Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
John Hsu | 8731 | 92.62% | 9 | 37.50% |
Hans de Goede | 339 | 3.60% | 3 | 12.50% |
Takashi Iwai | 159 | 1.69% | 2 | 8.33% |
Kuninori Morimoto | 102 | 1.08% | 1 | 4.17% |
SJLIN0 | 55 | 0.58% | 1 | 4.17% |
Edson Juliano Drosdeck | 23 | 0.24% | 1 | 4.17% |
Mark Brown | 10 | 0.11% | 1 | 4.17% |
Thomas Gleixner | 2 | 0.02% | 1 | 4.17% |
Colin Ian King | 2 | 0.02% | 1 | 4.17% |
Gustavo A. R. Silva | 1 | 0.01% | 1 | 4.17% |
Uwe Kleine-König | 1 | 0.01% | 1 | 4.17% |
Bhumika Goyal | 1 | 0.01% | 1 | 4.17% |
Pierre-Louis Bossart | 1 | 0.01% | 1 | 4.17% |
Total | 9427 | 24 |
// SPDX-License-Identifier: GPL-2.0-only /* * NAU88L24 ALSA SoC audio driver * * Copyright 2016 Nuvoton Technology Corp. * Author: John Hsu <KCHSU0@nuvoton.com> */ #include <linux/module.h> #include <linux/delay.h> #include <linux/dmi.h> #include <linux/init.h> #include <linux/i2c.h> #include <linux/regmap.h> #include <linux/slab.h> #include <linux/clk.h> #include <linux/acpi.h> #include <linux/math64.h> #include <linux/semaphore.h> #include <sound/initval.h> #include <sound/tlv.h> #include <sound/core.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/soc.h> #include <sound/jack.h> #include "nau8824.h" #define NAU8824_JD_ACTIVE_HIGH BIT(0) #define NAU8824_MONO_SPEAKER BIT(1) static int nau8824_quirk; static int quirk_override = -1; module_param_named(quirk, quirk_override, uint, 0444); MODULE_PARM_DESC(quirk, "Board-specific quirk override"); static int nau8824_config_sysclk(struct nau8824 *nau8824, int clk_id, unsigned int freq); static bool nau8824_is_jack_inserted(struct nau8824 *nau8824); /* the ADC threshold of headset */ #define DMIC_CLK 3072000 /* the ADC threshold of headset */ #define HEADSET_SARADC_THD 0x80 /* the parameter threshold of FLL */ #define NAU_FREF_MAX 13500000 #define NAU_FVCO_MAX 100000000 #define NAU_FVCO_MIN 90000000 /* scaling for mclk from sysclk_src output */ static const struct nau8824_fll_attr mclk_src_scaling[] = { { 1, 0x0 }, { 2, 0x2 }, { 4, 0x3 }, { 8, 0x4 }, { 16, 0x5 }, { 32, 0x6 }, { 3, 0x7 }, { 6, 0xa }, { 12, 0xb }, { 24, 0xc }, }; /* ratio for input clk freq */ static const struct nau8824_fll_attr fll_ratio[] = { { 512000, 0x01 }, { 256000, 0x02 }, { 128000, 0x04 }, { 64000, 0x08 }, { 32000, 0x10 }, { 8000, 0x20 }, { 4000, 0x40 }, }; static const struct nau8824_fll_attr fll_pre_scalar[] = { { 1, 0x0 }, { 2, 0x1 }, { 4, 0x2 }, { 8, 0x3 }, }; /* the maximum frequency of CLK_ADC and CLK_DAC */ #define CLK_DA_AD_MAX 6144000 /* over sampling rate */ static const struct nau8824_osr_attr osr_dac_sel[] = { { 64, 2 }, /* OSR 64, SRC 1/4 */ { 256, 0 }, /* OSR 256, SRC 1 */ { 128, 1 }, /* OSR 128, SRC 1/2 */ { 0, 0 }, { 32, 3 }, /* OSR 32, SRC 1/8 */ }; static const struct nau8824_osr_attr osr_adc_sel[] = { { 32, 3 }, /* OSR 32, SRC 1/8 */ { 64, 2 }, /* OSR 64, SRC 1/4 */ { 128, 1 }, /* OSR 128, SRC 1/2 */ { 256, 0 }, /* OSR 256, SRC 1 */ }; static const struct reg_default nau8824_reg_defaults[] = { { NAU8824_REG_ENA_CTRL, 0x0000 }, { NAU8824_REG_CLK_GATING_ENA, 0x0000 }, { NAU8824_REG_CLK_DIVIDER, 0x0000 }, { NAU8824_REG_FLL1, 0x0000 }, { NAU8824_REG_FLL2, 0x3126 }, { NAU8824_REG_FLL3, 0x0008 }, { NAU8824_REG_FLL4, 0x0010 }, { NAU8824_REG_FLL5, 0xC000 }, { NAU8824_REG_FLL6, 0x6000 }, { NAU8824_REG_FLL_VCO_RSV, 0xF13C }, { NAU8824_REG_JACK_DET_CTRL, 0x0000 }, { NAU8824_REG_INTERRUPT_SETTING_1, 0x0000 }, { NAU8824_REG_IRQ, 0x0000 }, { NAU8824_REG_CLEAR_INT_REG, 0x0000 }, { NAU8824_REG_INTERRUPT_SETTING, 0x1000 }, { NAU8824_REG_SAR_ADC, 0x0015 }, { NAU8824_REG_VDET_COEFFICIENT, 0x0110 }, { NAU8824_REG_VDET_THRESHOLD_1, 0x0000 }, { NAU8824_REG_VDET_THRESHOLD_2, 0x0000 }, { NAU8824_REG_VDET_THRESHOLD_3, 0x0000 }, { NAU8824_REG_VDET_THRESHOLD_4, 0x0000 }, { NAU8824_REG_GPIO_SEL, 0x0000 }, { NAU8824_REG_PORT0_I2S_PCM_CTRL_1, 0x000B }, { NAU8824_REG_PORT0_I2S_PCM_CTRL_2, 0x0010 }, { NAU8824_REG_PORT0_LEFT_TIME_SLOT, 0x0000 }, { NAU8824_REG_PORT0_RIGHT_TIME_SLOT, 0x0000 }, { NAU8824_REG_TDM_CTRL, 0x0000 }, { NAU8824_REG_ADC_HPF_FILTER, 0x0000 }, { NAU8824_REG_ADC_FILTER_CTRL, 0x0002 }, { NAU8824_REG_DAC_FILTER_CTRL_1, 0x0000 }, { NAU8824_REG_DAC_FILTER_CTRL_2, 0x0000 }, { NAU8824_REG_NOTCH_FILTER_1, 0x0000 }, { NAU8824_REG_NOTCH_FILTER_2, 0x0000 }, { NAU8824_REG_EQ1_LOW, 0x112C }, { NAU8824_REG_EQ2_EQ3, 0x2C2C }, { NAU8824_REG_EQ4_EQ5, 0x2C2C }, { NAU8824_REG_ADC_CH0_DGAIN_CTRL, 0x0100 }, { NAU8824_REG_ADC_CH1_DGAIN_CTRL, 0x0100 }, { NAU8824_REG_ADC_CH2_DGAIN_CTRL, 0x0100 }, { NAU8824_REG_ADC_CH3_DGAIN_CTRL, 0x0100 }, { NAU8824_REG_DAC_MUTE_CTRL, 0x0000 }, { NAU8824_REG_DAC_CH0_DGAIN_CTRL, 0x0100 }, { NAU8824_REG_DAC_CH1_DGAIN_CTRL, 0x0100 }, { NAU8824_REG_ADC_TO_DAC_ST, 0x0000 }, { NAU8824_REG_DRC_KNEE_IP12_ADC_CH01, 0x1486 }, { NAU8824_REG_DRC_KNEE_IP34_ADC_CH01, 0x0F12 }, { NAU8824_REG_DRC_SLOPE_ADC_CH01, 0x25FF }, { NAU8824_REG_DRC_ATKDCY_ADC_CH01, 0x3457 }, { NAU8824_REG_DRC_KNEE_IP12_ADC_CH23, 0x1486 }, { NAU8824_REG_DRC_KNEE_IP34_ADC_CH23, 0x0F12 }, { NAU8824_REG_DRC_SLOPE_ADC_CH23, 0x25FF }, { NAU8824_REG_DRC_ATKDCY_ADC_CH23, 0x3457 }, { NAU8824_REG_DRC_GAINL_ADC0, 0x0200 }, { NAU8824_REG_DRC_GAINL_ADC1, 0x0200 }, { NAU8824_REG_DRC_GAINL_ADC2, 0x0200 }, { NAU8824_REG_DRC_GAINL_ADC3, 0x0200 }, { NAU8824_REG_DRC_KNEE_IP12_DAC, 0x1486 }, { NAU8824_REG_DRC_KNEE_IP34_DAC, 0x0F12 }, { NAU8824_REG_DRC_SLOPE_DAC, 0x25F9 }, { NAU8824_REG_DRC_ATKDCY_DAC, 0x3457 }, { NAU8824_REG_DRC_GAIN_DAC_CH0, 0x0200 }, { NAU8824_REG_DRC_GAIN_DAC_CH1, 0x0200 }, { NAU8824_REG_MODE, 0x0000 }, { NAU8824_REG_MODE1, 0x0000 }, { NAU8824_REG_MODE2, 0x0000 }, { NAU8824_REG_CLASSG, 0x0000 }, { NAU8824_REG_OTP_EFUSE, 0x0000 }, { NAU8824_REG_OTPDOUT_1, 0x0000 }, { NAU8824_REG_OTPDOUT_2, 0x0000 }, { NAU8824_REG_MISC_CTRL, 0x0000 }, { NAU8824_REG_I2C_TIMEOUT, 0xEFFF }, { NAU8824_REG_TEST_MODE, 0x0000 }, { NAU8824_REG_I2C_DEVICE_ID, 0x1AF1 }, { NAU8824_REG_SAR_ADC_DATA_OUT, 0x00FF }, { NAU8824_REG_BIAS_ADJ, 0x0000 }, { NAU8824_REG_PGA_GAIN, 0x0000 }, { NAU8824_REG_TRIM_SETTINGS, 0x0000 }, { NAU8824_REG_ANALOG_CONTROL_1, 0x0000 }, { NAU8824_REG_ANALOG_CONTROL_2, 0x0000 }, { NAU8824_REG_ENABLE_LO, 0x0000 }, { NAU8824_REG_GAIN_LO, 0x0000 }, { NAU8824_REG_CLASSD_GAIN_1, 0x0000 }, { NAU8824_REG_CLASSD_GAIN_2, 0x0000 }, { NAU8824_REG_ANALOG_ADC_1, 0x0011 }, { NAU8824_REG_ANALOG_ADC_2, 0x0020 }, { NAU8824_REG_RDAC, 0x0008 }, { NAU8824_REG_MIC_BIAS, 0x0006 }, { NAU8824_REG_HS_VOLUME_CONTROL, 0x0000 }, { NAU8824_REG_BOOST, 0x0000 }, { NAU8824_REG_FEPGA, 0x0000 }, { NAU8824_REG_FEPGA_II, 0x0000 }, { NAU8824_REG_FEPGA_SE, 0x0000 }, { NAU8824_REG_FEPGA_ATTENUATION, 0x0000 }, { NAU8824_REG_ATT_PORT0, 0x0000 }, { NAU8824_REG_ATT_PORT1, 0x0000 }, { NAU8824_REG_POWER_UP_CONTROL, 0x0000 }, { NAU8824_REG_CHARGE_PUMP_CONTROL, 0x0300 }, { NAU8824_REG_CHARGE_PUMP_INPUT, 0x0013 }, }; static int nau8824_sema_acquire(struct nau8824 *nau8824, long timeout) { int ret; if (timeout) { ret = down_timeout(&nau8824->jd_sem, timeout); if (ret < 0) dev_warn(nau8824->dev, "Acquire semaphore timeout\n"); } else { ret = down_interruptible(&nau8824->jd_sem); if (ret < 0) dev_warn(nau8824->dev, "Acquire semaphore fail\n"); } return ret; } static inline void nau8824_sema_release(struct nau8824 *nau8824) { up(&nau8824->jd_sem); } static bool nau8824_readable_reg(struct device *dev, unsigned int reg) { switch (reg) { case NAU8824_REG_ENA_CTRL ... NAU8824_REG_FLL_VCO_RSV: case NAU8824_REG_JACK_DET_CTRL: case NAU8824_REG_INTERRUPT_SETTING_1: case NAU8824_REG_IRQ: case NAU8824_REG_CLEAR_INT_REG ... NAU8824_REG_VDET_THRESHOLD_4: case NAU8824_REG_GPIO_SEL: case NAU8824_REG_PORT0_I2S_PCM_CTRL_1 ... NAU8824_REG_TDM_CTRL: case NAU8824_REG_ADC_HPF_FILTER ... NAU8824_REG_EQ4_EQ5: case NAU8824_REG_ADC_CH0_DGAIN_CTRL ... NAU8824_REG_ADC_TO_DAC_ST: case NAU8824_REG_DRC_KNEE_IP12_ADC_CH01 ... NAU8824_REG_DRC_GAINL_ADC3: case NAU8824_REG_DRC_KNEE_IP12_DAC ... NAU8824_REG_DRC_GAIN_DAC_CH1: case NAU8824_REG_CLASSG ... NAU8824_REG_OTP_EFUSE: case NAU8824_REG_OTPDOUT_1 ... NAU8824_REG_OTPDOUT_2: case NAU8824_REG_I2C_TIMEOUT: case NAU8824_REG_I2C_DEVICE_ID ... NAU8824_REG_SAR_ADC_DATA_OUT: case NAU8824_REG_BIAS_ADJ ... NAU8824_REG_CLASSD_GAIN_2: case NAU8824_REG_ANALOG_ADC_1 ... NAU8824_REG_ATT_PORT1: case NAU8824_REG_POWER_UP_CONTROL ... NAU8824_REG_CHARGE_PUMP_INPUT: return true; default: return false; } } static bool nau8824_writeable_reg(struct device *dev, unsigned int reg) { switch (reg) { case NAU8824_REG_RESET ... NAU8824_REG_FLL_VCO_RSV: case NAU8824_REG_JACK_DET_CTRL: case NAU8824_REG_INTERRUPT_SETTING_1: case NAU8824_REG_CLEAR_INT_REG ... NAU8824_REG_VDET_THRESHOLD_4: case NAU8824_REG_GPIO_SEL: case NAU8824_REG_PORT0_I2S_PCM_CTRL_1 ... NAU8824_REG_TDM_CTRL: case NAU8824_REG_ADC_HPF_FILTER ... NAU8824_REG_EQ4_EQ5: case NAU8824_REG_ADC_CH0_DGAIN_CTRL ... NAU8824_REG_ADC_TO_DAC_ST: case NAU8824_REG_DRC_KNEE_IP12_ADC_CH01: case NAU8824_REG_DRC_KNEE_IP34_ADC_CH01: case NAU8824_REG_DRC_SLOPE_ADC_CH01: case NAU8824_REG_DRC_ATKDCY_ADC_CH01: case NAU8824_REG_DRC_KNEE_IP12_ADC_CH23: case NAU8824_REG_DRC_KNEE_IP34_ADC_CH23: case NAU8824_REG_DRC_SLOPE_ADC_CH23: case NAU8824_REG_DRC_ATKDCY_ADC_CH23: case NAU8824_REG_DRC_KNEE_IP12_DAC ... NAU8824_REG_DRC_ATKDCY_DAC: case NAU8824_REG_CLASSG ... NAU8824_REG_OTP_EFUSE: case NAU8824_REG_I2C_TIMEOUT: case NAU8824_REG_BIAS_ADJ ... NAU8824_REG_CLASSD_GAIN_2: case NAU8824_REG_ANALOG_ADC_1 ... NAU8824_REG_ATT_PORT1: case NAU8824_REG_POWER_UP_CONTROL ... NAU8824_REG_CHARGE_PUMP_CONTROL: return true; default: return false; } } static bool nau8824_volatile_reg(struct device *dev, unsigned int reg) { switch (reg) { case NAU8824_REG_RESET: case NAU8824_REG_IRQ ... NAU8824_REG_CLEAR_INT_REG: case NAU8824_REG_DRC_GAINL_ADC0 ... NAU8824_REG_DRC_GAINL_ADC3: case NAU8824_REG_DRC_GAIN_DAC_CH0 ... NAU8824_REG_DRC_GAIN_DAC_CH1: case NAU8824_REG_OTPDOUT_1 ... NAU8824_REG_OTPDOUT_2: case NAU8824_REG_I2C_DEVICE_ID ... NAU8824_REG_SAR_ADC_DATA_OUT: case NAU8824_REG_CHARGE_PUMP_INPUT: return true; default: return false; } } static const char * const nau8824_companding[] = { "Off", "NC", "u-law", "A-law" }; static const struct soc_enum nau8824_companding_adc_enum = SOC_ENUM_SINGLE(NAU8824_REG_PORT0_I2S_PCM_CTRL_1, 12, ARRAY_SIZE(nau8824_companding), nau8824_companding); static const struct soc_enum nau8824_companding_dac_enum = SOC_ENUM_SINGLE(NAU8824_REG_PORT0_I2S_PCM_CTRL_1, 14, ARRAY_SIZE(nau8824_companding), nau8824_companding); static const char * const nau8824_adc_decimation[] = { "32", "64", "128", "256" }; static const struct soc_enum nau8824_adc_decimation_enum = SOC_ENUM_SINGLE(NAU8824_REG_ADC_FILTER_CTRL, 0, ARRAY_SIZE(nau8824_adc_decimation), nau8824_adc_decimation); static const char * const nau8824_dac_oversampl[] = { "64", "256", "128", "", "32" }; static const struct soc_enum nau8824_dac_oversampl_enum = SOC_ENUM_SINGLE(NAU8824_REG_DAC_FILTER_CTRL_1, 0, ARRAY_SIZE(nau8824_dac_oversampl), nau8824_dac_oversampl); static const char * const nau8824_input_channel[] = { "Input CH0", "Input CH1", "Input CH2", "Input CH3" }; static const struct soc_enum nau8824_adc_ch0_enum = SOC_ENUM_SINGLE(NAU8824_REG_ADC_CH0_DGAIN_CTRL, 9, ARRAY_SIZE(nau8824_input_channel), nau8824_input_channel); static const struct soc_enum nau8824_adc_ch1_enum = SOC_ENUM_SINGLE(NAU8824_REG_ADC_CH1_DGAIN_CTRL, 9, ARRAY_SIZE(nau8824_input_channel), nau8824_input_channel); static const struct soc_enum nau8824_adc_ch2_enum = SOC_ENUM_SINGLE(NAU8824_REG_ADC_CH2_DGAIN_CTRL, 9, ARRAY_SIZE(nau8824_input_channel), nau8824_input_channel); static const struct soc_enum nau8824_adc_ch3_enum = SOC_ENUM_SINGLE(NAU8824_REG_ADC_CH3_DGAIN_CTRL, 9, ARRAY_SIZE(nau8824_input_channel), nau8824_input_channel); static const char * const nau8824_tdm_slot[] = { "Slot 0", "Slot 1", "Slot 2", "Slot 3" }; static const struct soc_enum nau8824_dac_left_sel_enum = SOC_ENUM_SINGLE(NAU8824_REG_TDM_CTRL, 6, ARRAY_SIZE(nau8824_tdm_slot), nau8824_tdm_slot); static const struct soc_enum nau8824_dac_right_sel_enum = SOC_ENUM_SINGLE(NAU8824_REG_TDM_CTRL, 4, ARRAY_SIZE(nau8824_tdm_slot), nau8824_tdm_slot); static const DECLARE_TLV_DB_MINMAX_MUTE(spk_vol_tlv, 0, 2400); static const DECLARE_TLV_DB_MINMAX(hp_vol_tlv, -3000, 0); static const DECLARE_TLV_DB_SCALE(mic_vol_tlv, 0, 200, 0); static const DECLARE_TLV_DB_SCALE(dmic_vol_tlv, -12800, 50, 0); static const struct snd_kcontrol_new nau8824_snd_controls[] = { SOC_ENUM("ADC Companding", nau8824_companding_adc_enum), SOC_ENUM("DAC Companding", nau8824_companding_dac_enum), SOC_ENUM("ADC Decimation Rate", nau8824_adc_decimation_enum), SOC_ENUM("DAC Oversampling Rate", nau8824_dac_oversampl_enum), SOC_SINGLE_TLV("Speaker Right DACR Volume", NAU8824_REG_CLASSD_GAIN_1, 8, 0x1f, 0, spk_vol_tlv), SOC_SINGLE_TLV("Speaker Left DACL Volume", NAU8824_REG_CLASSD_GAIN_2, 0, 0x1f, 0, spk_vol_tlv), SOC_SINGLE_TLV("Speaker Left DACR Volume", NAU8824_REG_CLASSD_GAIN_1, 0, 0x1f, 0, spk_vol_tlv), SOC_SINGLE_TLV("Speaker Right DACL Volume", NAU8824_REG_CLASSD_GAIN_2, 8, 0x1f, 0, spk_vol_tlv), SOC_SINGLE_TLV("Headphone Right DACR Volume", NAU8824_REG_ATT_PORT0, 8, 0x1f, 0, hp_vol_tlv), SOC_SINGLE_TLV("Headphone Left DACL Volume", NAU8824_REG_ATT_PORT0, 0, 0x1f, 0, hp_vol_tlv), SOC_SINGLE_TLV("Headphone Right DACL Volume", NAU8824_REG_ATT_PORT1, 8, 0x1f, 0, hp_vol_tlv), SOC_SINGLE_TLV("Headphone Left DACR Volume", NAU8824_REG_ATT_PORT1, 0, 0x1f, 0, hp_vol_tlv), SOC_SINGLE_TLV("MIC1 Volume", NAU8824_REG_FEPGA_II, NAU8824_FEPGA_GAINL_SFT, 0x12, 0, mic_vol_tlv), SOC_SINGLE_TLV("MIC2 Volume", NAU8824_REG_FEPGA_II, NAU8824_FEPGA_GAINR_SFT, 0x12, 0, mic_vol_tlv), SOC_SINGLE_TLV("DMIC1 Volume", NAU8824_REG_ADC_CH0_DGAIN_CTRL, 0, 0x164, 0, dmic_vol_tlv), SOC_SINGLE_TLV("DMIC2 Volume", NAU8824_REG_ADC_CH1_DGAIN_CTRL, 0, 0x164, 0, dmic_vol_tlv), SOC_SINGLE_TLV("DMIC3 Volume", NAU8824_REG_ADC_CH2_DGAIN_CTRL, 0, 0x164, 0, dmic_vol_tlv), SOC_SINGLE_TLV("DMIC4 Volume", NAU8824_REG_ADC_CH3_DGAIN_CTRL, 0, 0x164, 0, dmic_vol_tlv), SOC_ENUM("ADC CH0 Select", nau8824_adc_ch0_enum), SOC_ENUM("ADC CH1 Select", nau8824_adc_ch1_enum), SOC_ENUM("ADC CH2 Select", nau8824_adc_ch2_enum), SOC_ENUM("ADC CH3 Select", nau8824_adc_ch3_enum), SOC_SINGLE("ADC CH0 TX Switch", NAU8824_REG_TDM_CTRL, 0, 1, 0), SOC_SINGLE("ADC CH1 TX Switch", NAU8824_REG_TDM_CTRL, 1, 1, 0), SOC_SINGLE("ADC CH2 TX Switch", NAU8824_REG_TDM_CTRL, 2, 1, 0), SOC_SINGLE("ADC CH3 TX Switch", NAU8824_REG_TDM_CTRL, 3, 1, 0), SOC_ENUM("DACL Channel Source", nau8824_dac_left_sel_enum), SOC_ENUM("DACR Channel Source", nau8824_dac_right_sel_enum), SOC_SINGLE("DACL LR Mix", NAU8824_REG_DAC_MUTE_CTRL, 0, 1, 0), SOC_SINGLE("DACR LR Mix", NAU8824_REG_DAC_MUTE_CTRL, 1, 1, 0), SOC_SINGLE("THD for key media", NAU8824_REG_VDET_THRESHOLD_1, 8, 0xff, 0), SOC_SINGLE("THD for key voice command", NAU8824_REG_VDET_THRESHOLD_1, 0, 0xff, 0), SOC_SINGLE("THD for key volume up", NAU8824_REG_VDET_THRESHOLD_2, 8, 0xff, 0), SOC_SINGLE("THD for key volume down", NAU8824_REG_VDET_THRESHOLD_2, 0, 0xff, 0), }; static int nau8824_output_dac_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); struct nau8824 *nau8824 = snd_soc_component_get_drvdata(component); switch (event) { case SND_SOC_DAPM_PRE_PMU: /* Disables the TESTDAC to let DAC signal pass through. */ regmap_update_bits(nau8824->regmap, NAU8824_REG_ENABLE_LO, NAU8824_TEST_DAC_EN, 0); break; case SND_SOC_DAPM_POST_PMD: regmap_update_bits(nau8824->regmap, NAU8824_REG_ENABLE_LO, NAU8824_TEST_DAC_EN, NAU8824_TEST_DAC_EN); break; default: return -EINVAL; } return 0; } static int nau8824_spk_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); struct nau8824 *nau8824 = snd_soc_component_get_drvdata(component); switch (event) { case SND_SOC_DAPM_PRE_PMU: regmap_update_bits(nau8824->regmap, NAU8824_REG_ANALOG_CONTROL_2, NAU8824_CLASSD_CLAMP_DIS, NAU8824_CLASSD_CLAMP_DIS); break; case SND_SOC_DAPM_POST_PMD: regmap_update_bits(nau8824->regmap, NAU8824_REG_ANALOG_CONTROL_2, NAU8824_CLASSD_CLAMP_DIS, 0); break; default: return -EINVAL; } return 0; } static int nau8824_pump_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); struct nau8824 *nau8824 = snd_soc_component_get_drvdata(component); switch (event) { case SND_SOC_DAPM_POST_PMU: /* Prevent startup click by letting charge pump to ramp up */ msleep(10); regmap_update_bits(nau8824->regmap, NAU8824_REG_CHARGE_PUMP_CONTROL, NAU8824_JAMNODCLOW, NAU8824_JAMNODCLOW); break; case SND_SOC_DAPM_PRE_PMD: regmap_update_bits(nau8824->regmap, NAU8824_REG_CHARGE_PUMP_CONTROL, NAU8824_JAMNODCLOW, 0); break; default: return -EINVAL; } return 0; } static int system_clock_control(struct snd_soc_dapm_widget *w, struct snd_kcontrol *k, int event) { struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); struct nau8824 *nau8824 = snd_soc_component_get_drvdata(component); struct regmap *regmap = nau8824->regmap; unsigned int value; bool clk_fll, error; if (SND_SOC_DAPM_EVENT_OFF(event)) { dev_dbg(nau8824->dev, "system clock control : POWER OFF\n"); /* Set clock source to disable or internal clock before the * playback or capture end. Codec needs clock for Jack * detection and button press if jack inserted; otherwise, * the clock should be closed. */ if (nau8824_is_jack_inserted(nau8824)) { nau8824_config_sysclk(nau8824, NAU8824_CLK_INTERNAL, 0); } else { nau8824_config_sysclk(nau8824, NAU8824_CLK_DIS, 0); } } else { dev_dbg(nau8824->dev, "system clock control : POWER ON\n"); /* Check the clock source setting is proper or not * no matter the source is from FLL or MCLK. */ regmap_read(regmap, NAU8824_REG_FLL1, &value); clk_fll = value & NAU8824_FLL_RATIO_MASK; /* It's error to use internal clock when playback */ regmap_read(regmap, NAU8824_REG_FLL6, &value); error = value & NAU8824_DCO_EN; if (!error) { /* Check error depending on source is FLL or MCLK. */ regmap_read(regmap, NAU8824_REG_CLK_DIVIDER, &value); if (clk_fll) error = !(value & NAU8824_CLK_SRC_VCO); else error = value & NAU8824_CLK_SRC_VCO; } /* Recover the clock source setting if error. */ if (error) { if (clk_fll) { regmap_update_bits(regmap, NAU8824_REG_FLL6, NAU8824_DCO_EN, 0); regmap_update_bits(regmap, NAU8824_REG_CLK_DIVIDER, NAU8824_CLK_SRC_MASK, NAU8824_CLK_SRC_VCO); } else { nau8824_config_sysclk(nau8824, NAU8824_CLK_MCLK, 0); } } } return 0; } static int dmic_clock_control(struct snd_soc_dapm_widget *w, struct snd_kcontrol *k, int event) { struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); struct nau8824 *nau8824 = snd_soc_component_get_drvdata(component); int src; /* The DMIC clock is gotten from system clock (256fs) divided by * DMIC_SRC (1, 2, 4, 8, 16, 32). The clock has to be equal or * less than 3.072 MHz. */ for (src = 0; src < 5; src++) { if ((0x1 << (8 - src)) * nau8824->fs <= DMIC_CLK) break; } dev_dbg(nau8824->dev, "dmic src %d for mclk %d\n", src, nau8824->fs * 256); regmap_update_bits(nau8824->regmap, NAU8824_REG_CLK_DIVIDER, NAU8824_CLK_DMIC_SRC_MASK, (src << NAU8824_CLK_DMIC_SRC_SFT)); return 0; } static const struct snd_kcontrol_new nau8824_adc_ch0_dmic = SOC_DAPM_SINGLE("Switch", NAU8824_REG_ENA_CTRL, NAU8824_ADC_CH0_DMIC_SFT, 1, 0); static const struct snd_kcontrol_new nau8824_adc_ch1_dmic = SOC_DAPM_SINGLE("Switch", NAU8824_REG_ENA_CTRL, NAU8824_ADC_CH1_DMIC_SFT, 1, 0); static const struct snd_kcontrol_new nau8824_adc_ch2_dmic = SOC_DAPM_SINGLE("Switch", NAU8824_REG_ENA_CTRL, NAU8824_ADC_CH2_DMIC_SFT, 1, 0); static const struct snd_kcontrol_new nau8824_adc_ch3_dmic = SOC_DAPM_SINGLE("Switch", NAU8824_REG_ENA_CTRL, NAU8824_ADC_CH3_DMIC_SFT, 1, 0); static const struct snd_kcontrol_new nau8824_adc_left_mixer[] = { SOC_DAPM_SINGLE("MIC Switch", NAU8824_REG_FEPGA, NAU8824_FEPGA_MODEL_MIC1_SFT, 1, 0), SOC_DAPM_SINGLE("HSMIC Switch", NAU8824_REG_FEPGA, NAU8824_FEPGA_MODEL_HSMIC_SFT, 1, 0), }; static const struct snd_kcontrol_new nau8824_adc_right_mixer[] = { SOC_DAPM_SINGLE("MIC Switch", NAU8824_REG_FEPGA, NAU8824_FEPGA_MODER_MIC2_SFT, 1, 0), SOC_DAPM_SINGLE("HSMIC Switch", NAU8824_REG_FEPGA, NAU8824_FEPGA_MODER_HSMIC_SFT, 1, 0), }; static const struct snd_kcontrol_new nau8824_hp_left_mixer[] = { SOC_DAPM_SINGLE("DAC Right Switch", NAU8824_REG_ENABLE_LO, NAU8824_DACR_HPL_EN_SFT, 1, 0), SOC_DAPM_SINGLE("DAC Left Switch", NAU8824_REG_ENABLE_LO, NAU8824_DACL_HPL_EN_SFT, 1, 0), }; static const struct snd_kcontrol_new nau8824_hp_right_mixer[] = { SOC_DAPM_SINGLE("DAC Left Switch", NAU8824_REG_ENABLE_LO, NAU8824_DACL_HPR_EN_SFT, 1, 0), SOC_DAPM_SINGLE("DAC Right Switch", NAU8824_REG_ENABLE_LO, NAU8824_DACR_HPR_EN_SFT, 1, 0), }; static const char * const nau8824_dac_src[] = { "DACL", "DACR" }; static SOC_ENUM_SINGLE_DECL( nau8824_dacl_enum, NAU8824_REG_DAC_CH0_DGAIN_CTRL, NAU8824_DAC_CH0_SEL_SFT, nau8824_dac_src); static SOC_ENUM_SINGLE_DECL( nau8824_dacr_enum, NAU8824_REG_DAC_CH1_DGAIN_CTRL, NAU8824_DAC_CH1_SEL_SFT, nau8824_dac_src); static const struct snd_kcontrol_new nau8824_dacl_mux = SOC_DAPM_ENUM("DACL Source", nau8824_dacl_enum); static const struct snd_kcontrol_new nau8824_dacr_mux = SOC_DAPM_ENUM("DACR Source", nau8824_dacr_enum); static const struct snd_soc_dapm_widget nau8824_dapm_widgets[] = { SND_SOC_DAPM_SUPPLY("System Clock", SND_SOC_NOPM, 0, 0, system_clock_control, SND_SOC_DAPM_POST_PMD | SND_SOC_DAPM_POST_PMU), SND_SOC_DAPM_INPUT("HSMIC1"), SND_SOC_DAPM_INPUT("HSMIC2"), SND_SOC_DAPM_INPUT("MIC1"), SND_SOC_DAPM_INPUT("MIC2"), SND_SOC_DAPM_INPUT("DMIC1"), SND_SOC_DAPM_INPUT("DMIC2"), SND_SOC_DAPM_INPUT("DMIC3"), SND_SOC_DAPM_INPUT("DMIC4"), SND_SOC_DAPM_SUPPLY("SAR", NAU8824_REG_SAR_ADC, NAU8824_SAR_ADC_EN_SFT, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("MICBIAS", NAU8824_REG_MIC_BIAS, NAU8824_MICBIAS_POWERUP_SFT, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("DMIC12 Power", NAU8824_REG_BIAS_ADJ, NAU8824_DMIC1_EN_SFT, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("DMIC34 Power", NAU8824_REG_BIAS_ADJ, NAU8824_DMIC2_EN_SFT, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("DMIC Clock", SND_SOC_NOPM, 0, 0, dmic_clock_control, SND_SOC_DAPM_POST_PMU), SND_SOC_DAPM_SWITCH("DMIC1 Enable", SND_SOC_NOPM, 0, 0, &nau8824_adc_ch0_dmic), SND_SOC_DAPM_SWITCH("DMIC2 Enable", SND_SOC_NOPM, 0, 0, &nau8824_adc_ch1_dmic), SND_SOC_DAPM_SWITCH("DMIC3 Enable", SND_SOC_NOPM, 0, 0, &nau8824_adc_ch2_dmic), SND_SOC_DAPM_SWITCH("DMIC4 Enable", SND_SOC_NOPM, 0, 0, &nau8824_adc_ch3_dmic), SND_SOC_DAPM_MIXER("Left ADC", NAU8824_REG_POWER_UP_CONTROL, 12, 0, nau8824_adc_left_mixer, ARRAY_SIZE(nau8824_adc_left_mixer)), SND_SOC_DAPM_MIXER("Right ADC", NAU8824_REG_POWER_UP_CONTROL, 13, 0, nau8824_adc_right_mixer, ARRAY_SIZE(nau8824_adc_right_mixer)), SND_SOC_DAPM_ADC("ADCL", NULL, NAU8824_REG_ANALOG_ADC_2, NAU8824_ADCL_EN_SFT, 0), SND_SOC_DAPM_ADC("ADCR", NULL, NAU8824_REG_ANALOG_ADC_2, NAU8824_ADCR_EN_SFT, 0), SND_SOC_DAPM_AIF_OUT("AIFTX", "Capture", 0, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_AIF_IN("AIFRX", "Playback", 0, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_DAC("DACL", NULL, NAU8824_REG_RDAC, NAU8824_DACL_EN_SFT, 0), SND_SOC_DAPM_SUPPLY("DACL Clock", NAU8824_REG_RDAC, NAU8824_DACL_CLK_SFT, 0, NULL, 0), SND_SOC_DAPM_DAC("DACR", NULL, NAU8824_REG_RDAC, NAU8824_DACR_EN_SFT, 0), SND_SOC_DAPM_SUPPLY("DACR Clock", NAU8824_REG_RDAC, NAU8824_DACR_CLK_SFT, 0, NULL, 0), SND_SOC_DAPM_MUX("DACL Mux", SND_SOC_NOPM, 0, 0, &nau8824_dacl_mux), SND_SOC_DAPM_MUX("DACR Mux", SND_SOC_NOPM, 0, 0, &nau8824_dacr_mux), SND_SOC_DAPM_PGA_S("Output DACL", 0, NAU8824_REG_CHARGE_PUMP_CONTROL, 8, 1, nau8824_output_dac_event, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_PGA_S("Output DACR", 0, NAU8824_REG_CHARGE_PUMP_CONTROL, 9, 