDC_RX3_B3_CTL (0x088) #define LPASS_CDC_RX1_B4_CTL (0x04C) #define LPASS_CDC_RX2_B4_CTL (0x06C) #define LPASS_CDC_RX3_B4_CTL (0x08C) #define LPASS_CDC_RX1_B5_CTL (0x050) #define LPASS_CDC_RX2_B5_CTL (0x070) #define LPASS_CDC_RX3_B5_CTL (0x090) #define LPASS_CDC_RX1_B6_CTL (0x054) #define RXn_B6_CTL_MUTE_MASK BIT(0) #define RXn_B6_CTL_MUTE_ENABLE BIT(0) #define RXn_B6_CTL_MUTE_DISABLE 0 #define LPASS_CDC_RX2_B6_CTL (0x074) #define LPASS_CDC_RX3_B6_CTL (0x094) #define LPASS_CDC_RX1_VOL_CTL_B1_CTL (0x058) #define LPASS_CDC_RX2_VOL_CTL_B1_CTL (0x078) #define LPASS_CDC_RX3_VOL_CTL_B1_CTL (0x098) #define LPASS_CDC_RX1_VOL_CTL_B2_CTL (0x05C) #define LPASS_CDC_RX2_VOL_CTL_B2_CTL (0x07C) #define LPASS_CDC_RX3_VOL_CTL_B2_CTL (0x09C) #define LPASS_CDC_TOP_GAIN_UPDATE (0x0A0) #define LPASS_CDC_TOP_CTL (0x0A4) #define TOP_CTL_DIG_MCLK_FREQ_MASK BIT(0) #define TOP_CTL_DIG_MCLK_FREQ_F_12_288MHZ 0 #define TOP_CTL_DIG_MCLK_FREQ_F_9_6MHZ BIT(0) #define LPASS_CDC_DEBUG_DESER1_CTL (0x0E0) #define LPASS_CDC_DEBUG_DESER2_CTL (0x0E4) #define LPASS_CDC_DEBUG_B1_CTL_CFG (0x0E8) #define LPASS_CDC_DEBUG_B2_CTL_CFG (0x0EC) #define LPASS_CDC_DEBUG_B3_CTL_CFG (0x0F0) #define LPASS_CDC_IIR1_GAIN_B1_CTL (0x100) #define LPASS_CDC_IIR2_GAIN_B1_CTL (0x140) #define LPASS_CDC_IIR1_GAIN_B2_CTL (0x104) #define LPASS_CDC_IIR2_GAIN_B2_CTL (0x144) #define LPASS_CDC_IIR1_GAIN_B3_CTL (0x108) #define LPASS_CDC_IIR2_GAIN_B3_CTL (0x148) #define LPASS_CDC_IIR1_GAIN_B4_CTL (0x10C) #define LPASS_CDC_IIR2_GAIN_B4_CTL (0x14C) #define LPASS_CDC_IIR1_GAIN_B5_CTL (0x110) #define LPASS_CDC_IIR2_GAIN_B5_CTL (0x150) #define LPASS_CDC_IIR1_GAIN_B6_CTL (0x114) #define LPASS_CDC_IIR2_GAIN_B6_CTL (0x154) #define LPASS_CDC_IIR1_GAIN_B7_CTL (0x118) #define LPASS_CDC_IIR2_GAIN_B7_CTL (0x158) #define LPASS_CDC_IIR1_GAIN_B8_CTL (0x11C) #define LPASS_CDC_IIR2_GAIN_B8_CTL (0x15C) #define LPASS_CDC_IIR1_CTL (0x120) #define LPASS_CDC_IIR2_CTL (0x160) #define LPASS_CDC_IIR1_GAIN_TIMER_CTL (0x124) #define LPASS_CDC_IIR2_GAIN_TIMER_CTL (0x164) #define LPASS_CDC_IIR1_COEF_B1_CTL (0x128) #define LPASS_CDC_IIR2_COEF_B1_CTL (0x168) #define LPASS_CDC_IIR1_COEF_B2_CTL (0x12C) #define LPASS_CDC_IIR2_COEF_B2_CTL (0x16C) #define LPASS_CDC_CONN_RX1_B1_CTL (0x180) #define LPASS_CDC_CONN_RX1_B2_CTL (0x184) #define LPASS_CDC_CONN_RX1_B3_CTL (0x188) #define LPASS_CDC_CONN_RX2_B1_CTL (0x18C) #define LPASS_CDC_CONN_RX2_B2_CTL (0x190) #define LPASS_CDC_CONN_RX2_B3_CTL (0x194) #define LPASS_CDC_CONN_RX3_B1_CTL (0x198) #define LPASS_CDC_CONN_RX3_B2_CTL (0x19C) #define LPASS_CDC_CONN_TX_B1_CTL (0x1A0) #define LPASS_CDC_CONN_EQ1_B1_CTL (0x1A8) #define LPASS_CDC_CONN_EQ1_B2_CTL (0x1AC) #define LPASS_CDC_CONN_EQ1_B3_CTL (0x1B0) #define LPASS_CDC_CONN_EQ1_B4_CTL (0x1B4) #define LPASS_CDC_CONN_EQ2_B1_CTL (0x1B8) #define LPASS_CDC_CONN_EQ2_B2_CTL (0x1BC) #define LPASS_CDC_CONN_EQ2_B3_CTL (0x1C0) #define LPASS_CDC_CONN_EQ2_B4_CTL (0x1C4) #define LPASS_CDC_CONN_TX_I2S_SD1_CTL (0x1C8) #define LPASS_CDC_TX1_VOL_CTL_TIMER (0x280) #define LPASS_CDC_TX2_VOL_CTL_TIMER (0x2A0) #define LPASS_CDC_TX1_VOL_CTL_GAIN (0x284) #define LPASS_CDC_TX2_VOL_CTL_GAIN (0x2A4) #define LPASS_CDC_TX1_VOL_CTL_CFG (0x288) #define TX_VOL_CTL_CFG_MUTE_EN_MASK BIT(0) #define TX_VOL_CTL_CFG_MUTE_EN_ENABLE BIT(0) #define LPASS_CDC_TX2_VOL_CTL_CFG (0x2A8) #define LPASS_CDC_TX1_MUX_CTL (0x28C) #define TX_MUX_CTL_CUT_OFF_FREQ_MASK GENMASK(5, 4) #define TX_MUX_CTL_CUT_OFF_FREQ_SHIFT 4 #define TX_MUX_CTL_CF_NEG_3DB_4HZ (0x0 << 4) #define TX_MUX_CTL_CF_NEG_3DB_75HZ (0x1 << 4) #define TX_MUX_CTL_CF_NEG_3DB_150HZ (0x2 << 4) #define TX_MUX_CTL_HPF_BP_SEL_MASK BIT(3) #define TX_MUX_CTL_HPF_BP_SEL_BYPASS BIT(3) #define TX_MUX_CTL_HPF_BP_SEL_NO_BYPASS 0 #define LPASS_CDC_TX2_MUX_CTL (0x2AC) #define LPASS_CDC_TX1_CLK_FS_CTL (0x290) #define LPASS_CDC_TX2_CLK_FS_CTL (0x2B0) #define LPASS_CDC_TX1_DMIC_CTL (0x294) #define LPASS_CDC_TX2_DMIC_CTL (0x2B4) #define TXN_DMIC_CTL_CLK_SEL_MASK GENMASK(2, 0) #define TXN_DMIC_CTL_CLK_SEL_DIV2 0x0 #define TXN_DMIC_CTL_CLK_SEL_DIV3 0x1 #define TXN_DMIC_CTL_CLK_SEL_DIV4 0x2 #define TXN_DMIC_CTL_CLK_SEL_DIV6 0x3 #define TXN_DMIC_CTL_CLK_SEL_DIV16 0x4 #define MSM8916_WCD_DIGITAL_RATES (SNDRV_PCM_RATE_8000 | \ SNDRV_PCM_RATE_16000 | \ SNDRV_PCM_RATE_32000 | \ SNDRV_PCM_RATE_48000) #define MSM8916_WCD_DIGITAL_FORMATS (SNDRV_PCM_FMTBIT_S16_LE |\ SNDRV_PCM_FMTBIT_S32_LE) /* Codec supports 2 IIR filters */ enum { IIR1 = 0, IIR2, IIR_MAX, }; /* Codec supports 5 bands */ enum { BAND1 = 0, BAND2, BAND3, BAND4, BAND5, BAND_MAX, }; #define WCD_IIR_FILTER_SIZE (sizeof(u32)*BAND_MAX) #define WCD_IIR_FILTER_CTL(xname, iidx, bidx) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ .info = wcd_iir_filter_info, \ .get = msm8x16_wcd_get_iir_band_audio_mixer, \ .put = msm8x16_wcd_put_iir_band_audio_mixer, \ .private_value = (unsigned long)&(struct wcd_iir_filter_ctl) { \ .iir_idx = iidx, \ .band_idx = bidx, \ .bytes_ext = {.max = WCD_IIR_FILTER_SIZE, }, \ } \ } struct wcd_iir_filter_ctl { unsigned int iir_idx; unsigned int band_idx; struct soc_bytes_ext bytes_ext; }; struct msm8916_wcd_digital_priv { struct clk *ahbclk, *mclk; }; static const unsigned long rx_gain_reg[] = { LPASS_CDC_RX1_VOL_CTL_B2_CTL, LPASS_CDC_RX2_VOL_CTL_B2_CTL, LPASS_CDC_RX3_VOL_CTL_B2_CTL, }; static const unsigned long tx_gain_reg[] = { LPASS_CDC_TX1_VOL_CTL_GAIN, LPASS_CDC_TX2_VOL_CTL_GAIN, }; static const char *const rx_mix1_text[] = { "ZERO", "IIR1", "IIR2", "RX1", "RX2", "RX3" }; static const char * const rx_mix2_text[] = { "ZERO", "IIR1", "IIR2" }; static const char *const dec_mux_text[] = { "ZERO", "ADC1", "ADC2", "ADC3", "DMIC1", "DMIC2" }; static const char *const cic_mux_text[] = { "AMIC", "DMIC" }; /* RX1 MIX1 */ static const struct soc_enum rx_mix1_inp_enum[] = { SOC_ENUM_SINGLE(LPASS_CDC_CONN_RX1_B1_CTL, 0, 6, rx_mix1_text), SOC_ENUM_SINGLE(LPASS_CDC_CONN_RX1_B1_CTL, 3, 6, rx_mix1_text), SOC_ENUM_SINGLE(LPASS_CDC_CONN_RX1_B2_CTL, 0, 6, rx_mix1_text), }; /* RX2 MIX1 */ static const struct soc_enum rx2_mix1_inp_enum[] = { SOC_ENUM_SINGLE(LPASS_CDC_CONN_RX2_B1_CTL, 0, 6, rx_mix1_text), SOC_ENUM_SINGLE(LPASS_CDC_CONN_RX2_B1_CTL, 3, 6, rx_mix1_text), SOC_ENUM_SINGLE(LPASS_CDC_CONN_RX2_B2_CTL, 0, 6, rx_mix1_text), }; /* RX3 MIX1 */ static const struct soc_enum rx3_mix1_inp_enum[] = { SOC_ENUM_SINGLE(LPASS_CDC_CONN_RX3_B1_CTL, 0, 6, rx_mix1_text), SOC_ENUM_SINGLE(LPASS_CDC_CONN_RX3_B1_CTL, 3, 6, rx_mix1_text), SOC_ENUM_SINGLE(LPASS_CDC_CONN_RX3_B2_CTL, 0, 6, rx_mix1_text), }; /* RX1 MIX2 */ static const struct soc_enum rx_mix2_inp1_chain_enum = SOC_ENUM_SINGLE(LPASS_CDC_CONN_RX1_B3_CTL, 0, 3, rx_mix2_text); /* RX2 MIX2 */ static const struct soc_enum rx2_mix2_inp1_chain_enum = SOC_ENUM_SINGLE(LPASS_CDC_CONN_RX2_B3_CTL, 0, 3, rx_mix2_text); /* DEC */ static const struct soc_enum dec1_mux_enum = SOC_ENUM_SINGLE( LPASS_CDC_CONN_TX_B1_CTL, 0, 6, dec_mux_text); static const struct soc_enum dec2_mux_enum = SOC_ENUM_SINGLE( LPASS_CDC_CONN_TX_B1_CTL, 3, 6, dec_mux_text); /* CIC */ static const struct soc_enum cic1_mux_enum = SOC_ENUM_SINGLE( LPASS_CDC_TX1_MUX_CTL, 0, 2, cic_mux_text); static const struct soc_enum cic2_mux_enum = SOC_ENUM_SINGLE( LPASS_CDC_TX2_MUX_CTL, 0, 2, cic_mux_text); /* RDAC2 MUX */ static const struct snd_kcontrol_new dec1_mux = SOC_DAPM_ENUM( "DEC1 MUX Mux", dec1_mux_enum); static const struct snd_kcontrol_new dec2_mux = SOC_DAPM_ENUM( "DEC2 MUX Mux", dec2_mux_enum); static const struct snd_kcontrol_new cic1_mux = SOC_DAPM_ENUM( "CIC1 MUX Mux", cic1_mux_enum); static const struct snd_kcontrol_new cic2_mux = SOC_DAPM_ENUM( "CIC2 MUX Mux", cic2_mux_enum); static const struct snd_kcontrol_new rx_mix1_inp1_mux = SOC_DAPM_ENUM( "RX1 MIX1 INP1 Mux", rx_mix1_inp_enum[0]); static const struct snd_kcontrol_new rx_mix1_inp2_mux = SOC_DAPM_ENUM( "RX1 MIX1 INP2 Mux", rx_mix1_inp_enum[1]); static const struct snd_kcontrol_new rx_mix1_inp3_mux = SOC_DAPM_ENUM( "RX1 MIX1 INP3 Mux", rx_mix1_inp_enum[2]); static const struct snd_kcontrol_new rx2_mix1_inp1_mux = SOC_DAPM_ENUM( "RX2 MIX1 INP1 Mux", rx2_mix1_inp_enum[0]); static const struct snd_kcontrol_new rx2_mix1_inp2_mux = SOC_DAPM_ENUM( "RX2 MIX1 INP2 Mux", rx2_mix1_inp_enum[1]); static const struct snd_kcontrol_new rx2_mix1_inp3_mux = SOC_DAPM_ENUM( "RX2 MIX1 INP3 Mux", rx2_mix1_inp_enum[2]); static const struct snd_kcontrol_new rx3_mix1_inp1_mux = SOC_DAPM_ENUM( "RX3 MIX1 INP1 Mux", rx3_mix1_inp_enum[0]); static const struct snd_kcontrol_new rx3_mix1_inp2_mux = SOC_DAPM_ENUM( "RX3 MIX1 INP2 Mux", rx3_mix1_inp_enum[1]); static const struct snd_kcontrol_new rx3_mix1_inp3_mux = SOC_DAPM_ENUM( "RX3 MIX1 INP3 Mux", rx3_mix1_inp_enum[2]); static const struct snd_kcontrol_new rx1_mix2_inp1_mux = SOC_DAPM_ENUM( "RX1 MIX2 INP1 Mux", rx_mix2_inp1_chain_enum); static const struct snd_kcontrol_new rx2_mix2_inp1_mux = SOC_DAPM_ENUM( "RX2 MIX2 INP1 Mux", rx2_mix2_inp1_chain_enum); /* Digital Gain control -84 dB to +40 dB in 1 dB steps */ static const DECLARE_TLV_DB_SCALE(digital_gain, -8400, 100, -8400); /* Cutoff Freq for High Pass Filter at -3dB */ static const char * const