1, nau8824_output_dac_event, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_PGA_S("ClassD", 0, NAU8824_REG_CLASSD_GAIN_1, NAU8824_CLASSD_EN_SFT, 0, nau8824_spk_event, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_MIXER("Left Headphone", NAU8824_REG_CLASSG, NAU8824_CLASSG_LDAC_EN_SFT, 0, nau8824_hp_left_mixer, ARRAY_SIZE(nau8824_hp_left_mixer)), SND_SOC_DAPM_MIXER("Right Headphone", NAU8824_REG_CLASSG, NAU8824_CLASSG_RDAC_EN_SFT, 0, nau8824_hp_right_mixer, ARRAY_SIZE(nau8824_hp_right_mixer)), SND_SOC_DAPM_PGA_S("Charge Pump", 1, NAU8824_REG_CHARGE_PUMP_CONTROL, NAU8824_CHARGE_PUMP_EN_SFT, 0, nau8824_pump_event, SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD), SND_SOC_DAPM_PGA("Output Driver L", NAU8824_REG_POWER_UP_CONTROL, 3, 0, NULL, 0), SND_SOC_DAPM_PGA("Output Driver R", NAU8824_REG_POWER_UP_CONTROL, 2, 0, NULL, 0), SND_SOC_DAPM_PGA("Main Driver L", NAU8824_REG_POWER_UP_CONTROL, 1, 0, NULL, 0), SND_SOC_DAPM_PGA("Main Driver R", NAU8824_REG_POWER_UP_CONTROL, 0, 0, NULL, 0), SND_SOC_DAPM_PGA("HP Boost Driver", NAU8824_REG_BOOST, NAU8824_HP_BOOST_DIS_SFT, 1, NULL, 0), SND_SOC_DAPM_PGA("Class G", NAU8824_REG_CLASSG, NAU8824_CLASSG_EN_SFT, 0, NULL, 0), SND_SOC_DAPM_OUTPUT("SPKOUTL"), SND_SOC_DAPM_OUTPUT("SPKOUTR"), SND_SOC_DAPM_OUTPUT("HPOL"), SND_SOC_DAPM_OUTPUT("HPOR"), }; static const struct snd_soc_dapm_route nau8824_dapm_routes[] = { {"DMIC1 Enable", "Switch", "DMIC1"}, {"DMIC2 Enable", "Switch", "DMIC2"}, {"DMIC3 Enable", "Switch", "DMIC3"}, {"DMIC4 Enable", "Switch", "DMIC4"}, {"DMIC1", NULL, "DMIC12 Power"}, {"DMIC2", NULL, "DMIC12 Power"}, {"DMIC3", NULL, "DMIC34 Power"}, {"DMIC4", NULL, "DMIC34 Power"}, {"DMIC12 Power", NULL, "DMIC Clock"}, {"DMIC34 Power", NULL, "DMIC Clock"}, {"Left ADC", "MIC Switch", "MIC1"}, {"Left ADC", "HSMIC Switch", "HSMIC1"}, {"Right ADC", "MIC Switch", "MIC2"}, {"Right ADC", "HSMIC Switch", "HSMIC2"}, {"ADCL", NULL, "Left ADC"}, {"ADCR", NULL, "Right ADC"}, {"AIFTX", NULL, "MICBIAS"}, {"AIFTX", NULL, "ADCL"}, {"AIFTX", NULL, "ADCR"}, {"AIFTX", NULL, "DMIC1 Enable"}, {"AIFTX", NULL, "DMIC2 Enable"}, {"AIFTX", NULL, "DMIC3 Enable"}, {"AIFTX", NULL, "DMIC4 Enable"}, {"AIFTX", NULL, "System Clock"}, {"AIFRX", NULL, "System Clock"}, {"DACL", NULL, "AIFRX"}, {"DACL", NULL, "DACL Clock"}, {"DACR", NULL, "AIFRX"}, {"DACR", NULL, "DACR Clock"}, {"DACL Mux", "DACL", "DACL"}, {"DACL Mux", "DACR", "DACR"}, {"DACR Mux", "DACL", "DACL"}, {"DACR Mux", "DACR", "DACR"}, {"Output DACL", NULL, "DACL Mux"}, {"Output DACR", NULL, "DACR Mux"}, {"ClassD", NULL, "Output DACL"}, {"ClassD", NULL, "Output DACR"}, {"Left Headphone", "DAC Left Switch", "Output DACL"}, {"Left Headphone", "DAC Right Switch", "Output DACR"}, {"Right Headphone", "DAC Left Switch", "Output DACL"}, {"Right Headphone", "DAC Right Switch", "Output DACR"}, {"Charge Pump", NULL, "Left Headphone"}, {"Charge Pump", NULL, "Right Headphone"}, {"Output Driver L", NULL, "Charge Pump"}, {"Output Driver R", NULL, "Charge Pump"}, {"Main Driver L", NULL, "Output Driver L"}, {"Main Driver R", NULL, "Output Driver R"}, {"Class G", NULL, "Main Driver L"}, {"Class G", NULL, "Main Driver R"}, {"HP Boost Driver", NULL, "Class G"}, {"SPKOUTL", NULL, "ClassD"}, {"SPKOUTR", NULL, "ClassD"}, {"HPOL", NULL, "HP Boost Driver"}, {"HPOR", NULL, "HP Boost Driver"}, }; static bool nau8824_is_jack_inserted(struct nau8824 *nau8824) { struct snd_soc_jack *jack = nau8824->jack; bool insert = false; if (nau8824->irq && jack) insert = jack->status & SND_JACK_HEADPHONE; return insert; } static void nau8824_int_status_clear_all(struct regmap *regmap) { int active_irq, clear_irq, i; /* Reset the intrruption status from rightmost bit if the corres- * ponding irq event occurs. */ regmap_read(regmap, NAU8824_REG_IRQ, &active_irq); for (i = 0; i < NAU8824_REG_DATA_LEN; i++) { clear_irq = (0x1 << i); if (active_irq & clear_irq) regmap_write(regmap, NAU8824_REG_CLEAR_INT_REG, clear_irq); } } static void nau8824_eject_jack(struct nau8824 *nau8824) { struct snd_soc_dapm_context *dapm = nau8824->dapm; struct regmap *regmap = nau8824->regmap; /* Clear all interruption status */ nau8824_int_status_clear_all(regmap); snd_soc_dapm_disable_pin(dapm, "SAR"); snd_soc_dapm_disable_pin(dapm, "MICBIAS"); snd_soc_dapm_sync(dapm); /* Enable the insertion interruption, disable the ejection * interruption, and then bypass de-bounce circuit. */ regmap_update_bits(regmap, NAU8824_REG_INTERRUPT_SETTING, NAU8824_IRQ_KEY_RELEASE_DIS | NAU8824_IRQ_KEY_SHORT_PRESS_DIS | NAU8824_IRQ_EJECT_DIS | NAU8824_IRQ_INSERT_DIS, NAU8824_IRQ_KEY_RELEASE_DIS | NAU8824_IRQ_KEY_SHORT_PRESS_DIS | NAU8824_IRQ_EJECT_DIS); regmap_update_bits(regmap, NAU8824_REG_INTERRUPT_SETTING_1, NAU8824_IRQ_INSERT_EN | NAU8824_IRQ_EJECT_EN, NAU8824_IRQ_INSERT_EN); regmap_update_bits(regmap, NAU8824_REG_ENA_CTRL, NAU8824_JD_SLEEP_MODE, NAU8824_JD_SLEEP_MODE); /* Close clock for jack type detection at manual mode */ if (dapm->bias_level < SND_SOC_BIAS_PREPARE) nau8824_config_sysclk(nau8824, NAU8824_CLK_DIS, 0); } static void nau8824_jdet_work(struct work_struct *work) { struct nau8824 *nau8824 = container_of( work, struct nau8824, jdet_work); struct snd_soc_dapm_context *dapm = nau8824->dapm; struct regmap *regmap = nau8824->regmap; int adc_value, event = 0, event_mask = 0; snd_soc_dapm_force_enable_pin(dapm, "MICBIAS"); snd_soc_dapm_force_enable_pin(dapm, "SAR"); snd_soc_dapm_sync(dapm); msleep(100); regmap_read(regmap, NAU8824_REG_SAR_ADC_DATA_OUT, &adc_value); adc_value = adc_value & NAU8824_SAR_ADC_DATA_MASK; dev_dbg(nau8824->dev, "SAR ADC data 0x%02x\n", adc_value); if (adc_value < HEADSET_SARADC_THD) { event |= SND_JACK_HEADPHONE; snd_soc_dapm_disable_pin(dapm, "SAR"); snd_soc_dapm_disable_pin(dapm, "MICBIAS"); snd_soc_dapm_sync(dapm); } else { event |= SND_JACK_HEADSET; } event_mask |= SND_JACK_HEADSET; snd_soc_jack_report(nau8824->jack, event, event_mask); /* Enable short key press and release interruption. */ regmap_update_bits(regmap, NAU8824_REG_INTERRUPT_SETTING, NAU8824_IRQ_KEY_RELEASE_DIS | NAU8824_IRQ_KEY_SHORT_PRESS_DIS, 0); if (nau8824->resume_lock) { nau8824_sema_release(nau8824); nau8824->resume_lock = false; } } static void nau8824_setup_auto_irq(struct nau8824 *nau8824) { struct regmap *regmap = nau8824->regmap; /* Enable jack ejection interruption. */ regmap_update_bits(regmap, NAU8824_REG_INTERRUPT_SETTING_1, NAU8824_IRQ_INSERT_EN | NAU8824_IRQ_EJECT_EN, NAU8824_IRQ_EJECT_EN); regmap_update_bits(regmap, NAU8824_REG_INTERRUPT_SETTING, NAU8824_IRQ_EJECT_DIS, 0); /* Enable internal VCO needed for interruptions */ if (nau8824->dapm->bias_level < SND_SOC_BIAS_PREPARE) nau8824_config_sysclk(nau8824, NAU8824_CLK_INTERNAL, 0); regmap_update_bits(regmap, NAU8824_REG_ENA_CTRL, NAU8824_JD_SLEEP_MODE, 0); } static int nau8824_button_decode(int value) { int buttons = 0; /* The chip supports up to 8 buttons, but ALSA defines * only 6 buttons. */ if (value & BIT(0)) buttons |= SND_JACK_BTN_0; if (value & BIT(1)) buttons |= SND_JACK_BTN_1; if (value & BIT(2)) buttons |= SND_JACK_BTN_2; if (value & BIT(3)) buttons |= SND_JACK_BTN_3; if (value & BIT(4)) buttons |= SND_JACK_BTN_4; if (value & BIT(5)) buttons |= SND_JACK_BTN_5; return buttons; } #define NAU8824_BUTTONS (SND_JACK_BTN_0 | SND_JACK_BTN_1 | \ SND_JACK_BTN_2 | SND_JACK_BTN_3) static irqreturn_t nau8824_interrupt(int irq, void *data) { struct nau8824 *nau8824 = (struct nau8824 *)data; struct regmap *regmap = nau8824->regmap; int active_irq, clear_irq = 0, event = 0, event_mask = 0; if (regmap_read(regmap, NAU8824_REG_IRQ, &active_irq)) { dev_err(nau8824->dev, "failed to read irq status\n"); return IRQ_NONE; } dev_dbg(nau8824->dev, "IRQ %x\n", active_irq); if (active_irq & NAU8824_JACK_EJECTION_DETECTED) { nau8824_eject_jack(nau8824); event_mask |= SND_JACK_HEADSET; clear_irq = NAU8824_JACK_EJECTION_DETECTED; /* release semaphore held after resume, * and cancel jack detection */ if (nau8824->resume_lock) { nau8824_sema_release(nau8824); nau8824->resume_lock = false; } cancel_work_sync(&nau8824->jdet_work); } else if (active_irq & NAU8824_KEY_SHORT_PRESS_IRQ) { int key_status, button_pressed; regmap_read(regmap, NAU8824_REG_CLEAR_INT_REG, &key_status); /* lower 8 bits of the register are for pressed keys */ button_pressed = nau8824_button_decode(key_status); event |= button_pressed; dev_dbg(nau8824->dev, "button %x pressed\n", event); event_mask |= NAU8824_BUTTONS; clear_irq = NAU8824_KEY_SHORT_PRESS_IRQ; } else if (active_irq & NAU8824_KEY_RELEASE_IRQ) { event_mask = NAU8824_BUTTONS; clear_irq = NAU8824_KEY_RELEASE_IRQ; } else if (active_irq & NAU8824_JACK_INSERTION_DETECTED) { /* Turn off insertion interruption at manual mode */ regmap_update_bits(regmap, NAU8824_REG_INTERRUPT_SETTING, NAU8824_IRQ_INSERT_DIS, NAU8824_IRQ_INSERT_DIS); regmap_update_bits(regmap, NAU8824_REG_INTERRUPT_SETTING_1, NAU8824_IRQ_INSERT_EN, 0); /* detect microphone and jack type */ cancel_work_sync(&nau8824->jdet_work); schedule_work(&nau8824->jdet_work); /* Enable interruption for jack type detection at audo * mode which can detect microphone and jack type. */ nau8824_setup_auto_irq(nau8824); } if (!clear_irq) clear_irq = active_irq; /* clears the rightmost interruption */ regmap_write(regmap, NAU8824_REG_CLEAR_INT_REG, clear_irq); if (event_mask) snd_soc_jack_report(nau8824->jack, event, event_mask); return IRQ_HANDLED; } static const struct nau8824_osr_attr * nau8824_get_osr(struct nau8824 *nau8824, int stream) { unsigned int osr; if (stream == SNDRV_PCM_STREAM_PLAYBACK) { regmap_read(nau8824->regmap, NAU8824_REG_DAC_FILTER_CTRL_1, &osr); osr &= NAU8824_DAC_OVERSAMPLE_MASK; if (osr >= ARRAY_SIZE(osr_dac_sel)) return NULL; return &osr_dac_sel[osr]; } else { regmap_read(nau8824->regmap, NAU8824_REG_ADC_FILTER_CTRL, &osr); osr &= NAU8824_ADC_SYNC_DOWN_MASK; if (osr >= ARRAY_SIZE(osr_adc_sel)) return NULL; return &osr_adc_sel[osr]; } } static int nau8824_dai_startup(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct snd_soc_component *component = dai->component; struct nau8824 *nau8824 = snd_soc_component_get_drvdata(component); const struct nau8824_osr_attr *osr; osr = nau8824_get_osr(nau8824, substream->stream); if (!osr || !osr->osr) return -EINVAL; return snd_pcm_hw_constraint_minmax(substream->runtime, SNDRV_PCM_HW_PARAM_RATE, 0, CLK_DA_AD_MAX / osr->osr); } static int nau8824_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { struct snd_soc_component *component = dai->component; struct nau8824 *nau8824 = snd_soc_component_get_drvdata(component); unsigned int val_len = 0, ctrl_val, bclk_fs, bclk_div; const struct nau8824_osr_attr *osr; int err = -EINVAL; nau8824_sema_acquire(nau8824, HZ); /* CLK_DAC or CLK_ADC = OSR * FS * DAC or ADC clock frequency is defined as Over Sampling Rate (OSR) * multiplied by the audio sample rate (Fs). Note that the OSR and Fs * values must be selected such that the maximum frequency is less * than 6.144 MHz. */ nau8824->fs = params_rate(params); osr = nau8824_get_osr(nau8824, substream->stream); if (!osr || !osr->osr) goto error; if (nau8824->fs * osr->osr > CLK_DA_AD_MAX) goto error; if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) regmap_update_bits(nau8824->regmap, NAU8824_REG_CLK_DIVIDER, NAU8824_CLK_DAC_SRC_MASK, osr->clk_src << NAU8824_CLK_DAC_SRC_SFT); else regmap_update_bits(nau8824->regmap, NAU8824_REG_CLK_DIVIDER, NAU8824_CLK_ADC_SRC_MASK, osr->clk_src << NAU8824_CLK_ADC_SRC_SFT); /* make BCLK and LRC divde configuration if the codec as master. */ regmap_read(nau8824->regmap, NAU8824_REG_PORT0_I2S_PCM_CTRL_2, &ctrl_val); if (ctrl_val & NAU8824_I2S_MS_MASTER) { /* get the bclk and fs ratio */ bclk_fs = snd_soc_params_to_bclk(params) / nau8824->fs; if (bclk_fs <= 32) bclk_div = 0x3; else if (bclk_fs <= 64) bclk_div = 0x2; else if (bclk_fs <= 128) bclk_div = 0x1; else if (bclk_fs <= 256) bclk_div = 0; else goto error; regmap_update_bits(nau8824->regmap, NAU8824_REG_PORT0_I2S_PCM_CTRL_2, NAU8824_I2S_LRC_DIV_MASK | NAU8824_I2S_BLK_DIV_MASK, (bclk_div << NAU8824_I2S_LRC_DIV_SFT) | bclk_div); } switch (params_width(params)) { case 16: val_len |= NAU8824_I2S_DL_16; break; case 20: val_len |= NAU8824_I2S_DL_20; break; case 24: val_len |= NAU8824_I2S_DL_24; break; case 32: val_len |= NAU8824_I2S_DL_32; break; default: goto error; } regmap_update_bits(nau8824->regmap, NAU8824_REG_PORT0_I2S_PCM_CTRL_1, NAU8824_I2S_DL_MASK, val_len); err = 0; error: nau8824_sema_release(nau8824); return err; } static int nau8824_set_fmt(struct snd_soc_dai *dai, unsigned int fmt) { struct snd_soc_component *component = dai->component; struct nau8824 *nau8824 = snd_soc_component_get_drvdata(component); unsigned int ctrl1_val = 0, ctrl2_val = 0; switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) { case SND_SOC_DAIFMT_CBM_CFM: ctrl2_val |= NAU8824_I2S_MS_MASTER; break; case SND_SOC_DAIFMT_CBS_CFS: break; default: return -EINVAL; } switch (fmt & SND_SOC_DAIFMT_INV_MASK) { case SND_SOC_DAIFMT_NB_NF: break; case SND_SOC_DAIFMT_IB_NF: ctrl1_val |= NAU8824_I2S_BP_INV; break; default: return -EINVAL; } switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { case SND_SOC_DAIFMT_I2S: ctrl1_val |= NAU8824_I2S_DF_I2S; break; case SND_SOC_DAIFMT_LEFT_J: ctrl1_val |= NAU8824_I2S_DF_LEFT; break; case SND_SOC_DAIFMT_RIGHT_J: ctrl1_val |= NAU8824_I2S_DF_RIGTH; break; case SND_SOC_DAIFMT_DSP_A: ctrl1_val |= NAU8824_I2S_DF_PCM_AB; break; case SND_SOC_DAIFMT_DSP_B: ctrl1_val |= NAU8824_I2S_DF_PCM_AB; ctrl1_val |= NAU8824_I2S_PCMB_EN; break; default: return -EINVAL; } nau8824_sema_acquire(nau8824, HZ); regmap_update_bits(nau8824->regmap, NAU8824_REG_PORT0_I2S_PCM_CTRL_1, NAU8824_I2S_DF_MASK | NAU8824_I2S_BP_MASK | NAU8824_I2S_PCMB_EN, ctrl1_val); regmap_update_bits(nau8824->regmap, NAU8824_REG_PORT0_I2S_PCM_CTRL_2, NAU8824_I2S_MS_MASK, ctrl2_val); nau8824_sema_release(nau8824); return 0; } /** * nau8824_set_tdm_slot - configure DAI TDM. * @dai: DAI * @tx_mask: Bitmask representing active TX slots. Ex. * 0xf for normal 4 channel TDM. * 0xf0 for shifted 4 channel TDM * @rx_mask: Bitmask [0:1] representing active DACR RX slots. * Bitmask [2:3] representing active DACL RX slots. * 00=CH0,01=CH1,10=CH2,11=CH3. Ex. * 0xf for DACL/R selecting TDM CH3. * 0xf0 for DACL/R selecting shifted TDM CH3. * @slots: Number of slots in use. * @slot_width: Width in bits for each slot. * * Configures a DAI for TDM operation. Only support 4 slots TDM. */ static int nau8824_set_tdm_slot(struct snd_soc_dai *dai, unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width) { struct snd_soc_component *component = dai->component; struct nau8824 *nau8824 = snd_soc_component_get_drvdata(component); unsigned int tslot_l = 0, ctrl_val = 0; if (slots > 4 || ((tx_mask & 0xf0) && (tx_mask & 0xf)) || ((rx_mask & 0xf0) && (rx_mask & 0xf)) || ((rx_mask & 0xf0) && (tx_mask & 0xf)) || ((rx_mask & 0xf) && (tx_mask & 0xf0))) return -EINVAL; ctrl_val |= (NAU8824_TDM_MODE | NAU8824_TDM_OFFSET_EN); if (tx_mask & 0xf0) { tslot_l = 4 * slot_width; ctrl_val |= (tx_mask >> 4); } else { ctrl_val |= tx_mask; } if (rx_mask & 0xf0) ctrl_val |= ((rx_mask >> 4) << NAU8824_TDM_DACR_RX_SFT); else ctrl_val |= (rx_mask << NAU8824_TDM_DACR_RX_SFT); regmap_update_bits(nau8824->regmap, NAU8824_REG_TDM_CTRL, NAU8824_TDM_MODE | NAU8824_TDM_OFFSET_EN | NAU8824_TDM_DACL_RX_MASK | NAU8824_TDM_DACR_RX_MASK | NAU8824_TDM_TX_MASK, ctrl_val); regmap_update_bits(nau8824->regmap, NAU8824_REG_PORT0_LEFT_TIME_SLOT, NAU8824_TSLOT_L_MASK, tslot_l); return 0; } /** * nau8824_calc_fll_param - Calculate FLL parameters. * @fll_in: external clock provided to codec. * @fs: sampling rate. * @fll_param: Pointer to structure of FLL parameters. * * Calculate FLL parameters to configure codec. * * Returns 0 for success or negative error code. */ static int nau8824_calc_fll_param(unsigned int fll_in, unsigned int fs, struct nau8824_fll *fll_param) { u64 fvco, fvco_max; unsigned int fref, i, fvco_sel; /* Ensure the reference clock frequency (FREF) is <= 13.5MHz by dividing * freq_in by 1, 2, 4, or 8 using FLL pre-scalar. * FREF = freq_in / NAU8824_FLL_REF_DIV_MASK */ for (i = 0; i < ARRAY_SIZE(fll_pre_scalar); i++) { fref = fll_in / fll_pre_scalar[i].param; if (fref <= NAU_FREF_MAX) break; } if (i == ARRAY_SIZE(fll_pre_scalar)) return -EINVAL; fll_param->clk_ref_div = fll_pre_scalar[i].val; /* Choose the FLL ratio based on FREF */ for (i = 0; i < ARRAY_SIZE(fll_ratio); i++) { if (fref >= fll_ratio[i].param) break; } if (i == ARRAY_SIZE(fll_ratio)) return -EINVAL; fll_param->ratio = fll_ratio[i].val; /* Calculate the frequency of DCO (FDCO) given freq_out = 256 * Fs. * FDCO must be within the 90MHz - 124MHz or the FFL cannot be * guaranteed across the full range of operation. * FDCO = freq_out * 2 * mclk_src_scaling */ fvco_max = 0; fvco_sel = ARRAY_SIZE(mclk_src_scaling); for (i = 0; i < ARRAY_SIZE(mclk_src_scaling); i++) { fvco = 256ULL * fs * 2 * mclk_src_scaling[i].param; if (fvco > NAU_FVCO_MIN && fvco < NAU_FVCO_MAX && fvco_max < fvco) { fvco_max = fvco; fvco_sel = i; } } if (ARRAY_SIZE(mclk_src_scaling) == fvco_sel) return -EINVAL; fll_param->mclk_src = mclk_src_scaling[fvco_sel].val; /* Calculate the FLL 10-bit integer input and the FLL 16-bit fractional * input based on FDCO, FREF and FLL ratio. */ fvco = div_u64(fvco_max << 16, fref * fll_param->ratio); fll_param->fll_int = (fvco >> 16) & 0x3FF; fll_param->fll_frac = fvco & 0xFFFF; return 0; } static void nau8824_fll_apply(struct regmap *regmap, struct nau8824_fll *fll_param) { regmap_update_bits(regmap, NAU8824_REG_CLK_DIVIDER, NAU8824_CLK_SRC_MASK | NAU8824_CLK_MCLK_SRC_MASK, NAU8824_CLK_SRC_MCLK | fll_param->mclk_src); regmap_update_bits(regmap, NAU8824_REG_FLL1, NAU8824_FLL_RATIO_MASK, fll_param->ratio); /* FLL 16-bit fractional input */ regmap_write(regmap, NAU8824_REG_FLL2, fll_param->fll_frac); /* FLL 10-bit integer input */ regmap_update_bits(regmap, NAU8824_REG_FLL3, NAU8824_FLL_INTEGER_MASK, fll_param->fll_int); /* FLL pre-scaler */ regmap_update_bits(regmap, NAU8824_REG_FLL4, NAU8824_FLL_REF_DIV_MASK, fll_param->clk_ref_div << NAU8824_FLL_REF_DIV_SFT); /* select divided VCO input */ regmap_update_bits(regmap, NAU8824_REG_FLL5, NAU8824_FLL_CLK_SW_MASK, NAU8824_FLL_CLK_SW_REF); /* Disable free-running mode */ regmap_update_bits(regmap, NAU8824_REG_FLL6, NAU8824_DCO_EN, 0); if (fll_param->fll_frac) { regmap_update_bits(regmap, NAU8824_REG_FLL5, NAU8824_FLL_PDB_DAC_EN | NAU8824_FLL_LOOP_FTR_EN | NAU8824_FLL_FTR_SW_MASK, NAU8824_FLL_PDB_DAC_EN | NAU8824_FLL_LOOP_FTR_EN | NAU8824_FLL_FTR_SW_FILTER); regmap_update_bits(regmap, NAU8824_REG_FLL6, NAU8824_SDM_EN, NAU8824_SDM_EN); } else { regmap_update_bits(regmap, NAU8824_REG_FLL5, NAU8824_FLL_PDB_DAC_EN | NAU8824_FLL_LOOP_FTR_EN | NAU8824_FLL_FTR_SW_MASK, NAU8824_FLL_FTR_SW_ACCU); regmap_update_bits(regmap, NAU8824_REG_FLL6, NAU8824_SDM_EN, 0); } } /* freq_out must be 256*Fs in order to achieve the best performance */ static int nau8824_set_pll(struct snd_soc_component *component, int pll_id, int source, unsigned int freq_in, unsigned int freq_out) { struct nau8824 *nau8824 = snd_soc_component_get_drvdata(component); struct nau8824_fll fll_param; int ret, fs; fs = freq_out / 256; ret = nau8824_calc_fll_param(freq_in, fs, &fll_param); if (ret < 0) { dev_err(nau8824->dev, "Unsupported input clock %d\n", freq_in); return ret; } dev_dbg(nau8824->dev, "mclk_src=%x ratio=%x fll_frac=%x fll_int=%x clk_ref_div=%x\n", fll_param.mclk_src, fll_param.ratio, fll_param.fll_frac, fll_param.fll_int, fll_param.clk_ref_div); nau8824_fll_apply(nau8824->regmap, &fll_param); mdelay(2); regmap_update_bits(nau8824->regmap, NAU8824_REG_CLK_DIVIDER, NAU8824_CLK_SRC_MASK, NAU8824_CLK_SRC_VCO); return 0; } static int nau8824_config_sysclk(struct nau8824 *nau8824, int clk_id, unsigned int freq) { struct regmap *regmap = nau8824->regmap; switch (clk_id) { case NAU8824_CLK_DIS: regmap_update_bits(regmap, NAU8824_REG_CLK_DIVIDER, NAU8824_CLK_SRC_MASK, NAU8824_CLK_SRC_MCLK); regmap_update_bits(regmap, NAU8824_REG_FLL6, NAU8824_DCO_EN, 0); break; case NAU8824_CLK_MCLK: nau8824_sema_acquire(nau8824, HZ); regmap_update_bits(regmap, NAU8824_REG_CLK_DIVIDER, NAU8824_CLK_SRC_MASK, NAU8824_CLK_SRC_MCLK); regmap_update_bits(regmap, NAU8824_REG_FLL6, NAU8824_DCO_EN, 0); nau8824_sema_release(nau8824); break; case NAU8824_CLK_INTERNAL: regmap_update_bits(regmap, NAU8824_REG_FLL6, NAU8824_DCO_EN, NAU8824_DCO_EN); regmap_update_bits(regmap, NAU8824_REG_CLK_DIVIDER, NAU8824_CLK_SRC_MASK, NAU8824_CLK_SRC_VCO); break; case NAU8824_CLK_FLL_MCLK: nau8824_sema_acquire(nau8824, HZ); regmap_update_bits(regmap, NAU8824_REG_FLL3, NAU8824_FLL_CLK_SRC_MASK, NAU8824_FLL_CLK_SRC_MCLK); nau8824_sema_release(nau8824); break; case NAU8824_CLK_FLL_BLK: nau8824_sema_acquire(nau8824, HZ); regmap_update_bits(regmap, NAU8824_REG_FLL3, NAU8824_FLL_CLK_SRC_MASK, NAU8824_FLL_CLK_SRC_BLK); nau8824_sema_release(nau8824); break; case NAU8824_CLK_FLL_FS: nau8824_sema_acquire(nau8824, HZ); regmap_update_bits(regmap, NAU8824_REG_FLL3, NAU8824_FLL_CLK_SRC_MASK, NAU8824_FLL_CLK_SRC_FS); nau8824_sema_release(nau8824); break; default: dev_err(nau8824->dev, "Invalid clock id (%d)\n", clk_id); return -EINVAL; } dev_dbg(nau8824->dev, "Sysclk is %dHz and clock id is %d\n", freq, clk_id); return 0; } static int nau8824_set_sysclk(struct snd_soc_component *component, int clk_id, int source, unsigned int freq, int dir) { struct nau8824 *nau8824 = snd_soc_component_get_drvdata(component); return nau8824_config_sysclk(nau8824, clk_id, freq); } static void nau8824_resume_setup(struct nau8824 *nau8824) { nau8824_config_sysclk(nau8824, NAU8824_CLK_DIS, 0); if (nau8824->irq) { /* Clear all interruption status */ nau8824_int_status_clear_all(nau8824->regmap); /* Enable jack detection at sleep mode, insertion detection, * and ejection detection. */ regmap_update_bits(nau8824->regmap, NAU8824_REG_ENA_CTRL, NAU8824_JD_SLEEP_MODE, NAU8824_JD_SLEEP_MODE); regmap_update_bits(nau8824->regmap, NAU8824_REG_INTERRUPT_SETTING_1, NAU8824_IRQ_EJECT_EN | NAU8824_IRQ_INSERT_EN, NAU8824_IRQ_EJECT_EN | NAU8824_IRQ_INSERT_EN); regmap_update_bits(nau8824->regmap, NAU8824_REG_INTERRUPT_SETTING, NAU8824_IRQ_EJECT_DIS | NAU8824_IRQ_INSERT_DIS, 0); } } static int nau8824_set_bias_level(struct snd_soc_component *component, enum snd_soc_bias_level level) { struct nau8824 *nau8824 = snd_soc_component_get_drvdata(component); switch (level) { case SND_SOC_BIAS_ON: break; case SND_SOC_BIAS_PREPARE: break; case SND_SOC_BIAS_STANDBY: if (snd_soc_component_get_bias_level(component) == SND_SOC_BIAS_OFF) { /* Setup codec configuration after resume */ nau8824_resume_setup(nau8824); } break; case SND_SOC_BIAS_OFF: regmap_update_bits(nau8824->regmap, NAU8824_REG_INTERRUPT_SETTING, 0x3ff, 0x3ff); regmap_update_bits(nau8824->regmap, NAU8824_REG_INTERRUPT_SETTING_1, NAU8824_IRQ_EJECT_EN | NAU8824_IRQ_INSERT_EN, 0); break; } return 0; } static int nau8824_component_probe(struct snd_soc_component *component) { struct nau8824 *nau8824 = snd_soc_component_get_drvdata(component); struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(component); nau8824->dapm = dapm; return 0; } static int __maybe_unused nau8824_suspend(struct snd_soc_component *component) { struct nau8824 *nau8824 = snd_soc_component_get_drvdata(component); if (nau8824->irq) { disable_irq(nau8824->irq); snd_soc_component_force_bias_level(component, SND_SOC_BIAS_OFF); } regcache_cache_only(nau8824->regmap, true); regcache_mark_dirty(nau8824->regmap); return 0; } static int __maybe_unused nau8824_resume(struct snd_soc_component *component) { struct nau8824 *nau8824 = snd_soc_component_get_drvdata(component); int