hpf_cutoff_text[] = { "4Hz", "75Hz", "150Hz", }; static SOC_ENUM_SINGLE_DECL(tx1_hpf_cutoff_enum, LPASS_CDC_TX1_MUX_CTL, 4, hpf_cutoff_text); static SOC_ENUM_SINGLE_DECL(tx2_hpf_cutoff_enum, LPASS_CDC_TX2_MUX_CTL, 4, hpf_cutoff_text); /* cut off for dc blocker inside rx chain */ static const char * const dc_blocker_cutoff_text[] = { "4Hz", "75Hz", "150Hz", }; static SOC_ENUM_SINGLE_DECL(rx1_dcb_cutoff_enum, LPASS_CDC_RX1_B4_CTL, 0, dc_blocker_cutoff_text); static SOC_ENUM_SINGLE_DECL(rx2_dcb_cutoff_enum, LPASS_CDC_RX2_B4_CTL, 0, dc_blocker_cutoff_text); static SOC_ENUM_SINGLE_DECL(rx3_dcb_cutoff_enum, LPASS_CDC_RX3_B4_CTL, 0, dc_blocker_cutoff_text); static int msm8x16_wcd_codec_set_iir_gain(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); int value = 0, reg = 0; switch (event) { case SND_SOC_DAPM_POST_PMU: if (w->shift == 0) reg = LPASS_CDC_IIR1_GAIN_B1_CTL; else if (w->shift == 1) reg = LPASS_CDC_IIR2_GAIN_B1_CTL; value = snd_soc_component_read(component, reg); snd_soc_component_write(component, reg, value); break; default: break; } return 0; } static uint32_t get_iir_band_coeff(struct snd_soc_component *component, int iir_idx, int band_idx, int coeff_idx) { uint32_t value = 0; /* Address does not automatically update if reading */ snd_soc_component_write(component, (LPASS_CDC_IIR1_COEF_B1_CTL + 64 * iir_idx), ((band_idx * BAND_MAX + coeff_idx) * sizeof(uint32_t)) & 0x7F); value |= snd_soc_component_read(component, (LPASS_CDC_IIR1_COEF_B2_CTL + 64 * iir_idx)); snd_soc_component_write(component, (LPASS_CDC_IIR1_COEF_B1_CTL + 64 * iir_idx), ((band_idx * BAND_MAX + coeff_idx) * sizeof(uint32_t) + 1) & 0x7F); value |= (snd_soc_component_read(component, (LPASS_CDC_IIR1_COEF_B2_CTL + 64 * iir_idx)) << 8); snd_soc_component_write(component, (LPASS_CDC_IIR1_COEF_B1_CTL + 64 * iir_idx), ((band_idx * BAND_MAX + coeff_idx) * sizeof(uint32_t) + 2) & 0x7F); value |= (snd_soc_component_read(component, (LPASS_CDC_IIR1_COEF_B2_CTL + 64 * iir_idx)) << 16); snd_soc_component_write(component, (LPASS_CDC_IIR1_COEF_B1_CTL + 64 * iir_idx), ((band_idx * BAND_MAX + coeff_idx) * sizeof(uint32_t) + 3) & 0x7F); /* Mask bits top 2 bits since they are reserved */ value |= ((snd_soc_component_read(component, (LPASS_CDC_IIR1_COEF_B2_CTL + 64 * iir_idx)) & 0x3f) << 24); return value; } static int msm8x16_wcd_get_iir_band_audio_mixer( struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); struct wcd_iir_filter_ctl *ctl = (struct wcd_iir_filter_ctl *)kcontrol->private_value; struct soc_bytes_ext *params = &ctl->bytes_ext; int iir_idx = ctl->iir_idx; int band_idx = ctl->band_idx; u32 coeff[BAND_MAX]; coeff[0] = get_iir_band_coeff(component, iir_idx, band_idx, 0); coeff[1] = get_iir_band_coeff(component, iir_idx, band_idx, 1); coeff[2] = get_iir_band_coeff(component, iir_idx, band_idx, 2); coeff[3] = get_iir_band_coeff(component, iir_idx, band_idx, 3); coeff[4] = get_iir_band_coeff(component, iir_idx, band_idx, 4); memcpy(ucontrol->value.bytes.data, &coeff[0], params->max); return 0; } static void set_iir_band_coeff(struct snd_soc_component *component, int iir_idx, int band_idx, uint32_t value) { snd_soc_component_write(component, (LPASS_CDC_IIR1_COEF_B2_CTL + 64 * iir_idx), (value & 0xFF)); snd_soc_component_write(component, (LPASS_CDC_IIR1_COEF_B2_CTL + 64 * iir_idx), (value >> 8) & 0xFF); snd_soc_component_write(component, (LPASS_CDC_IIR1_COEF_B2_CTL + 64 * iir_idx), (value >> 16) & 0xFF); /* Mask top 2 bits, 7-8 are reserved */ snd_soc_component_write(component, (LPASS_CDC_IIR1_COEF_B2_CTL + 64 * iir_idx), (value >> 24) & 0x3F); } static int msm8x16_wcd_put_iir_band_audio_mixer( struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); struct wcd_iir_filter_ctl *ctl = (struct wcd_iir_filter_ctl *)kcontrol->private_value; struct soc_bytes_ext *params = &ctl->bytes_ext; int iir_idx = ctl->iir_idx; int band_idx = ctl->band_idx; u32 coeff[BAND_MAX]; memcpy(&coeff[0], ucontrol->value.bytes.data, params->max); /* Mask top bit it is reserved */ /* Updates addr automatically for each B2 write */ snd_soc_component_write(component, (LPASS_CDC_IIR1_COEF_B1_CTL + 64 * iir_idx), (band_idx * BAND_MAX * sizeof(uint32_t)) & 0x7F); set_iir_band_coeff(component, iir_idx, band_idx, coeff[0]); set_iir_band_coeff(component, iir_idx, band_idx, coeff[1]); set_iir_band_coeff(component, iir_idx, band_idx, coeff[2]); set_iir_band_coeff(component, iir_idx, band_idx, coeff[3]); set_iir_band_coeff(component, iir_idx, band_idx, coeff[4]); return 0; } static int wcd_iir_filter_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *ucontrol) { struct wcd_iir_filter_ctl *ctl = (struct wcd_iir_filter_ctl *)kcontrol->private_value; struct soc_bytes_ext *params = &ctl->bytes_ext; ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES; ucontrol->count = params->max; return 0; } static const struct snd_kcontrol_new msm8916_wcd_digital_snd_controls[] = { SOC_SINGLE_S8_TLV("RX1 Digital Volume", LPASS_CDC_RX1_VOL_CTL_B2_CTL, -84, 40, digital_gain), SOC_SINGLE_S8_TLV("RX2 Digital Volume", LPASS_CDC_RX2_VOL_CTL_B2_CTL, -84, 40, digital_gain), SOC_SINGLE_S8_TLV("RX3 Digital Volume", LPASS_CDC_RX3_VOL_CTL_B2_CTL, -84, 40, digital_gain), SOC_SINGLE_S8_TLV("TX1 Digital Volume", LPASS_CDC_TX1_VOL_CTL_GAIN, -84, 40, digital_gain), SOC_SINGLE_S8_TLV("TX2 Digital Volume", LPASS_CDC_TX2_VOL_CTL_GAIN, -84, 40, digital_gain), SOC_ENUM("TX1 HPF Cutoff", tx1_hpf_cutoff_enum), SOC_ENUM("TX2 HPF Cutoff", tx2_hpf_cutoff_enum), SOC_SINGLE("TX1 HPF Switch", LPASS_CDC_TX1_MUX_CTL, 3, 1, 0), SOC_SINGLE("TX2 HPF Switch", LPASS_CDC_TX2_MUX_CTL, 3, 1, 0), SOC_ENUM("RX1 DCB Cutoff", rx1_dcb_cutoff_enum), SOC_ENUM("RX2 DCB Cutoff", rx2_dcb_cutoff_enum), SOC_ENUM("RX3 DCB Cutoff", rx3_dcb_cutoff_enum), SOC_SINGLE("RX1 DCB Switch", LPASS_CDC_RX1_B5_CTL, 2, 1, 0), SOC_SINGLE("RX2 DCB Switch", LPASS_CDC_RX2_B5_CTL, 2, 1, 0), SOC_SINGLE("RX3 DCB Switch", LPASS_CDC_RX3_B5_CTL, 2, 1, 0), SOC_SINGLE("RX1 Mute Switch", LPASS_CDC_RX1_B6_CTL, 0, 1, 0), SOC_SINGLE("RX2 Mute Switch", LPASS_CDC_RX2_B6_CTL, 0, 1, 0), SOC_SINGLE("RX3 Mute Switch", LPASS_CDC_RX3_B6_CTL, 0, 1, 0), SOC_SINGLE("IIR1 Band1 Switch", LPASS_CDC_IIR1_CTL, 0, 1, 0), SOC_SINGLE("IIR1 Band2 Switch", LPASS_CDC_IIR1_CTL, 1, 1, 0), SOC_SINGLE("IIR1 Band3 Switch", LPASS_CDC_IIR1_CTL, 2, 1, 0), SOC_SINGLE("IIR1 Band4 Switch", LPASS_CDC_IIR1_CTL, 3, 1, 0), SOC_SINGLE("IIR1 Band5 Switch", LPASS_CDC_IIR1_CTL, 4, 1, 0), SOC_SINGLE("IIR2 Band1 Switch", LPASS_CDC_IIR2_CTL, 0, 1, 0), SOC_SINGLE("IIR2 Band2 Switch", LPASS_CDC_IIR2_CTL, 1, 1, 0), SOC_SINGLE("IIR2 Band3 Switch", LPASS_CDC_IIR2_CTL, 2, 1, 0), SOC_SINGLE("IIR2 Band4 Switch", LPASS_CDC_IIR2_CTL, 3, 1, 0), SOC_SINGLE("IIR2 Band5 Switch", LPASS_CDC_IIR2_CTL, 4, 1, 0), WCD_IIR_FILTER_CTL("IIR1 Band1", IIR1, BAND1), WCD_IIR_FILTER_CTL("IIR1 Band2", IIR1, BAND2), WCD_IIR_FILTER_CTL("IIR1 Band3", IIR1, BAND3), WCD_IIR_FILTER_CTL("IIR1 Band4", IIR1, BAND4), WCD_IIR_FILTER_CTL("IIR1 Band5", IIR1, BAND5), WCD_IIR_FILTER_CTL("IIR2 Band1", IIR2, BAND1), WCD_IIR_FILTER_CTL("IIR2 Band2", IIR2, BAND2), WCD_IIR_FILTER_CTL("IIR2 Band3", IIR2, BAND3), WCD_IIR_FILTER_CTL("IIR2 Band4", IIR2, BAND4), WCD_IIR_FILTER_CTL("IIR2 Band5", IIR2, BAND5), SOC_SINGLE_S8_TLV("IIR1 INP1 Volume", LPASS_CDC_IIR1_GAIN_B1_CTL, -84, 40, digital_gain), SOC_SINGLE_S8_TLV("IIR1 INP2 Volume", LPASS_CDC_IIR1_GAIN_B2_CTL, -84, 40, digital_gain), SOC_SINGLE_S8_TLV("IIR1 INP3 Volume", LPASS_CDC_IIR1_GAIN_B3_CTL, -84, 40, digital_gain), SOC_SINGLE_S8_TLV("IIR1 INP4 Volume", LPASS_CDC_IIR1_GAIN_B4_CTL, -84, 40, digital_gain), SOC_SINGLE_S8_TLV("IIR2 INP1 Volume", LPASS_CDC_IIR2_GAIN_B1_CTL, -84, 40, digital_gain), SOC_SINGLE_S8_TLV("IIR2 INP2 Volume", LPASS_CDC_IIR2_GAIN_B2_CTL, -84, 40, digital_gain), SOC_SINGLE_S8_TLV("IIR2 INP3 Volume", LPASS_CDC_IIR2_GAIN_B3_CTL, -84, 40, digital_gain), SOC_SINGLE_S8_TLV("IIR2 INP4 Volume", LPASS_CDC_IIR2_GAIN_B4_CTL, -84, 40, digital_gain), }; static int msm8916_wcd_digital_enable_interpolator( struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); switch (event) { case SND_SOC_DAPM_POST_PMU: /* apply the digital gain after the interpolator is enabled */ usleep_range(10000, 10100); snd_soc_component_write(component, rx_gain_reg[w->shift], snd_soc_component_read(component, rx_gain_reg[w->shift])); break; case SND_SOC_DAPM_POST_PMD: snd_soc_component_update_bits(component, LPASS_CDC_CLK_RX_RESET_CTL, 1 << w->shift, 1 << w->shift); snd_soc_component_update_bits(component, LPASS_CDC_CLK_RX_RESET_CTL, 1 << w->shift, 0x0); break; } return 0; } static int msm8916_wcd_digital_enable_dec(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); unsigned int decimator = w->shift + 1; u16 dec_reset_reg, tx_vol_ctl_reg, tx_mux_ctl_reg; u8 dec_hpf_cut_of_freq; dec_reset_reg = LPASS_CDC_CLK_TX_RESET_B1_CTL; tx_vol_ctl_reg = LPASS_CDC_TX1_VOL_CTL_CFG + 32 * (decimator - 1); tx_mux_ctl_reg = LPASS_CDC_TX1_MUX_CTL + 32 * (decimator - 1); switch (event) { case SND_SOC_DAPM_PRE_PMU: /* Enable TX digital mute */ snd_soc_component_update_bits(component, tx_vol_ctl_reg, TX_VOL_CTL_CFG_MUTE_EN_MASK, TX_VOL_CTL_CFG_MUTE_EN_ENABLE); dec_hpf_cut_of_freq = snd_soc_component_read(component, tx_mux_ctl_reg) & TX_MUX_CTL_CUT_OFF_FREQ_MASK; dec_hpf_cut_of_freq >>= TX_MUX_CTL_CUT_OFF_FREQ_SHIFT; if (dec_hpf_cut_of_freq != TX_MUX_CTL_CF_NEG_3DB_150HZ) { /* set cut of freq to CF_MIN_3DB_150HZ (0x1) */ snd_soc_component_update_bits(component, tx_mux_ctl_reg, TX_MUX_CTL_CUT_OFF_FREQ_MASK, TX_MUX_CTL_CF_NEG_3DB_150HZ); } break; case SND_SOC_DAPM_POST_PMU: /* enable HPF */ snd_soc_component_update_bits(component, tx_mux_ctl_reg, TX_MUX_CTL_HPF_BP_SEL_MASK, TX_MUX_CTL_HPF_BP_SEL_NO_BYPASS); /* apply the digital gain after the decimator is enabled */ snd_soc_component_write(component, tx_gain_reg[w->shift], snd_soc_component_read(component, tx_gain_reg[w->shift])); snd_soc_component_update_bits(component, tx_vol_ctl_reg, TX_VOL_CTL_CFG_MUTE_EN_MASK, 0); break; case SND_SOC_DAPM_PRE_PMD: snd_soc_component_update_bits(component, tx_vol_ctl_reg, TX_VOL_CTL_CFG_MUTE_EN_MASK, TX_VOL_CTL_CFG_MUTE_EN_ENABLE); snd_soc_component_update_bits(component, tx_mux_ctl_reg, TX_MUX_CTL_HPF_BP_SEL_MASK, TX_MUX_CTL_HPF_BP_SEL_BYPASS); break; case SND_SOC_DAPM_POST_PMD: snd_soc_component_update_bits(component, dec_reset_reg, 1 << w->shift, 1 << w->shift); snd_soc_component_update_bits(component, dec_reset_reg, 1 << w->shift, 0x0); snd_soc_component_update_bits(component, tx_mux_ctl_reg, TX_MUX_CTL_HPF_BP_SEL_MASK, TX_MUX_CTL_HPF_BP_SEL_BYPASS); snd_soc_component_update_bits(component, tx_vol_ctl_reg, TX_VOL_CTL_CFG_MUTE_EN_MASK, 0); break; } return 0; } static int msm8916_wcd_digital_enable_dmic(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); unsigned int dmic; int ret; /* get dmic number out of widget name */ char *dmic_num = strpbrk(w->name, "12"); if (dmic_num == NULL) { dev_err(component->dev, "Invalid DMIC\n"); return -EINVAL; } ret = kstrtouint(dmic_num, 10, &dmic); if (ret < 0 || dmic > 2) { dev_err(component->dev, "Invalid DMIC line on the component\n"); return -EINVAL; } switch (event) { case SND_SOC_DAPM_PRE_PMU: snd_soc_component_update_bits(component, LPASS_CDC_CLK_DMIC_B1_CTL, DMIC_B1_CTL_DMIC0_CLK_SEL_MASK, DMIC_B1_CTL_DMIC0_CLK_SEL_DIV3); switch (dmic) { case 1: snd_soc_component_update_bits(component, LPASS_CDC_TX1_DMIC_CTL, TXN_DMIC_CTL_CLK_SEL_MASK, TXN_DMIC_CTL_CLK_SEL_DIV3); break; case 2: snd_soc_component_update_bits(component, LPASS_CDC_TX2_DMIC_CTL, TXN_DMIC_CTL_CLK_SEL_MASK, TXN_DMIC_CTL_CLK_SEL_DIV3); break; } break; } return 0; } static const char * const iir_inp1_text[] = { "ZERO", "DEC1", "DEC2", "RX1", "RX2", "RX3" }; static const struct soc_enum iir1_inp1_mux_enum = SOC_ENUM_SINGLE(LPASS_CDC_CONN_EQ1_B1_CTL, 0, 6, iir_inp1_text); static const struct soc_enum iir2_inp1_mux_enum = SOC_ENUM_SINGLE(LPASS_CDC_CONN_EQ2_B1_CTL, 0, 6, iir_inp1_text); static const struct snd_kcontrol_new iir1_inp1_mux = SOC_DAPM_ENUM("IIR1 INP1 Mux", iir1_inp1_mux_enum); static const struct snd_kcontrol_new iir2_inp1_mux = SOC_DAPM_ENUM("IIR2 INP1 Mux", iir2_inp1_mux_enum); static const struct snd_soc_dapm_widget msm8916_wcd_digital_dapm_widgets[] = { /*RX stuff */ SND_SOC_DAPM_AIF_IN("I2S RX1", NULL, 0, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_AIF_IN("I2S RX2", NULL, 0, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_AIF_IN("I2S RX3", NULL, 0, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_OUTPUT("PDM_RX1"), SND_SOC_DAPM_OUTPUT("PDM_RX2"), SND_SOC_DAPM_OUTPUT("PDM_RX3"), SND_SOC_DAPM_INPUT("LPASS_PDM_TX"), SND_SOC_DAPM_MIXER("RX1 MIX1", SND_SOC_NOPM, 0, 0, NULL, 0), SND_SOC_DAPM_MIXER("RX2 MIX1", SND_SOC_NOPM, 0, 0, NULL, 0), SND_SOC_DAPM_MIXER("RX3 MIX1", SND_SOC_NOPM, 0, 0, NULL, 0), /* Interpolator */ SND_SOC_DAPM_MIXER_E("RX1 INT", LPASS_CDC_CLK_RX_B1_CTL, 0, 0, NULL, 0, msm8916_wcd_digital_enable_interpolator, SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_MIXER_E("RX2 INT", LPASS_CDC_CLK_RX_B1_CTL, 1, 0, NULL, 0, msm8916_wcd_digital_enable_interpolator, SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_MIXER_E("RX3 INT", LPASS_CDC_CLK_RX_B1_CTL, 2, 0, NULL, 0, msm8916_wcd_digital_enable_interpolator, SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_MUX("RX1 MIX1 INP1", SND_SOC_NOPM, 0, 0, &rx_mix1_inp1_mux), SND_SOC_DAPM_MUX("RX1 MIX1 INP2", SND_SOC_NOPM, 0, 0, &rx_mix1_inp2_mux), SND_SOC_DAPM_MUX("RX1 MIX1 INP3", SND_SOC_NOPM, 0, 0, &rx_mix1_inp3_mux), SND_SOC_DAPM_MUX("RX2 MIX1 INP1", SND_SOC_NOPM, 0, 0, &rx2_mix1_inp1_mux), SND_SOC_DAPM_MUX("RX2 MIX1 INP2", SND_SOC_NOPM, 0, 0, &rx2_mix1_inp2_mux), SND_SOC_DAPM_MUX("RX2 