ret; regcache_cache_only(nau8824->regmap, false); regcache_sync(nau8824->regmap); if (nau8824->irq) { /* Hold semaphore to postpone playback happening * until jack detection done. */ nau8824->resume_lock = true; ret = nau8824_sema_acquire(nau8824, 0); if (ret) nau8824->resume_lock = false; enable_irq(nau8824->irq); } return 0; } static const struct snd_soc_component_driver nau8824_component_driver = { .probe = nau8824_component_probe, .set_sysclk = nau8824_set_sysclk, .set_pll = nau8824_set_pll, .set_bias_level = nau8824_set_bias_level, .suspend = nau8824_suspend, .resume = nau8824_resume, .controls = nau8824_snd_controls, .num_controls = ARRAY_SIZE(nau8824_snd_controls), .dapm_widgets = nau8824_dapm_widgets, .num_dapm_widgets = ARRAY_SIZE(nau8824_dapm_widgets), .dapm_routes = nau8824_dapm_routes, .num_dapm_routes = ARRAY_SIZE(nau8824_dapm_routes), .suspend_bias_off = 1, .idle_bias_on = 1, .use_pmdown_time = 1, .endianness = 1, }; static const struct snd_soc_dai_ops nau8824_dai_ops = { .startup = nau8824_dai_startup, .hw_params = nau8824_hw_params, .set_fmt = nau8824_set_fmt, .set_tdm_slot = nau8824_set_tdm_slot, }; #define NAU8824_RATES SNDRV_PCM_RATE_8000_192000 #define NAU8824_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE \ | SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S32_LE) static struct snd_soc_dai_driver nau8824_dai = { .name = NAU8824_CODEC_DAI, .playback = { .stream_name = "Playback", .channels_min = 1, .channels_max = 2, .rates = NAU8824_RATES, .formats = NAU8824_FORMATS, }, .capture = { .stream_name = "Capture", .channels_min = 1, .channels_max = 2, .rates = NAU8824_RATES, .formats = NAU8824_FORMATS, }, .ops = &nau8824_dai_ops, }; static const struct regmap_config nau8824_regmap_config = { .val_bits = NAU8824_REG_ADDR_LEN, .reg_bits = NAU8824_REG_DATA_LEN, .max_register = NAU8824_REG_MAX, .readable_reg = nau8824_readable_reg, .writeable_reg = nau8824_writeable_reg, .volatile_reg = nau8824_volatile_reg, .cache_type = REGCACHE_RBTREE, .reg_defaults = nau8824_reg_defaults, .num_reg_defaults = ARRAY_SIZE(nau8824_reg_defaults), }; /** * nau8824_enable_jack_detect - Specify a jack for event reporting * * @component: component to register the jack with * @jack: jack to use to report headset and button events on * * After this function has been called the headset insert/remove and button * events will be routed to the given jack. Jack can be null to stop * reporting. */ int nau8824_enable_jack_detect(struct snd_soc_component *component, struct snd_soc_jack *jack) { struct nau8824 *nau8824 = snd_soc_component_get_drvdata(component); int ret; nau8824->jack = jack; /* Initiate jack detection work queue */ INIT_WORK(&nau8824->jdet_work, nau8824_jdet_work); ret = devm_request_threaded_irq(nau8824->dev, nau8824->irq, NULL, nau8824_interrupt, IRQF_TRIGGER_LOW | IRQF_ONESHOT, "nau8824", nau8824); if (ret) { dev_err(nau8824->dev, "Cannot request irq %d (%d)\n", nau8824->irq, ret); } return ret; } EXPORT_SYMBOL_GPL(nau8824_enable_jack_detect); static void nau8824_reset_chip(struct regmap *regmap) { regmap_write(regmap, NAU8824_REG_RESET, 0x00); regmap_write(regmap, NAU8824_REG_RESET, 0x00); } static void nau8824_setup_buttons(struct nau8824 *nau8824) { struct regmap *regmap = nau8824->regmap; regmap_update_bits(regmap, NAU8824_REG_SAR_ADC, NAU8824_SAR_TRACKING_GAIN_MASK, nau8824->sar_voltage << NAU8824_SAR_TRACKING_GAIN_SFT); regmap_update_bits(regmap, NAU8824_REG_SAR_ADC, NAU8824_SAR_COMPARE_TIME_MASK, nau8824->sar_compare_time << NAU8824_SAR_COMPARE_TIME_SFT); regmap_update_bits(regmap, NAU8824_REG_SAR_ADC, NAU8824_SAR_SAMPLING_TIME_MASK, nau8824->sar_sampling_time << NAU8824_SAR_SAMPLING_TIME_SFT); regmap_update_bits(regmap, NAU8824_REG_VDET_COEFFICIENT, NAU8824_LEVELS_NR_MASK, (nau8824->sar_threshold_num - 1) << NAU8824_LEVELS_NR_SFT); regmap_update_bits(regmap, NAU8824_REG_VDET_COEFFICIENT, NAU8824_HYSTERESIS_MASK, nau8824->sar_hysteresis << NAU8824_HYSTERESIS_SFT); regmap_update_bits(regmap, NAU8824_REG_VDET_COEFFICIENT, NAU8824_SHORTKEY_DEBOUNCE_MASK, nau8824->key_debounce << NAU8824_SHORTKEY_DEBOUNCE_SFT); regmap_write(regmap, NAU8824_REG_VDET_THRESHOLD_1, (nau8824->sar_threshold[0] << 8) | nau8824->sar_threshold[1]); regmap_write(regmap, NAU8824_REG_VDET_THRESHOLD_2, (nau8824->sar_threshold[2] << 8) | nau8824->sar_threshold[3]); regmap_write(regmap, NAU8824_REG_VDET_THRESHOLD_3, (nau8824->sar_threshold[4] << 8) | nau8824->sar_threshold[5]); regmap_write(regmap, NAU8824_REG_VDET_THRESHOLD_4, (nau8824->sar_threshold[6] << 8) | nau8824->sar_threshold[7]); } static void nau8824_init_regs(struct nau8824 *nau8824) { struct regmap *regmap = nau8824->regmap; /* Enable Bias/VMID/VMID Tieoff */ regmap_update_bits(regmap, NAU8824_REG_BIAS_ADJ, NAU8824_VMID | NAU8824_VMID_SEL_MASK, NAU8824_VMID | (nau8824->vref_impedance << NAU8824_VMID_SEL_SFT)); regmap_update_bits(regmap, NAU8824_REG_BOOST, NAU8824_GLOBAL_BIAS_EN, NAU8824_GLOBAL_BIAS_EN); mdelay(2); regmap_update_bits(regmap, NAU8824_REG_MIC_BIAS, NAU8824_MICBIAS_VOLTAGE_MASK, nau8824->micbias_voltage); /* Disable Boost Driver, Automatic Short circuit protection enable */ regmap_update_bits(regmap, NAU8824_REG_BOOST, NAU8824_PRECHARGE_DIS | NAU8824_HP_BOOST_DIS | NAU8824_HP_BOOST_G_DIS | NAU8824_SHORT_SHUTDOWN_EN, NAU8824_PRECHARGE_DIS | NAU8824_HP_BOOST_DIS | NAU8824_HP_BOOST_G_DIS | NAU8824_SHORT_SHUTDOWN_EN); /* Scaling for ADC and DAC clock */ regmap_update_bits(regmap, NAU8824_REG_CLK_DIVIDER, NAU8824_CLK_ADC_SRC_MASK | NAU8824_CLK_DAC_SRC_MASK, (0x1 << NAU8824_CLK_ADC_SRC_SFT) | (0x1 << NAU8824_CLK_DAC_SRC_SFT)); regmap_update_bits(regmap, NAU8824_REG_DAC_MUTE_CTRL, NAU8824_DAC_ZC_EN, NAU8824_DAC_ZC_EN); regmap_update_bits(regmap, NAU8824_REG_ENA_CTRL, NAU8824_DAC_CH1_EN | NAU8824_DAC_CH0_EN | NAU8824_ADC_CH0_EN | NAU8824_ADC_CH1_EN | NAU8824_ADC_CH2_EN | NAU8824_ADC_CH3_EN, NAU8824_DAC_CH1_EN | NAU8824_DAC_CH0_EN | NAU8824_ADC_CH0_EN | NAU8824_ADC_CH1_EN | NAU8824_ADC_CH2_EN | NAU8824_ADC_CH3_EN); regmap_update_bits(regmap, NAU8824_REG_CLK_GATING_ENA, NAU8824_CLK_ADC_CH23_EN | NAU8824_CLK_ADC_CH01_EN | NAU8824_CLK_DAC_CH1_EN | NAU8824_CLK_DAC_CH0_EN | NAU8824_CLK_I2S_EN | NAU8824_CLK_GAIN_EN | NAU8824_CLK_SAR_EN | NAU8824_CLK_DMIC_CH23_EN, NAU8824_CLK_ADC_CH23_EN | NAU8824_CLK_ADC_CH01_EN | NAU8824_CLK_DAC_CH1_EN | NAU8824_CLK_DAC_CH0_EN | NAU8824_CLK_I2S_EN | NAU8824_CLK_GAIN_EN | NAU8824_CLK_SAR_EN | NAU8824_CLK_DMIC_CH23_EN); /* Class G timer 64ms */ regmap_update_bits(regmap, NAU8824_REG_CLASSG, NAU8824_CLASSG_TIMER_MASK, 0x20 << NAU8824_CLASSG_TIMER_SFT); regmap_update_bits(regmap, NAU8824_REG_TRIM_SETTINGS, NAU8824_DRV_CURR_INC, NAU8824_DRV_CURR_INC); /* Disable DACR/L power */ regmap_update_bits(regmap, NAU8824_REG_CHARGE_PUMP_CONTROL, NAU8824_SPKR_PULL_DOWN | NAU8824_SPKL_PULL_DOWN | NAU8824_POWER_DOWN_DACR | NAU8824_POWER_DOWN_DACL, NAU8824_SPKR_PULL_DOWN | NAU8824_SPKL_PULL_DOWN | NAU8824_POWER_DOWN_DACR | NAU8824_POWER_DOWN_DACL); /* Enable TESTDAC. This sets the analog DAC inputs to a '0' input * signal to avoid any glitches due to power up transients in both * the analog and digital DAC circuit. */ regmap_update_bits(regmap, NAU8824_REG_ENABLE_LO, NAU8824_TEST_DAC_EN, NAU8824_TEST_DAC_EN); /* Config L/R channel */ regmap_update_bits(regmap, NAU8824_REG_DAC_CH0_DGAIN_CTRL, NAU8824_DAC_CH0_SEL_MASK, NAU8824_DAC_CH0_SEL_I2S0); regmap_update_bits(regmap, NAU8824_REG_DAC_CH1_DGAIN_CTRL, NAU8824_DAC_CH1_SEL_MASK, NAU8824_DAC_CH1_SEL_I2S1); regmap_update_bits(regmap, NAU8824_REG_ENABLE_LO, NAU8824_DACR_HPR_EN | NAU8824_DACL_HPL_EN, NAU8824_DACR_HPR_EN | NAU8824_DACL_HPL_EN); /* Default oversampling/decimations settings are unusable * (audible hiss). Set it to something better. */ regmap_update_bits(regmap, NAU8824_REG_ADC_FILTER_CTRL, NAU8824_ADC_SYNC_DOWN_MASK, NAU8824_ADC_SYNC_DOWN_64); regmap_update_bits(regmap, NAU8824_REG_DAC_FILTER_CTRL_1, NAU8824_DAC_CICCLP_OFF | NAU8824_DAC_OVERSAMPLE_MASK, NAU8824_DAC_CICCLP_OFF | NAU8824_DAC_OVERSAMPLE_64); /* DAC clock delay 2ns, VREF */ regmap_update_bits(regmap, NAU8824_REG_RDAC, NAU8824_RDAC_CLK_DELAY_MASK | NAU8824_RDAC_VREF_MASK, (0x2 << NAU8824_RDAC_CLK_DELAY_SFT) | (0x3 << NAU8824_RDAC_VREF_SFT)); /* PGA input mode selection */ regmap_update_bits(regmap, NAU8824_REG_FEPGA, NAU8824_FEPGA_MODEL_SHORT_EN | NAU8824_FEPGA_MODER_SHORT_EN, NAU8824_FEPGA_MODEL_SHORT_EN | NAU8824_FEPGA_MODER_SHORT_EN); /* Digital microphone control */ regmap_update_bits(regmap, NAU8824_REG_ANALOG_CONTROL_1, NAU8824_DMIC_CLK_DRV_STRG | NAU8824_DMIC_CLK_SLEW_FAST, NAU8824_DMIC_CLK_DRV_STRG | NAU8824_DMIC_CLK_SLEW_FAST); regmap_update_bits(regmap, NAU8824_REG_JACK_DET_CTRL, NAU8824_JACK_LOGIC, /* jkdet_polarity - 1 is for active-low */ nau8824->jkdet_polarity ? 