MIX1 INP3", SND_SOC_NOPM, 0, 0, &rx2_mix1_inp3_mux), SND_SOC_DAPM_MUX("RX3 MIX1 INP1", SND_SOC_NOPM, 0, 0, &rx3_mix1_inp1_mux), SND_SOC_DAPM_MUX("RX3 MIX1 INP2", SND_SOC_NOPM, 0, 0, &rx3_mix1_inp2_mux), SND_SOC_DAPM_MUX("RX3 MIX1 INP3", SND_SOC_NOPM, 0, 0, &rx3_mix1_inp3_mux), SND_SOC_DAPM_MUX("RX1 MIX2 INP1", SND_SOC_NOPM, 0, 0, &rx1_mix2_inp1_mux), SND_SOC_DAPM_MUX("RX2 MIX2 INP1", SND_SOC_NOPM, 0, 0, &rx2_mix2_inp1_mux), SND_SOC_DAPM_MUX("CIC1 MUX", SND_SOC_NOPM, 0, 0, &cic1_mux), SND_SOC_DAPM_MUX("CIC2 MUX", SND_SOC_NOPM, 0, 0, &cic2_mux), /* TX */ SND_SOC_DAPM_MIXER("ADC1", SND_SOC_NOPM, 0, 0, NULL, 0), SND_SOC_DAPM_MIXER("ADC2", SND_SOC_NOPM, 0, 0, NULL, 0), SND_SOC_DAPM_MIXER("ADC3", SND_SOC_NOPM, 0, 0, NULL, 0), SND_SOC_DAPM_MUX_E("DEC1 MUX", LPASS_CDC_CLK_TX_CLK_EN_B1_CTL, 0, 0, &dec1_mux, msm8916_wcd_digital_enable_dec, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_MUX_E("DEC2 MUX", LPASS_CDC_CLK_TX_CLK_EN_B1_CTL, 1, 0, &dec2_mux, msm8916_wcd_digital_enable_dec, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_AIF_OUT("I2S TX1", NULL, 0, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_AIF_OUT("I2S TX2", NULL, 0, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_AIF_OUT("I2S TX3", NULL, 0, SND_SOC_NOPM, 0, 0), /* Digital Mic Inputs */ SND_SOC_DAPM_ADC_E("DMIC1", NULL, SND_SOC_NOPM, 0, 0, msm8916_wcd_digital_enable_dmic, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_ADC_E("DMIC2", NULL, SND_SOC_NOPM, 0, 0, msm8916_wcd_digital_enable_dmic, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_SUPPLY("DMIC_CLK", LPASS_CDC_CLK_DMIC_B1_CTL, 0, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("RX_I2S_CLK", LPASS_CDC_CLK_RX_I2S_CTL, 4, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("TX_I2S_CLK", LPASS_CDC_CLK_TX_I2S_CTL, 4, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("MCLK", SND_SOC_NOPM, 0, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("PDM_CLK", LPASS_CDC_CLK_PDM_CTL, 0, 0, NULL, 0), /* Connectivity Clock */ SND_SOC_DAPM_SUPPLY_S("CDC_CONN", -2, LPASS_CDC_CLK_OTHR_CTL, 2, 0, NULL, 0), SND_SOC_DAPM_MIC("Digital Mic1", NULL), SND_SOC_DAPM_MIC("Digital Mic2", NULL), /* Sidetone */ SND_SOC_DAPM_MUX("IIR1 INP1 MUX", SND_SOC_NOPM, 0, 0, &iir1_inp1_mux), SND_SOC_DAPM_PGA_E("IIR1", LPASS_CDC_CLK_SD_CTL, 0, 0, NULL, 0, msm8x16_wcd_codec_set_iir_gain, SND_SOC_DAPM_POST_PMU), SND_SOC_DAPM_MUX("IIR2 INP1 MUX", SND_SOC_NOPM, 0, 0, &iir2_inp1_mux), SND_SOC_DAPM_PGA_E("IIR2", LPASS_CDC_CLK_SD_CTL, 1, 0, NULL, 0, msm8x16_wcd_codec_set_iir_gain, SND_SOC_DAPM_POST_PMU), }; static int msm8916_wcd_digital_get_clks(struct platform_device *pdev, struct msm8916_wcd_digital_priv *priv) { struct device *dev = &pdev->dev; priv->ahbclk = devm_clk_get(dev, "ahbix-clk"); if (IS_ERR(priv->ahbclk)) { dev_err(dev, "failed to get ahbix clk\n"); return PTR_ERR(priv->ahbclk); } priv->mclk = devm_clk_get(dev, "mclk"); if (IS_ERR(priv->mclk)) { dev_err(dev, "failed to get mclk\n"); return PTR_ERR(priv->mclk); } return 0; } static int msm8916_wcd_digital_component_probe(struct snd_soc_component *component) { struct msm8916_wcd_digital_priv *priv = dev_get_drvdata(component->dev); snd_soc_component_set_drvdata(component, priv); return 0; } static int msm8916_wcd_digital_component_set_sysclk(struct snd_soc_component *component, int clk_id, int source, unsigned int freq, int dir) { struct msm8916_wcd_digital_priv *p = dev_get_drvdata(component->dev); return clk_set_rate(p->mclk, freq); } static int msm8916_wcd_digital_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { u8 tx_fs_rate; u8 rx_fs_rate; switch (params_rate(params)) { case 8000: tx_fs_rate = TX_I2S_CTL_TX_I2S_FS_RATE_F_8_KHZ; rx_fs_rate = RX_I2S_CTL_RX_I2S_FS_RATE_F_8_KHZ; break; case 16000: tx_fs_rate = TX_I2S_CTL_TX_I2S_FS_RATE_F_16_KHZ; rx_fs_rate = RX_I2S_CTL_RX_I2S_FS_RATE_F_16_KHZ; break; case 32000: tx_fs_rate = TX_I2S_CTL_TX_I2S_FS_RATE_F_32_KHZ; rx_fs_rate = RX_I2S_CTL_RX_I2S_FS_RATE_F_32_KHZ; break; case 48000: tx_fs_rate = TX_I2S_CTL_TX_I2S_FS_RATE_F_48_KHZ; rx_fs_rate = RX_I2S_CTL_RX_I2S_FS_RATE_F_48_KHZ; break; default: dev_err(dai->component->dev, "Invalid sampling rate %d\n", params_rate(params)); return -EINVAL; } switch (substream->stream) { case SNDRV_PCM_STREAM_CAPTURE: snd_soc_component_update_bits(dai->component, LPASS_CDC_CLK_TX_I2S_CTL, TX_I2S_CTL_TX_I2S_FS_RATE_MASK, tx_fs_rate); break; case SNDRV_PCM_STREAM_PLAYBACK: snd_soc_component_update_bits(dai->component, LPASS_CDC_CLK_RX_I2S_CTL, RX_I2S_CTL_RX_I2S_FS_RATE_MASK, rx_fs_rate); break; default: return -EINVAL; } switch (params_format(params)) { case SNDRV_PCM_FORMAT_S16_LE: snd_soc_component_update_bits(dai->component, LPASS_CDC_CLK_TX_I2S_CTL, TX_I2S_CTL_TX_I2S_MODE_MASK, TX_I2S_CTL_TX_I2S_MODE_16); snd_soc_component_update_bits(dai->component, LPASS_CDC_CLK_RX_I2S_CTL, RX_I2S_CTL_RX_I2S_MODE_MASK, RX_I2S_CTL_RX_I2S_MODE_16); break; case SNDRV_PCM_FORMAT_S32_LE: snd_soc_component_update_bits(dai->component, LPASS_CDC_CLK_TX_I2S_CTL, TX_I2S_CTL_TX_I2S_MODE_MASK, TX_I2S_CTL_TX_I2S_MODE_32); snd_soc_component_update_bits(dai->component, LPASS_CDC_CLK_RX_I2S_CTL, RX_I2S_CTL_RX_I2S_MODE_MASK, RX_I2S_CTL_RX_I2S_MODE_32); break; default: dev_err(dai->dev, "%s: wrong format selected\n", __func__); return -EINVAL; } return 0; } static const struct snd_soc_dapm_route msm8916_wcd_digital_audio_map[] = { {"I2S RX1", NULL, "AIF1 Playback"}, {"I2S RX2", NULL, "AIF1 Playback"}, {"I2S RX3", NULL, "AIF1 Playback"}, {"AIF1 Capture", NULL, "I2S TX1"}, {"AIF1 Capture", NULL, "I2S TX2"}, {"AIF1 Capture", NULL, "I2S TX3"}, {"CIC1 MUX", "DMIC", "DEC1 MUX"}, {"CIC1 MUX", "AMIC", "DEC1 MUX"}, {"CIC2 MUX", "DMIC", "DEC2 MUX"}, {"CIC2 MUX", "AMIC", "DEC2 MUX"}, /* Decimator Inputs */ {"DEC1 MUX", "DMIC1", "DMIC1"}, {"DEC1 MUX", "DMIC2", "DMIC2"}, {"DEC1 MUX", "ADC1", "ADC1"}, {"DEC1 MUX", "ADC2", "ADC2"}, {"DEC1 MUX", "ADC3", "ADC3"}, {"DEC1 MUX", NULL, "CDC_CONN"}, {"DEC2 MUX", "DMIC1", "DMIC1"}, {"DEC2 MUX", "DMIC2", "DMIC2"}, {"DEC2 MUX", "ADC1", "ADC1"}, {"DEC2 MUX", "ADC2", "ADC2"}, {"DEC2 MUX", "ADC3", "ADC3"}, {"DEC2 MUX", NULL, "CDC_CONN"}, {"DMIC1", NULL, "DMIC_CLK"}, {"DMIC2", NULL, "DMIC_CLK"}, {"I2S TX1", NULL, "CIC1 MUX"}, {"I2S TX2", NULL, "CIC2 MUX"}, {"I2S TX1", NULL, "TX_I2S_CLK"}, {"I2S TX2", NULL, "TX_I2S_CLK"}, {"TX_I2S_CLK", NULL, "MCLK"}, {"TX_I2S_CLK", NULL, "PDM_CLK"}, {"ADC1", NULL, "LPASS_PDM_TX"}, {"ADC2", NULL, "LPASS_PDM_TX"}, {"ADC3", NULL, "LPASS_PDM_TX"}, {"I2S RX1", NULL, "RX_I2S_CLK"}, {"I2S RX2", NULL, "RX_I2S_CLK"}, {"I2S RX3", NULL, "RX_I2S_CLK"}, {"RX_I2S_CLK", NULL, "PDM_CLK"}, {"RX_I2S_CLK", NULL, "MCLK"}, {"RX_I2S_CLK", NULL, "CDC_CONN"}, /* RX1 PATH.. */ {"PDM_RX1", NULL, "RX1 INT"}, {"RX1 INT", NULL, "RX1 MIX1"}, {"RX1 MIX1", NULL, "RX1 MIX1 INP1"}, {"RX1 MIX1", NULL, "RX1 MIX1 INP2"}, {"RX1 MIX1", NULL, "RX1 MIX1 INP3"}, {"RX1 MIX1 INP1", "RX1", "I2S RX1"}, {"RX1 MIX1 INP1", "RX2", "I2S RX2"}, {"RX1 MIX1 INP1", "RX3", "I2S RX3"}, {"RX1 MIX1 INP1", "IIR1", "IIR1"}, {"RX1 MIX1 INP1", "IIR2", "IIR2"}, {"RX1 MIX1 INP2", "RX1", "I2S RX1"}, {"RX1 MIX1 INP2", "RX2", "I2S RX2"}, {"RX1 MIX1 INP2", "RX3", "I2S RX3"}, {"RX1 MIX1 INP2", "IIR1", "IIR1"}, {"RX1 MIX1 INP2", "IIR2", "IIR2"}, {"RX1 MIX1 INP3", "RX1", "I2S RX1"}, {"RX1 MIX1 INP3", "RX2", "I2S RX2"}, {"RX1 MIX1 INP3", "RX3", "I2S RX3"}, /* RX2 PATH */ {"PDM_RX2", NULL, "RX2 INT"}, {"RX2 INT", NULL, "RX2 MIX1"}, {"RX2 MIX1", NULL, "RX2 MIX1 INP1"}, {"RX2 MIX1", NULL, "RX2 MIX1 INP2"}, {"RX2 MIX1", NULL, "RX2 MIX1 INP3"}, {"RX2 MIX1 INP1", "RX1", "I2S RX1"}, {"RX2 MIX1 INP1", "RX2", "I2S RX2"}, {"RX2 MIX1 INP1", "RX3", "I2S RX3"}, {"RX2 MIX1 INP1", "IIR1", "IIR1"}, {"RX2 MIX1 INP1", "IIR2", "IIR2"}, {"RX2 MIX1 INP2", "RX1", "I2S RX1"}, {"RX2 MIX1 INP2", "RX2", "I2S RX2"}, {"RX2 MIX1 INP2", "RX3", "I2S RX3"}, {"RX2 MIX1 INP1", "IIR1", "IIR1"}, {"RX2 MIX1 INP1", "IIR2", "IIR2"}, {"RX2 MIX1 INP3", "RX1", "I2S RX1"}, {"RX2 MIX1 INP3", "RX2", "I2S RX2"}, {"RX2 MIX1 INP3", "RX3", "I2S RX3"}, /* RX3 PATH */ {"PDM_RX3", NULL, "RX3 INT"}, {"RX3 INT", NULL, "RX3 MIX1"}, {"RX3 MIX1", NULL, "RX3 MIX1 INP1"}, {"RX3 MIX1", NULL, "RX3 MIX1 INP2"}, {"RX3 MIX1", NULL, "RX3 MIX1 INP3"}, {"RX3 MIX1 INP1", "RX1", "I2S RX1"}, {"RX3 MIX1 INP1", "RX2", "I2S RX2"}, {"RX3 MIX1 INP1", "RX3", "I2S RX3"}, {"RX3 MIX1 INP1", "IIR1", "IIR1"}, {"RX3 MIX1 INP1", "IIR2", "IIR2"}, {"RX3 MIX1 INP2", "RX1", "I2S RX1"}, {"RX3 MIX1 INP2", "RX2", "I2S RX2"}, {"RX3 MIX1 INP2", "RX3", "I2S RX3"}, {"RX3 MIX1 INP2", "IIR1", "IIR1"}, {"RX3 MIX1 INP2", "IIR2", "IIR2"}, {"RX1 MIX2 INP1", "IIR1", "IIR1"}, {"RX2 MIX2 INP1", "IIR1", "IIR1"}, {"RX1 MIX2 INP1", "IIR2", "IIR2"}, {"RX2 MIX2 INP1", "IIR2", "IIR2"}, {"IIR1", NULL, "IIR1 INP1 MUX"}, {"IIR1 INP1 MUX", "DEC1", "DEC1 MUX"}, {"IIR1 INP1 MUX", "DEC2", "DEC2 MUX"}, {"IIR2", NULL, "IIR2 INP1 MUX"}, {"IIR2 INP1 MUX", "DEC1", "DEC1 MUX"}, {"IIR2 INP1 MUX", "DEC2", "DEC2 MUX"}, {"RX3 MIX1 INP3", "RX1", "I2S RX1"}, {"RX3 MIX1 INP3", "RX2", "I2S RX2"}, {"RX3 MIX1 INP3", "RX3", "I2S RX3"}, }; static int msm8916_wcd_digital_startup(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct snd_soc_component *component = dai->component; struct msm8916_wcd_digital_priv *msm8916_wcd; unsigned long mclk_rate; msm8916_wcd = snd_soc_component_get_drvdata(component); snd_soc_component_update_bits(component, LPASS_CDC_CLK_MCLK_CTL, MCLK_CTL_MCLK_EN_MASK, MCLK_CTL_MCLK_EN_ENABLE); snd_soc_component_update_bits(component, LPASS_CDC_CLK_PDM_CTL, LPASS_CDC_CLK_PDM_CTL_PDM_CLK_SEL_MASK, LPASS_CDC_CLK_PDM_CTL_PDM_CLK_SEL_FB); mclk_rate = clk_get_rate(msm8916_wcd->mclk); switch (mclk_rate) { case 12288000: snd_soc_component_update_bits(component, LPASS_CDC_TOP_CTL, TOP_CTL_DIG_MCLK_FREQ_MASK, TOP_CTL_DIG_MCLK_FREQ_F_12_288MHZ); break; case 9600000: snd_soc_component_update_bits(component, LPASS_CDC_TOP_CTL, TOP_CTL_DIG_MCLK_FREQ_MASK, TOP_CTL_DIG_MCLK_FREQ_F_9_6MHZ); break; default: dev_err(component->dev, "Invalid mclk rate %ld\n", mclk_rate); break; } return 0; } static void msm8916_wcd_digital_shutdown(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { snd_soc_component_update_bits(dai->component, LPASS_CDC_CLK_PDM_CTL, LPASS_CDC_CLK_PDM_CTL_PDM_CLK_SEL_MASK, 0); } static const struct snd_soc_dai_ops msm8916_wcd_digital_dai_ops = { .startup = msm8916_wcd_digital_startup, .shutdown = msm8916_wcd_digital_shutdown, .hw_params = msm8916_wcd_digital_hw_params, }; static struct snd_soc_dai_driver msm8916_wcd_digital_dai[] = { [0] = { .name = "msm8916_wcd_digital_i2s_rx1", .id = 0, .playback = { .stream_name = "AIF1 Playback", .rates = MSM8916_WCD_DIGITAL_RATES, .formats = MSM8916_WCD_DIGITAL_FORMATS, .channels_min = 1, .channels_max = 3, }, .ops = &msm8916_wcd_digital_dai_ops, }, [1] = { .name = "msm8916_wcd_digital_i2s_tx1", .id = 1, .capture = { .stream_name = "AIF1 Capture", .rates = MSM8916_WCD_DIGITAL_RATES, .formats = MSM8916_WCD_DIGITAL_FORMATS, .channels_min = 1, .channels_max = 4, }, .ops = &msm8916_wcd_digital_dai_ops, }, }; static const struct snd_soc_component_driver msm8916_wcd_digital = { .probe = msm8916_wcd_digital_component_probe, .set_sysclk = msm8916_wcd_digital_component_set_sysclk, .controls = msm8916_wcd_digital_snd_controls, .num_controls = ARRAY_SIZE(msm8916_wcd_digital_snd_controls), .dapm_widgets = msm8916_wcd_digital_dapm_widgets, .num_dapm_widgets = ARRAY_SIZE(msm8916_wcd_digital_dapm_widgets), .dapm_routes = msm8916_wcd_digital_audio_map, .num_dapm_routes = ARRAY_SIZE(msm8916_wcd_digital_audio_map), .idle_bias_on = 1, .use_pmdown_time = 1, .endianness = 1, }; static const struct regmap_config msm8916_codec_regmap_config = { .reg_bits = 32, .reg_stride = 4, .val_bits = 32, .max_register = LPASS_CDC_TX2_DMIC_CTL, .cache_type = REGCACHE_FLAT, }; static int msm8916_wcd_digital_probe(struct platform_device *pdev) { struct msm8916_wcd_digital_priv *priv; struct device *dev = &pdev->dev; void __iomem *base; struct regmap *digital_map; int ret; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(base)) return PTR_ERR(base); digital_map = devm_regmap_init_mmio(&pdev->dev, base, &msm8916_codec_regmap_config); if (IS_ERR(digital_map)) return PTR_ERR(digital_map); ret = msm8916_wcd_digital_get_clks(pdev, priv); if (ret < 0) return ret; ret = clk_prepare_enable(priv->ahbclk); if (ret < 0) { dev_err(dev, "failed to enable ahbclk %d\n", ret); return ret; } ret = clk_prepare_enable(priv->mclk); if (ret < 0) { dev_err(dev, "failed to enable mclk %d\n", ret); goto err_clk; } dev_set_drvdata(dev, priv); ret = devm_snd_soc_register_component(dev, &msm8916_wcd_digital, msm8916_wcd_digital_dai, ARRAY_SIZE(msm8916_wcd_digital_dai)); if (ret) goto err_mclk; return 0; err_mclk: clk_disable_unprepare(priv->mclk); err_clk: clk_disable_unprepare(priv->ahbclk); return ret; } static void msm8916_wcd_digital_remove(struct platform_device *pdev) { struct msm8916_wcd_digital_priv *priv = dev_get_drvdata(&pdev->dev); clk_disable_unprepare(priv->mclk); clk_disable_unprepare(priv->ahbclk); } static const struct of_device_id msm8916_wcd_digital_match_table[] = { { .compatible = "qcom,msm8916-wcd-digital-codec" }, { } }; MODULE_DEVICE_TABLE(of, msm8916_wcd_digital_match_table); static struct platform_driver msm8916_wcd_digital_driver = { .driver = { .name = "msm8916-wcd-digital-codec", .of_match_table = msm8916_wcd_digital_match_table, }, .probe = msm8916_wcd_digital_probe, .remove_new = msm8916_wcd_digital_remove, }; module_platform_driver(msm8916_wcd_digital_driver); MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org>"); MODULE_DESCRIPTION("MSM8916 WCD Digital Codec driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1