0 : NAU8824_JACK_LOGIC); regmap_update_bits(regmap, NAU8824_REG_JACK_DET_CTRL, NAU8824_JACK_EJECT_DT_MASK, (nau8824->jack_eject_debounce << NAU8824_JACK_EJECT_DT_SFT)); if (nau8824->sar_threshold_num) nau8824_setup_buttons(nau8824); } static int nau8824_setup_irq(struct nau8824 *nau8824) { /* Disable interruption before codec initiation done */ regmap_update_bits(nau8824->regmap, NAU8824_REG_ENA_CTRL, NAU8824_JD_SLEEP_MODE, NAU8824_JD_SLEEP_MODE); regmap_update_bits(nau8824->regmap, NAU8824_REG_INTERRUPT_SETTING, 0x3ff, 0x3ff); regmap_update_bits(nau8824->regmap, NAU8824_REG_INTERRUPT_SETTING_1, NAU8824_IRQ_EJECT_EN | NAU8824_IRQ_INSERT_EN, 0); return 0; } static void nau8824_print_device_properties(struct nau8824 *nau8824) { struct device *dev = nau8824->dev; int i; dev_dbg(dev, "jkdet-polarity: %d\n", nau8824->jkdet_polarity); dev_dbg(dev, "micbias-voltage: %d\n", nau8824->micbias_voltage); dev_dbg(dev, "vref-impedance: %d\n", nau8824->vref_impedance); dev_dbg(dev, "sar-threshold-num: %d\n", nau8824->sar_threshold_num); for (i = 0; i < nau8824->sar_threshold_num; i++) dev_dbg(dev, "sar-threshold[%d]=%x\n", i, nau8824->sar_threshold[i]); dev_dbg(dev, "sar-hysteresis: %d\n", nau8824->sar_hysteresis); dev_dbg(dev, "sar-voltage: %d\n", nau8824->sar_voltage); dev_dbg(dev, "sar-compare-time: %d\n", nau8824->sar_compare_time); dev_dbg(dev, "sar-sampling-time: %d\n", nau8824->sar_sampling_time); dev_dbg(dev, "short-key-debounce: %d\n", nau8824->key_debounce); dev_dbg(dev, "jack-eject-debounce: %d\n", nau8824->jack_eject_debounce); } static int nau8824_read_device_properties(struct device *dev, struct nau8824 *nau8824) { int ret; ret = device_property_read_u32(dev, "nuvoton,jkdet-polarity", &nau8824->jkdet_polarity); if (ret) nau8824->jkdet_polarity = 1; ret = device_property_read_u32(dev, "nuvoton,micbias-voltage", &nau8824->micbias_voltage); if (ret) nau8824->micbias_voltage = 6; ret = device_property_read_u32(dev, "nuvoton,vref-impedance", &nau8824->vref_impedance); if (ret) nau8824->vref_impedance = 2; ret = device_property_read_u32(dev, "nuvoton,sar-threshold-num", &nau8824->sar_threshold_num); if (ret) nau8824->sar_threshold_num = 4; ret = device_property_read_u32_array(dev, "nuvoton,sar-threshold", nau8824->sar_threshold, nau8824->sar_threshold_num); if (ret) { nau8824->sar_threshold[0] = 0x0a; nau8824->sar_threshold[1] = 0x14; nau8824->sar_threshold[2] = 0x26; nau8824->sar_threshold[3] = 0x73; } ret = device_property_read_u32(dev, "nuvoton,sar-hysteresis", &nau8824->sar_hysteresis); if (ret) nau8824->sar_hysteresis = 0; ret = device_property_read_u32(dev, "nuvoton,sar-voltage", &nau8824->sar_voltage); if (ret) nau8824->sar_voltage = 6; ret = device_property_read_u32(dev, "nuvoton,sar-compare-time", &nau8824->sar_compare_time); if (ret) nau8824->sar_compare_time = 1; ret = device_property_read_u32(dev, "nuvoton,sar-sampling-time", &nau8824->sar_sampling_time); if (ret) nau8824->sar_sampling_time = 1; ret = device_property_read_u32(dev, "nuvoton,short-key-debounce", &nau8824->key_debounce); if (ret) nau8824->key_debounce = 0; ret = device_property_read_u32(dev, "nuvoton,jack-eject-debounce", &nau8824->jack_eject_debounce); if (ret) nau8824->jack_eject_debounce = 1; return 0; } /* Please keep this list alphabetically sorted */ static const struct dmi_system_id nau8824_quirk_table[] = { { /* Cyberbook T116 rugged tablet */ .matches = { DMI_EXACT_MATCH(DMI_BOARD_VENDOR, "Default string"), DMI_EXACT_MATCH(DMI_BOARD_NAME, "Cherry Trail CR"), DMI_EXACT_MATCH(DMI_PRODUCT_SKU, "20170531"), }, .driver_data = (void *)(NAU8824_JD_ACTIVE_HIGH | NAU8824_MONO_SPEAKER), }, { /* CUBE iwork8 Air */ .matches = { DMI_MATCH(DMI_SYS_VENDOR, "cube"), DMI_MATCH(DMI_PRODUCT_NAME, "i1-TF"), DMI_MATCH(DMI_BOARD_NAME, "Cherry Trail CR"), }, .driver_data = (void *)(NAU8824_MONO_SPEAKER), }, { /* Pipo W2S */ .matches = { DMI_MATCH(DMI_SYS_VENDOR, "PIPO"), DMI_MATCH(DMI_PRODUCT_NAME, "W2S"), }, .driver_data = (void *)(NAU8824_MONO_SPEAKER), }, { /* Positivo CW14Q01P */ .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Positivo Tecnologia SA"), DMI_MATCH(DMI_BOARD_NAME, "CW14Q01P"), }, .driver_data = (void *)(NAU8824_JD_ACTIVE_HIGH), }, { /* Positivo K1424G */ .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Positivo Tecnologia SA"), DMI_MATCH(DMI_BOARD_NAME, "K1424G"), }, .driver_data = (void *)(NAU8824_JD_ACTIVE_HIGH), }, { /* Positivo N14ZP74G */ .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Positivo Tecnologia SA"), DMI_MATCH(DMI_BOARD_NAME, "N14ZP74G"), }, .driver_data = (void *)(NAU8824_JD_ACTIVE_HIGH), }, {} }; static void nau8824_check_quirks(void) { const struct dmi_system_id *dmi_id; if (quirk_override != -1) { nau8824_quirk = quirk_override; return; } dmi_id = dmi_first_match(nau8824_quirk_table); if (dmi_id) nau8824_quirk = (unsigned long)dmi_id->driver_data; } const char *nau8824_components(void) { nau8824_check_quirks(); if (nau8824_quirk & NAU8824_MONO_SPEAKER) return "cfg-spk:1"; else return "cfg-spk:2"; } EXPORT_SYMBOL_GPL(nau8824_components); static int nau8824_i2c_probe(struct i2c_client *i2c) { struct device *dev = &i2c->dev; struct nau8824 *nau8824 = dev_get_platdata(dev); int ret, value; if (!nau8824) { nau8824 = devm_kzalloc(dev, sizeof(*nau8824), GFP_KERNEL); if (!nau8824) return -ENOMEM; ret = nau8824_read_device_properties(dev, nau8824); if (ret) return ret; } i2c_set_clientdata(i2c, nau8824); nau8824->regmap = devm_regmap_init_i2c(i2c, &nau8824_regmap_config); if (IS_ERR(nau8824->regmap)) return PTR_ERR(nau8824->regmap); nau8824->resume_lock = false; nau8824->dev = dev; nau8824->irq = i2c->irq; sema_init(&nau8824->jd_sem, 1); nau8824_check_quirks(); if (nau8824_quirk & NAU8824_JD_ACTIVE_HIGH) nau8824->jkdet_polarity = 0; nau8824_print_device_properties(nau8824); ret = regmap_read(nau8824->regmap, NAU8824_REG_I2C_DEVICE_ID, &value); if (ret < 0) { dev_err(dev, "Failed to read device id from the NAU8824: %d\n", ret); return ret; } nau8824_reset_chip(nau8824->regmap); nau8824_init_regs(nau8824); if (i2c->irq) nau8824_setup_irq(nau8824); return devm_snd_soc_register_component(dev, &nau8824_component_driver, &nau8824_dai, 1); } static const struct i2c_device_id nau8824_i2c_ids[] = { { "nau8824", 0 }, { } }; MODULE_DEVICE_TABLE(i2c, nau8824_i2c_ids); #ifdef CONFIG_OF static const struct of_device_id nau8824_of_ids[] = { { .compatible = "nuvoton,nau8824", }, {} }; MODULE_DEVICE_TABLE(of, nau8824_of_ids); #endif #ifdef CONFIG_ACPI static const struct acpi_device_id nau8824_acpi_match[] = { { "10508824", 0 }, {}, }; MODULE_DEVICE_TABLE(acpi, nau8824_acpi_match); #endif static struct i2c_driver nau8824_i2c_driver = { .driver = { .name = "nau8824", .of_match_table = of_match_ptr(nau8824_of_ids), .acpi_match_table = ACPI_PTR(nau8824_acpi_match), }, .probe = nau8824_i2c_probe, .id_table = nau8824_i2c_ids, }; module_i2c_driver(nau8824_i2c_driver); MODULE_DESCRIPTION("ASoC NAU88L24 driver"); MODULE_AUTHOR("John Hsu <KCHSU0@nuvoton.com>"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1